EXAMINATIONS — 2007
 MID-TERM TEST

COMP 202 Formal Methods of Computer Science

Time Allowed: 90 minutes

Instructions:	There are five (5) questions.
Each question is worth eighteen (18) marks.	
	Answer all the questions.
	Show all your working.

Question 1.

Consider the following informal description of a problem:

Given strings s and t, return true iff s is a prefix (initial segment) of t.
(a) Give a formal specification (signature, precondition, and postcondition) for the problem. Clearly state any assumptions you make about the problem, and give clear descriptions (in English or formal) of any notation you introduce.
(b) Define an iterative program in the imperative language which satisfies your specification. Use $s[i]$ to access the i th element of a string s (counting from 0), and $|s|$ to determine the length of s.
(c) Define a recursive program in the applicative language which satisfies your specification. Use head and tail to access the parts of a string, and empty to determine if a string is empty.
[6 marks]

Question 2.

(a) State Kleene's Theorem.
(b) Outline the method for constructing an FA from an NFA with Λ transitions, such that both machines accept the same language.
(c) Let $M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\begin{aligned}
Q & =\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\} \\
\Sigma & =\{a, b\} \\
q_{0} & =S_{0} \\
F & =\left\{S_{1}\right\}
\end{aligned}
$$

δ	a	b	Λ
S_{0}	$\left\{S_{0}, S_{1}\right\}$	$\left\{S_{2}\right\}$	$\}$
S_{1}	$\}$	$\left\{S_{3}\right\}$	$\left\{S_{2}\right\}$
S_{2}	$\left\{S_{1}, S_{3}\right\}$	$\}$	$\}$
S_{3}	$\left\{S_{2}\right\}$	$\}$	$\left\{S_{1}, S_{2}\right\}$

(i) Draw M_{1}.
(ii) Find an FA which accepts the same language as M_{1}.

Question 3.

(a) Given an alphabet $\Sigma=\{a, b\}$, draw NFA with Λ transitions which accept the following languages:
(i) Language ($\mathbf{b a}^{*}$)
(ii) Language $(\mathbf{b}+\mathbf{a})$
(iii) Language $\left((\mathbf{a}+\mathbf{b})^{*}\left(\mathbf{b}^{*} \mathbf{a}^{*}\right)^{*}\right)$
(iv) Language $\left((\mathbf{b}+\mathbf{a}) \mathbf{b}(\mathbf{b}+\mathbf{a})^{*}\right)$
(b) Let $M_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\begin{aligned}
Q & =\left\{S_{1}, S_{2}, S_{3}\right\} \\
\Sigma & =\{a, b\} \\
q_{0} & =S_{1} \\
F & =\left\{S_{1}, S_{3}\right\}
\end{aligned}
$$

δ	a	b
S_{1}	S_{3}	S_{2}
S_{2}	S_{3}	
S_{3}	S_{2}	S_{1}

(i) Draw M_{2}.
(ii) Describe the language accepted by M_{2}.

Question 4.

Let $M_{3}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\begin{aligned}
Q & =\{A, B, C\} \\
\Sigma & =\{a, b\} \\
q_{0} & =A \\
F & =\{B\}
\end{aligned}
$$

δ	a	b
A	B	C
B	-	B
C	A	B

(a) Give a regular grammar that generates the language accepted by M_{3}.
(b) Define a recursive scanner that recognizes the language accepted by M_{3}. [6 marks]
(c) Give a regular expression that describes the language accepted by M_{3}.

Question 5.

(a) The pumping lemma tells us that if L is a regular language then there is a number p, such that $(\forall s \in L)(|s| \geq p \Rightarrow s=x y z)$, where:

1. $(\forall i \geq 0) x y^{i} z \in L$
2. $|y|>0$
3. $|x y| \leq p$
(i) Outline the proof of the pumping lemma.
(ii) Give an example of a non-regular language, and use the pumping lemma to show that it is non-regular.
(b) Explain the role of Kleene's theorem in showing that the class of regular languages is closed under union, concatenation, Kleene closure, and complement.
