
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2008

END-OF-YEAR

COMP 202 / SWEN 202

Formal Methods of Computer

Science / Formal Foundations

of Software Engineering

Time Allowed: 3 Hours

Instructions: • There are six (6) questions, each worth 30 marks.

• Answer all of the questions.

• The exam will be marked out of one hundred and eighty (180).

• Calculators ARE NOT ALLOWED.

• Non-electronic Foreign language dictionaries are allowed.

• No other reference material is allowed.

COMP 202 / SWEN 202 continued...

Question 1. Finite acceptors [30 marks]

(a) [6 marks] Draw a transition diagram for an NFA (Nondeterministic Finite Acceptor)
that accepts the language defined by the regular expression a∗(ab|acd)∗a∗.

You are not required to use a systematic construction. Your NFA should be as simple as
possible, and may include null transitions.

(b) [4 marks] Give a trace (sequence of transitions) showing the behaviour of your NFA
when given the string aabacdaaa as input. Show all possible states that the NFA could be
in at each step.

(c) [8 marks] Draw a transition diagram for a DFA (Deterministic Finite Acceptor) equiva-
lent to your NFA from part (a).

Explain how your DFA was constructed and how states of the DFA are related to those of
the NFA.

(d) [2 marks] Give a trace (sequence of transitions) showing the behaviour of your DFA
when given the string abcda as input.

(e) [10 marks] Prove that an NFA accepts a finite language if and only if its transition
diagram, considered as a directed graph, contains no cycles consisting only of “useful”
states. Recall that a state is “useful” if it lies on a path from the initial state to some accepting
state. Explain why the result is false if the “useful” states condition is omitted.

COMP 202 / SWEN 202 2 continued...

Question 2. Describing languages [30 marks]

(a) [22 marks] Consider the following languages:

(i) The set of strings over {a, b, c} containing exactly one a and exactly one b.

(ii) The set of strings of the form ambn, where m < n.

(iii) The set of all palindromes over {a, b, c}; i.e. the set of all strings α ∈ {a, b, c}∗ such that
α

R = α, where α
R is the reflection (or reverse) of α.

(iv) The set of strings over {a, b, c, d} such that no c occurs before an a and no b occurs
after a d.

For each of the above languages: say whether the language is regular or not regular. If the
language is regular, write a regular expression that defines it; otherwise, prove that it is not
regular.

(b) [8 marks] The following grammars all define a simple language of arithmetic expres-
sions with binary operators + and ∗, and numbers 1, 2 and 3 as atomic expressions:

G1: E → E + E | T

T → F ∗ F | F

F → 1 | 2 | 3

G2: E → T + E | T ∗ E | T

T → 1 | 2 | 3

G3: E → T + E | T

T → F ∗ T | F

F → 1 | 2 | 3

G4: E → T + E | E ∗ T | T

T → 1 | 2 | 3

G5: E → E + T | T

T → T ∗ F | F

F → 1 | 2 | 3

G6: E → T + T | T ∗ T | T

T → 1 | 2 | 3

G7: E → E + T | T

T → T ∗ F | F

F → 1 | 2 | 3

G8: E → E + T | E ∗ T | T

T → 1 | 2 | 3

(i) [2 marks] Which grammar treats + and ∗ as having the same precedence, and both
being non-associative?

(ii) [2 marks] Which grammar treats + and ∗ as having the same precedence, and both
being left-associative?

(iii) [2 marks] Which grammar treats + and ∗ as having different precedence, and both
being right-associative?

(iv) [2 marks] Which grammar treats + and ∗ as having different precedence and different-
associativity?

COMP 202 / SWEN 202 3 continued...

Question 3. Parsing [30 marks]

Consider the following grammar:

Stmt → if Expr then Stmt else Stmt fi
| if Expr then Stmt fi
| ID := ID

Expr → ID == ID

ID → a | b | c | . . .

(a) [5 marks] For each of the following strings, discuss whether the above grammar pro-
duces it or not. Give parse trees as evidence where possible.

(i) if a == b then a := c ; a := b fi

(ii) if a == b then if b == c then a := c fi fi

(b) [5 marks] Compute the following sets:

(i) first(Expr)

(ii) follow(Stmt)

(c) [5 marks] By computing first() sets appropriately, show that this grammar is not LL(1).

(d) [5 marks] By left-factoring, convert this grammar to be LL(1).

Now, consider the following grammar:

Expr → Expr + Term | Term

Term → ID

ID → a | b | c | . . .

(e) [5 marks] The above grammar is left-recursive. Discuss why this means it is not LL(1).

(f) [5 marks] Show how the grammar can be rewritten to eliminate left-recursion. Indicate
any differences in the parse trees produced, compared with the original grammar.

COMP 202 / SWEN 202 4 continued...

Question 4. FlowChart Programs [30 marks]

(a) Indicate whether each of the following FlowChart programs is syntactically correct or
not. If it is not correct, indicate why; otherwise, briefly describe what it does.

(i) [3 marks]
input x;
input y;
if x < y then 1 else 2;

1: x := y;
goto 3;

2: skip;

(ii) [3 marks]
input x;
if x < 0 then 1 else 2;

1: x := − x;
2: skip;

output x;

(iii) [3 marks]
input x;
input y;
if x < 0 then 1 else 4;

1: if y < 0 then 2 else 3;
2: z := x + y;
3: goto 5;
4: z := 0;
5: output z;

(b) Consider the following two FlowChart programs.

x := 1;
y := 0;

1: if x < 3 then 2 else 3;
2: x := x + 1;

y := y + 1;
output y;
goto 2;

3: skip;

(Program A)

x := 1;
y := 0;

1: if x < 3 then 2 else 3;
2: x := x + 1;

y := x − 1;
output y;
goto 2;

3: skip;

(Program B)

(i) [3 marks] Give an execution trace for program A.

(ii) [4 marks] Briefly discuss whether these programs are weakly equivalent, strongly equiva-
lent or not equivalent.

COMP 202 / SWEN 202 5 continued...

(c) The FlowChart language is to be extended with support for arrays. This allows programs
such as the following, where an element of the array a is overwritten with zero:

a := 〈0, 1, 2, 3〉;
input x;
a[x] := 0;

(i) [2 marks] Give a condition which ensures any statement of the form “v[i] := e” will not
cause the program to abort.

(d) The semantics for assignments of the form “v := e” is given by:

P(pc) = (l1 : v := e) n = V(e, S)
(P, pc, S) −→ (P, pc+1, S[v := n])

[ASSIGN]

(i) [2 marks] On the following FlowChart Machine state, apply the above ASSIGN rule to
produce the next state:

(〈1 : x := y〉, 1, {x 7→ 2, y 7→ 3})

(ii) [4 marks] Give a similar rule which governs assignments of the form “v[i] := e”. Note,
if v is an array, then v[i := n] returns v with element i updated to hold the constant n.

(e) [6 marks] For each of the numbered statements in the following program, write an
appropriate assertion which always holds true before that statement is executed. Indicate
whether the postcondition will be satisfied after the return statement is executed.

PRE:
POST: ret ≥ 0
absum(list) begin

i := 1;
r := 0;

1: if i≤|list| then 2 else 6;
2: if list[i] < 0 then 3 else 4;
3: r := r − list[i];

goto 5;
4: r := r + list[i];
5: i := i + 1;

goto 1;
6: return r;
end

COMP 202 / SWEN 202 6 continued...

Question 5. Alloy [30 marks]

The statement “One Man’s Ceiling is Another Man’s Floor”, taken from a song by Paul
Simon, inspired the following Alloy model:

sig Platform {}

sig Man {ceiling, floor: Platform}

fact above { all m: Man | some n: Man | m.ceiling = n.floor }

pred below { all m: Man | some n: Man | m.floor = n.ceiling }

pred woleb { some n: Man | all m: Man | m.floor = n.ceiling }

(a) Consider the following instance of the model:

Man = {M0, M1}

Platform = {P0, P1}

ceiling = floor = M0->P0 + M1->P1 =
M0 P0
M1 P1

(i) [2 marks] Draw a visualisation (graph representation as Alloy would do) of this model
instance.

(ii) [1 mark] Compute M0.ceiling.

(iii) [1 mark] Compute M1.floor.

(iv) [2 marks] Is the predicate called below true for this instance? Give a brief explanation
of why or why not.

(v) [2 marks] Is the predicate called woleb true for this instance? Give a brief explanation
of why or why not.

(b) Consider the following instance of the model:

Man = {M0, M1, M2}

Platform = {P0, P1, P2}

ceiling = M0->P1 + M1->P2 + M2->P1 =
M0 P1
M1 P2
M2 P1

floor = M0->P0 + M1->P1 + M2->P2 =
M0 P0
M1 P1
M2 P2

COMP 202 / SWEN 202 7 continued...

(i) [2 marks] Draw a visualisation (graph representation as Alloy would do) of this model
instance.

(ii) [2 marks] Compute floor.~ceiling.

(iii) [2 marks] Compute ^(floor.~ceiling).

(iv) [2 marks] Compute floor.~ceiling.Man.

(v) [2 marks] In your own words, describe what floor.~ceiling.Man represents.

(vi) [2 marks] Is the predicate called below true for this instance? Give a brief explanation
of why or why not.

(c) Extending the Alloy specification

(i) [2 marks] Add a fact to the Alloy model given above that makes sure that ceiling and
floor are distinct for each Man.

(ii) [3 marks] Write an Alloy function called fun_above (with no arguments) that returns
a binary relation between a platform and any platform directly above it. A platform q is
directly above a platform p, i.e. p->q in fun_above, if and only if there is a Man who has
Platform p as floor and Platform q as ceiling.

(iii) [3 marks] Write a predicate called notAboveItself that is true if no Platform is (directly
or indirectly) above itself. In other words, predicate notAboveItself should be true if and
only if no platform is directly above itself or is directly above a Platform that is directly
above itself, etc.

(iv) [2 marks] What would happen if you executed the command run notAboveItself

using the Alloy analyser? Give a brief explanation of your answer.

COMP 202 / SWEN 202 8 continued...

Question 6. An Alloy Model for Finite Acceptors [30 marks]

A Nondeterministic Finite Acceptor (NFA) is defined as a tuple (Q, q, A, N, F), where Q is a
non-empty finite set of states, q ∈ Q is the initial state, A is a finite set of symbols, N ⊆
Q × A × Q is the transition relation, and F ⊆ Q is the set of final states.

Consider the following incomplete Alloy model for NFAs:

sig Symbol {}

sig State { transitions: Symbol -> State }

(a) [5 marks] Extend the Alloy model given above with a representation for start and final
states according to the NFA definition given. Make sure that each NFA model instance has
exactly one initial state.

(b) Provide definitions (predicates) for the following classes of NFAs:

(i) [2 marks] NFAs with only one state.

(ii) [2 marks] NFAs with no final states.

(iii) [2 marks] NFAs for which the initial state is not final.

(iv) [2 marks] NFAs without self-loops, i.e. transitions that start and end at the same state.

(v) [2 marks] Deterministic Finite Acceptors, that is NFAs that do not have multiple transi-
tions that start from the same state and are labelled with the same symbol.

(vi) [2 marks] NFAs that have a transition to a final state from each non-final state.

(vii) [3 marks] NFAs for which all states are reachable, that is, can be reached from the
initial state by following transitions only. More formally: Given a NFA (Q, q, A, N, F), a
state s ∈ Q is reachable if there is a sequence of states q0, . . . , qn such that q0 = q, qn = s,
and for each 0 ≤ i < n there is a symbol a ∈ A such (qi, a, qi+1) ∈ N.

(c) Next you want to model relations and operations on NFAs but the current model is
static and does not allow such dynamic behaviour.

(i) [5 marks] Rewrite the static model given above to provide a dynamic model that sup-
ports multiple NFAs. To support operations on NFAs, your new model should allow NFAs
to have states and symbols in common, but with different start and final states as well as
different transition relations.

(ii) [2 marks] Provide a predicate that checks whether two NFAs have the same set of states
and the same set of symbols but different initial states.

(iii) [3 marks] Provide an Alloy operation that, given a NFA, a state q, and a symbol a,
adds to the given NFA a transition labelled a from the initial state to state q. More formally:
Given an NFA (Q, q, A, N, F), a state s ∈ Q and a symbol a ∈ A, your operation should
construct the NFA: (Q, q, A, N ∪ {(q, a, s)}, F).

COMP 202 / SWEN 202 9

