TE WHARE WANANGA O TE UPOKO O TE IKA A MAUI

ZFB VICTORIA

EXAMINATIONS — 2008
END-OF-YEAR

COMP 202 / SWEN 202
Formal Methods of Computer
Science / Formal Foundations

of Software Engineering

Time Allowed: 3 Hours

Instructions: e
[}

There are six (6) questions, each worth 30 marks.
Answer all of the questions.

The exam will be marked out of one hundred and
eighty (180).

Calculators ARE NOT ALLOWED.

Non-electronic Foreign language dictionaries are al-
lowed.

No other reference material is allowed.

COMP 202 / SWEN 202

continued...

Question 1. Finite acceptors [30 marks]

(a) [6 marks] Draw a transition diagram for an NFA (Nondeterministic Finite Acceptor)
that accepts the language defined by the regular expression a*(ab|acd)*a*.

You are not required to use a systematic construction. Your NFA should be as simple as
possible, and may include null transitions.

(b) [4 marks] Give a trace (sequence of transitions) showing the behaviour of your NFA
when given the string aabacdaaa as input. Show all possible states that the NFA could be
in at each step.

(c) [8 marks] Draw a transition diagram for a DFA (Deterministic Finite Acceptor) equiva-
lent to your NFA from part (a).

Explain how your DFA was constructed and how states of the DFA are related to those of
the NFA.

(d) [2 marks] Give a trace (sequence of transitions) showing the behaviour of your DFA
when given the string abcda as input.

(e) [10 marks] Prove that an NFA accepts a finite language if and only if its transition
diagram, considered as a directed graph, contains no cycles consisting only of “useful”
states. Recall that a state is “useful” if it lies on a path from the initial state to some accepting
state. Explain why the result is false if the “useful” states condition is omitted.

COMP 202 / SWEN 202 2 continued...

Question 2. Describing languages [30 marks]
(a) [22 marks] Consider the following languages:

(i) The set of strings over {4, b, c} containing exactly one a and exactly one b.

(ii) The set of strings of the form a™b", where m < n.

(iii) The set of all palindromes over {a,b, c}; i.e. the set of all strings « € {a,b, c}* such that
aR =, where aR is the reflection (or reverse) of .

(iv) The set of strings over {a,b,c,d} such that no ¢ occurs before an a and no b occurs
after a d.

For each of the above languages: say whether the language is regular or not regular. If the
language is regular, write a regular expression that defines it; otherwise, prove that it is not
regular.

(b) [8 marks] The following grammars all define a simple language of arithmetic expres-
sions with binary operators + and *, and numbers 1, 2 and 3 as atomic expressions:

Gl: E— E+E|T G5: E —» E4+T|T
T — FxF | F T — TxF | F
F—>1]2]|3 F—>1|2]|3

G2 E— T+E|T+E| T G6: E— T+T | T«T | T
T - 1]2]3 T - 1]2]3

G3: E — T+E|T G7: E - E4T|T
T — FxT | F T — TxF | F
F—->1]2]|3 F—>1|2]|3

G4 E — T+E|E«T | T G8: E — E+T |E+T | T
T - 1]2]3 T - 1]2]3

(i) [2 marks] Which grammar treats 4+ and * as having the same precedence, and both
being non-associative?

(ii) [2 marks] Which grammar treats 4+ and * as having the same precedence, and both
being left-associative?

(iii) [2 marks] Which grammar treats 4 and * as having different precedence, and both
being right-associative?

(iv) [2 marks] Which grammar treats + and * as having different precedence and different-
associativity?

COMP 202 / SWEN 202 3 continued...

Question 3. Parsing [30 marks]

Consider the following grammar:

Stmt — if Expr then Stmt else Stmt fi
| if Expr then Stmt fi
| ID:=ID

Expr — ID==1ID

ID — alblc]...

(a) [5 marks] For each of the following strings, discuss whether the above grammar pro-
duces it or not. Give parse trees as evidence where possible.

(i) if a == b then a :=c ; a :=b fi

= b then if b == ¢ then a := ¢ fi fi

(ii) if a

(b) [5 marks] Compute the following sets:

() first(Expr)
(i) follow(Stmt)

(c) [5 marks] By computing first() sets appropriately, show that this grammar is not LL(1).

(d) [5 marks] By left-factoring, convert this grammar to be LL(1).

Now, consider the following grammar:

Expr — Expr+ Term | Term
Term — ID

ID — al|b|c]...

(e) [5 marks] The above grammar is left-recursive. Discuss why this means it is not LL(1).

(f) [5 marks] Show how the grammar can be rewritten to eliminate left-recursion. Indicate
any differences in the parse trees produced, compared with the original grammar.

COMP 202 / SWEN 202 4 continued...

Question 4. FlowChart Programs [30 marks]

(a) Indicate whether each of the following FlowChart programs is syntactically correct or
not. If it is not correct, indicate why; otherwise, briefly describe what it does.

(i) [3 marks]
input x;
input y;
if x <y then1else2;
1. x:=y;
goto 3;
2: skip;

(ii) [3 marks]
input x;
if x < 0 then 1 else 2;
1: x:= —x;
2: skip;
output x;

(iii) [3 marks]

input x;

input y;

if x < 0 then 1 else 4;
if y < 0 then 2 else 3;
z:=x+Yy,

goto 5;

z:=0;

output z;

(b) Consider the following two FlowChart programs.

(i) [3 marks] Give an execution trace for program A.

x:=1 x:=1;
y:=0; y:=0;
1: if x < 3 then 2 else 3; 1: if x < 3 then 2 else 3;
Do x:i=x+1; Dox:i=x+1;
y=y+1 yi=x—-1;
output y; output y;
goto 2; goto 2;
skip; skip;
(Program A) (Program B)

(ii) [4 marks] Briefly discuss whether these programs are weakly equivalent, strongly equiva-
lent or not equivalent.

COMP 202 / SWEN 202

continued...

(c) The FlowChart language is to be extended with support for arrays. This allows programs
such as the following, where an element of the array a is overwritten with zero:

a:=(0,1,2,3);
input x;

a[x] :=0;

(i) [2 marks] Give a condition which ensures any statement of the form “v[i] := ¢” will not
cause the program to abort.

(d) The semantics for assignments of the form “v := ¢” is given by:

P(pc) = (l1:v:=e) n=1V(eS)
(P,pc,S) — (P, pc+1, S[v := n])

[ASSIGN]

(i) [2 marks] On the following FlowChart Machine state, apply the above ASSIGN rule to
produce the next state:

(1:x:=y), 1 {x—2,y—3})

(ii) [4 marks] Give a similar rule which governs assignments of the form “v[i] := ¢”. Note,
if v is an array, then v[i := n] returns v with element i updated to hold the constant 7.

(e) [6 marks] For each of the numbered statements in the following program, write an
appropriate assertion which always holds true before that statement is executed. Indicate
whether the postcondition will be satisfied after the return statement is executed.

PRE:

POST: ret > 0

absum(list) begin

i:=1;

r:=0;

if i <|list| then 2 else 6;

—_

2: if list[i] < O then 3 else 4;
3. r:=r—listli];
goto 5;
4: r:=r+list]i];
5 i:=i+1;
goto 1;
6: returnr;

end

COMP 202 / SWEN 202 6 continued...

Question 5. Alloy [30 marks]

The statement “One Man’s Ceiling is Another Man’s Floor”, taken from a song by Paul
Simon, inspired the following Alloy model:

sig Platform {}
sig Man {ceiling, floor: Platform}

fact above { all m: Man | some n: Man | m.ceiling = n.floor }
pred below { all m: Man | some n: Man | m.floor = n.ceiling }
pred woleb { some n: Man | all m: Man | m.floor = n.ceiling }
(a) Consider the following instance of the model:

Man = {MO0, M1}

Platform = {P0, P1}

P
ceiling = floor = M0->P0 + M1->P1 = ﬁ(l) P(l)

(i) [2 marks] Draw a visualisation (graph representation as Alloy would do) of this model
instance.

MO M1
cj .‘;‘ “"‘
| |floor | |floor
ceiling | ceiling
v A4
PO P1
(ii) [1 mark] Compute M0.ceiling.
MO | PO
MO. MITPL— PO
(iii) [1 mark] Compute M1.floor.
MO | PO
M1. ML= P1

COMP 202 / SWEN 202 7 continued...

(iv) [2 marks] Is the predicate called below true for this instance? Give a brief explanation
of why or why not.

Predicate below is true for this instance since floor and ceiling are equal for all men.

(v) [2 marks] Is the predicate called woleb true for this instance? Give a brief explanation
of why or why not.

Predicate woleb is not true for this instance since there is no man so that all men’s floors are
equal to his ceiling.

(b) Consider the following instance of the model:

Man = { MO, M1, M2}
Platform = {P0, P1, P2}

MO | P1
ceiling = M0->P1 + M1->P2 + M2->P1 =| M1 | P2
M2 | P1

MO | PO
floor = M0->P0 + M1->P1 4+ M2->P2 =| M1 | P1
M2 | P2

(i) [2 marks] Draw a visualisation (graph representation as Alloy would do) of this model
instance.

M1 M2 MO

| i i i \\ fl
“CEI Ing ﬂOOI‘ celing celling \ oor

N, \

P2 P1 PO

(ii) [2 marks] Compute floor. ceiling.

MO | PO MO | P1 MO | PO || P1| MO M1 | MO
M1 Pl ~ M1 |P2|=|M1|P1|. P2 Ml|=|M1|M2
M2 | P2 M2 | P1 M2 | P2|| Pl M2 M2 | M1

COMP 202 / SWEN 202 8 continued...

(iii) [2 marks] Compute ~(floor. ceiling).

M1 | MO
M TMO] M1 | M2
M2 | M1
Al M1 | M2 |=
Vo M M1 | M1
—L— | M2 | MO
M2 | M2
(iv) [2 marks] Compute floor. ceiling.Man.
M1 | MO | | MO

M1 | M2 |.| M1 :
M2 | M1 || M2 -

(v) [2 marks] In your own words, describe what floor.“ceiling.Man represents.

The set of tuples of Men so that the first one is above the second one, that is, the second
man’s ceiling is the first man’s floor.

(vi) [2 marks] Is the predicate called below true for this instance? Give a brief explanation
of why or why not.

Predicate below is not true for this instance since M0’s floor is not the ceiling for a man.

(c) Extending the Alloy specification

(i) [2 marks] Add a fact to the Alloy model given above that makes sure that ceiling and
floor are distinct for each Man.

fact { no floor & ceiling }

(ii) [3 marks] Write an Alloy function called fun_above (with no arguments) that returns
a binary relation between a platform and any platform directly above it. A platform q is
directly above a platform p, i.e. p->q in fun_above, if and only if there is a Man who has
Platform p as floor and Platform q as ceiling.

fun foo: Platform -> Platform {
“floor.ceiling

}

(iii) [3 marks] Write a predicate called notAboveItself thatis true if no Platform is (directly
or indirectly) above itself. In other words, predicate notAboveItself should be true if and
only if no platform is directly above itself or is directly above a Platform that is directly
above itself, etc.

COMP 202 / SWEN 202 9 continued...

pred notAboveItself {
no p: Platform | p in p. fun_above

}

(iv) [2 marks] What would happen if you executed the command run notAboveItself
using the Alloy analyser? Give a brief explanation of your answer.

No instances involving Men would be found since all instances satisfying predicate notAboveItself
and fact above consist of an infinite number of Man.

COMP 202 / SWEN 202 10 continued...

Question 6. An Alloy Model for Finite Acceptors [30 marks]

A Nondeterministic Finite Acceptor (NFA) is defined as a tuple (Q,q, A, N, F), where Q is a
non-empty finite set of states, ¢ € Q is the initial state, A is a finite set of symbols, N C
Q x A x Q is the transition relation, and F C Q is the set of final states.

Consider the following incomplete Alloy model for NFAs:

sig Symbol {}
sig State { transitions: Symbol -> State }

(a) [5 marks] Extend the Alloy model given above with a representation for start and final
states according to the NFA definition given. Make sure that each NFA model instance has
exactly one initial state.

one sig Init in State {}
sig Final in State {}

(b) Provide definitions (predicates) for the following classes of NFAs:
(i) [2 marks] NFAs with only one state.

pred oneState { one State }

(ii) [2 marks] NFAs with no final states.

pred noFinal { no Final }

(iii) [2 marks] NFAs for which the initial state is not final.

pred initNotFinal { no Init & Final }

(iv) [2 marks] NFAs without self-loops, i.e. transitions that start and end at the same state.
pred noSelfLoops { all s: State | no s & s.transitions[Symbol] }

(v) [2 marks] Deterministic Finite Acceptors, that is NFAs that do not have multiple transi-
tions that start from the same state and are labelled with the same symbol.

pred det { all s: State, a: Symbol | lone s.transitions[a] }
(vi) [2 marks] NFAs that have a transition to a final state from each non-final state.

pred transToFinal { all s: State-Final | some s.transitions[Symbol] & Final }

COMP 202 / SWEN 202 11 continued...

(vii) [3 marks] NFAs for which all states are reachable, that is, can be reached from the
initial state by following transitions only. More formally: Given a NFA (Q,q,A,N,F), a
state s € Q is reachable if there is a sequence of states g, ..., g, such that g0 = g, g, = s,
and for each 0 < i < n there is a symbol a € A such (g;,4,4i+1) € N.

pred allReachable { State in Init.*{x,y: State | y in x.transitions[Symbol] } }

(c) Next you want to model relations and operations on NFAs but the current model is
static and does not allow such dynamic behaviour.

(i) [5 marks] Rewrite the static model given above to provide a dynamic model that sup-
ports multiple NFAs. To support operations on NFAs, your new model should allow NFAs
to have states and symbols in common, but with different start and final states as well as
different transition relations.

sig Symbol, State {}

sig NFA {
Q: set State,
q: Q,
A: set Symbol,
N: Q—>A-—>Q,
F: set Q

}

(ii) [2 marks] Provide a predicate that checks whether two NFAs have the same set of states
and the same set of symbols but different initial states.

pred pii(x, y: NFA) {

x.Q =vy.Q

x.A=y.A

x.q '=y.q
}

(iii) [3 marks] Provide an Alloy operation that, given a NFA, a state g4, and a symbol a4,
adds to the given NFA a transition labelled a from the initial state to state 4. More formally:
Given an NFA (Q,q,A,N,F), astate s € Q and a symbol a € A, your operation should
construct the NFA: (Q,q,A,NU{(q,a,s)}, F).

pred piii(nfa, nfa’: NFA, s: nfa.Q, a: nfa.A) {
nfa’.Q = nfa.Q

nfa’.q = nfa.q
nfa’.A = nfa.A
nfa’.N = nfa.N + nfa.q->a->s
nfa’ .F = nfa.F

334 3 4 3 A 3 A 3 A 3 A 3 S 3 N S N S N S S S

COMP 202 / SWEN 202 12

