EXAMINATIONS — 2007
 MID-TERM TEST

COMP/SWEN 202
Formal Foundations of
Computer Science and
Software Engineering
WHTH ANSWERS

Time Allowed: 90 minutes

Instructions: There are four (4) questions.
Answer all the questions.
Show all your working.

For each the following languages described below, (i) write a regular expression that defines the language, and (ii) draw a transition diagram for a (nondeterministic) finite acceptor that recognises the language:
(a) The set of all strings over $\{a, b, c\}$ containing at least one a and at least one b.
(i) $(a|b| c)^{*}\left(a(a|b| c)^{*} b \mid b(a|b| c)^{*} a\right)(a|b| c)^{*}$ or: $c^{*}\left(a(a \mid c)^{*} b \mid b(b \mid c)^{*} a\right)(a|b| c)^{*}$
(ii)

The first RE, and the first FA, can be understood as encoding a description of this language as the set of all strings $\alpha \in\{a, b, c\}^{*}$ such that $\alpha_{i}=a$ and $\alpha_{j}=b$ for some $i, j \in 1 . .|\alpha|$. Obviously i and j must be different (since a and b are different), so we must have either $i<j$ or $j<i$, which means either $\alpha=\beta a \gamma b \delta$ or $\alpha=\beta b \gamma a \delta$, for some strings $\beta, \gamma, \delta \in\{a, b, c\}^{*}$.
The second RE, and the second FA, which is deterministic, are simpler in that they have fewer symbols/transitions, but it is no so obvious that they are correct - to understand them you have to think about traversing the string from left to right remembering whether you've seen an a and/or a b.
(b) The set of all strings over $\{a, b, c\}$ in which every occurrence of a is immediately followed by a c, and no occurrence of c is immediately followed by an a.
(i) $\left(b \mid(a c \mid c) c^{*} b\right)^{*}\left(\lambda \mid(a c \mid c) c^{*}\right)$
(ii)

This is a case where drawing a transition diagram is far easier that writing an RE, and the best way to obtain an RE is to drawing a transition diagram first and derive the RE from it. The above RE is equivalent to the one that JFLAP produces for this NFA.

Consider the NFA $M=\left(Q, q_{I}, A, N, F\right)$, where:

- $Q=\{1,2,3,4,5,6\}$
- $q_{I}=1$
- $A=\{a, b\}$
- $N(1, a)=\{2,3\}$,
$N(2, a)=\{2,4\}$,
$N(2, b)=\{5\}$,
$N(3, b)=\{3,6\}$,
$N(q, x)=\{ \}$, otherwise
- $F=\{4,6\}$
(a) Draw a transition diagram for M.

(Note that 5 is a useless state.)
(b) Describe, in English, the language recognised by M.

All strings consisting of either two or more a^{\prime} s or an a followed by one or more b^{\prime} 's.
Or:
All strings consisting of an a followed by either one or more a^{\prime} s or one or more b^{\prime} s.
(c) Draw a transition diagram for a complete DFA equivalent to M.

(d) Write a regular expression which defines the language recognised by M.
$a\left(a a^{*} \mid b b^{*}\right)$

Let M_{1} and M_{2} be two NFAs, where $M_{i}=\left(Q_{i}, q_{I_{i}}, A_{i}, N_{i}, F_{i}\right)$ for $i=1,2$.
(a) Explain, in English, how M_{1} and M_{2} can be combined to obtain an NFA that recognises $L_{1} \cup L_{2}$, where L_{1} and L_{2} are the languages recognised by M_{1} and M_{2}, respectively.
Add a new state, say q_{0}, make it the initial states, and add null transitions from it to the initial states of M_{1} and M_{2}.
(b) Give a mathematical definition of the NFA described in part (a), and give a brief argument explaining why this NFA recognises $L_{1} \cup L_{2}$.
Let the new NFA be $M_{3}=\left(Q_{3}, q_{I_{2}}, A_{2}, N_{3}, F_{3}\right)$, then we define the components of M_{2} as follows:

- $Q_{3}=Q_{1} \cup Q_{2} \cup\left\{q_{0}\right\}$, where $q_{0} \notin Q_{1} \cup Q_{2}$
- $q_{I_{3}}=q_{0}$
- $A_{3}=A_{1} \cup A_{2}$
- $N_{3}=N_{1} \cup N_{2} \cup\left\{\left(q_{0}, \epsilon, q_{I_{i}}\right) \mid i=1,2\right\}$
- $F_{3}=F_{1} \cup F_{2}$

Proof:
If a string α is in $L_{1} \cup L_{2}$, then α is accepted by M_{i} for $i=1$ or 2 , which means that M_{i} can move from $q_{I_{i}}$ to a state, say q_{F} in F_{i} while consuming α. But in that case, M_{3} can move from q_{0} to q_{F} in F_{i} while consuming α (since it can take a null transition from q_{0} to $q_{I_{i}}$ and then move from $q_{I_{i}}$ to q_{F} while consuming α, by taking exactly the same transitions as M_{i}), so M_{3} accepts α.
If M_{3} accepts a string α, then M_{3} can move from q_{0} to a state, say q_{F} in F_{3} while consuming α. Now the first transition that M_{3} takes must be a null transition to $q_{I_{i}}$, for $i=1$ or 2. The rest of the transitions that M_{3} takes must all be transitions of M_{i} and q_{F} must be in F_{i}. Thus, M_{i} can move from $q_{I_{i}}$ to a state in F_{i} while accepting α, so M_{i} accepts α. Since α is accepted by either M_{1} or M_{2}, we have $\alpha \in L_{1} \cup L_{2}$.
(c) Draw a transition diagram for the NFA obtained by applying this construction to the two NFAs you drew for Question 1.

Question 4.

Consider the following grammar:

$$
\begin{aligned}
& E \rightarrow F|E * E| E+E \\
& F \rightarrow 1|2| 3 \mid(E-E)
\end{aligned}
$$

(a) Draw a parse tree for the string $1+2 * 3$.

We can construct two parse trees:

(b) Draw a parse tree for the string $1+(2-1+3)$.

(c) Explain, giving an example, why this grammar is ambiguous.

A grammar is ambiguous it is it possible to construct two distinct parse trees for any string. In part (a), we have shown two different parse trees for $1+(2-1+3)$, so this demonstrates that the grammar is ambiguous. In general, and grammar with a rule of the form $N \rightarrow N \oplus N$ is ambiguous.
(d) Show how you would construct an equivalent unambiguous grammar by treating * and + as left associative.
To make an operator \oplus left associative, we use a rule of the form $N \rightarrow M \mid N \oplus M$, which means that in an expression of the form $x \oplus y \oplus z$, the subexpression $x \oplus y$ is deeper in the tree, so the expression in naturally interpreted in the same way as $(x \oplus$ $y) \oplus z$. Thus, we rewrite the grammar as:

$$
\begin{aligned}
& E \rightarrow F|E * F| E+F \\
& F \rightarrow 1|2| 3 \mid(E-E)
\end{aligned}
$$

Now, the only parse tree we can construct for $1+2 * 3$ is:

(e) Show how you would construct an equivalent unambiguous grammar by treating $*$ as having higher precedence (i.e. as binding more tightly) than + .

To give $*$ higher precedence than + , we add a new "layer" in the grammar, along with a new nonterminal. This forces $*$ to appear deeper in a parse tree, so expressions of the form $1+2 * 3$ and $1 * 2+3$ are naturally interpreted in the same way as $1+(2 * 3)$ and $(1 * 2)+3$. Thus, we rewrite the grammar as:

$$
\begin{aligned}
& E \rightarrow F \mid E+F \\
& F \rightarrow G \mid F * G \\
& G \rightarrow 1|2| 3 \mid(E-E)
\end{aligned}
$$

Now, the only parse tree we can construct for $1+2 * 3$ is:

In parts (d) and (e), you should give the new grammar, explain how and why you have changed it, and show how the new grammar addresses the example you used in part (c).

