
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2007

MID-TERM TEST

COMP/SWEN 202
Formal Foundations of

Computer Science and

Software Engineering

WITH ANSWERS

Time Allowed: 90 minutes

Instructions: There are four (4) questions.
Answer all the questions.
Show all your working.

COMP/SWEN 202 continued...

Question 1. [15 marks]

For each the following languages described below, (i) write a regular expression that de-
fines the language, and (ii) draw a transition diagram for a (nondeterministic) finite accep-
tor that recognises the language:

(a) The set of all strings over {a, b, c} containing at least one a and at least one b.

(i) (a|b|c)∗(a(a|b|c)∗b | b(a|b|c)∗a)(a|b|c)∗ or: c∗(a(a|c)∗b | b(b|c)∗a)(a|b|c)∗

(ii)

b,c

a,b,c a,b,c

a,b,c

a,b,c

a b

b a

2

3

41 Or:

a,b,c

a b

b a

2

3

41

c

a,c

The first RE, and the first FA, can be understood as encoding a description of this lan-
guage as the set of all strings α ∈ {a, b, c}∗ such that αi = a and αj = b for some
i, j ∈ 1 .. |α|. Obviously i and j must be different (since a and b are different), so we
must have either i < j or j < i, which means either α = β a γ b δ or α = β b γ a δ, for
some strings β, γ, δ ∈ {a, b, c}∗.

The second RE, and the second FA, which is deterministic, are simpler in that they
have fewer symbols/transitions, but it is no so obvious that they are correct — to un-
derstand them you have to think about traversing the string from left to right remem-
bering whether you’ve seen an a and/or a b.

(b) The set of all strings over {a, b, c} in which every occurrence of a is immediately fol-
lowed by a c, and no occurrence of c is immediately followed by an a.

(i) (b|(ac|c)c∗b)∗(λ|(ac|c)c∗)

(ii)

b

a

2

41

c
cb

c

This is a case where drawing a transition diagram is far easier that writing an RE, and
the best way to obtain an RE is to drawing a transition diagram first and derive the RE
from it. The above RE is equivalent to the one that JFLAP produces for this NFA.

COMP/SWEN 202 2 continued...

Question 2. [15 marks]

Consider the NFA M = (Q, qI , A, N, F), where:

• Q = {1, 2, 3, 4, 5, 6}

• qI = 1

• A = {a, b}

• N(1, a) = {2, 3},
N(2, a) = {2, 4},
N(2, b) = {5},

N(3, b) = {3, 6},
N(q, x) = {}, otherwise

• F = {4, 6}

(a) Draw a transition diagram for M.

a
2

1

4

3

5

6

a

a

b

b

b

a

(Note that 5 is a useless state.)

(b) Describe, in English, the language recognised by M.

All strings consisting of either two or more a’s or an a followed by one or more b’s.

Or:

All strings consisting of an a followed by either one or more a’s or one or more b’s.

(c) Draw a transition diagram for a complete DFA equivalent to M.

b
2

1

4

5

b

a

a

a

b

7

b
a,b

b

(d) Write a regular expression which defines the language recognised by M.

a (a a∗ | b b∗)

COMP/SWEN 202 3 continued...

Question 3. [20 marks]

Let M1 and M2 be two NFAs, where Mi = (Qi, qIi
, Ai, Ni, Fi) for i = 1, 2.

(a) Explain, in English, how M1 and M2 can be combined to obtain an NFA that recognises
L1 ∪ L2, where L1 and L2 are the languages recognised by M1 and M2, respectively.

Add a new state, say q0, make it the initial states, and add null transitions from it to the
initial states of M1 and M2.

(b) Give a mathematical definition of the NFA described in part (a), and give a brief argu-
ment explaining why this NFA recognises L1 ∪ L2.

Let the new NFA be M3 = (Q3, qI2
, A2, N3, F3), then we define the components of M2

as follows:

• Q3 = Q1 ∪ Q2 ∪ {q0}, where q0 /∈ Q1 ∪ Q2

• qI3
= q0

• A3 = A1 ∪ A2

• N3 = N1 ∪ N2 ∪ {(q0, ǫ, qIi
) | i = 1, 2}

• F3 = F1 ∪ F2

Proof:

If a string α is in L1 ∪ L2, then α is accepted by Mi for i = 1 or 2, which means that
Mi can move from qIi

to a state, say qF in Fi while consuming α. But in that case, M3

can move from q0 to qF in Fi while consuming α (since it can take a null transition from
q0 to qIi

and then move from qIi
to qF while consuming α, by taking exactly the same

transitions as Mi), so M3 accepts α.

If M3 accepts a string α, then M3 can move from q0 to a state, say qF in F3 while consum-
ing α. Now the first transition that M3 takes must be a null transition to qIi

, for i = 1
or 2. The rest of the transitions that M3 takes must all be transitions of Mi and qF must
be in Fi. Thus, Mi can move from qIi

to a state in Fi while accepting α, so Mi accepts α.
Since α is accepted by either M1 or M2, we have α ∈ L1 ∪ L2.

(c) Draw a transition diagram for the NFA obtained by applying this construction to the
two NFAs you drew for Question 1.

ǫ

a,b,c a,b,c

a,b,c

a,b,c

a b

b a

a

b

c

c

cb

ǫ

COMP/SWEN 202 4 continued...

Question 4. [20 marks]

Consider the following grammar:

E → F | E ∗ E | E + E
F → 1 | 2 | 3 | (E − E)

(a) Draw a parse tree for the string 1 + 2 ∗ 3.

We can construct two parse trees:

+

E

E + E

F E * E

1 F F

2 3

E

F

1

E

E

E E

F F

2 3

*

(b) Draw a parse tree for the string 1 + (2 − 1 + 3).

1

E

E E

F

2

-()

E E

F F

1 3

+

+

E

E

F

(c) Explain, giving an example, why this grammar is ambiguous.

A grammar is ambiguous it is it possible to construct two distinct parse trees for any
string. In part (a), we have shown two different parse trees for 1 + (2 − 1 + 3), so this
demonstrates that the grammar is ambiguous. In general, and grammar with a rule of
the form N → N ⊕ N is ambiguous.

(d) Show how you would construct an equivalent unambiguous grammar by treating ∗
and + as left associative.

To make an operator ⊕ left associative, we use a rule of the form N → M | N ⊕ M,
which means that in an expression of the form x ⊕ y ⊕ z, the subexpression x ⊕ y is
deeper in the tree, so the expression in naturally interpreted in the same way as (x ⊕
y)⊕ z. Thus, we rewrite the grammar as:

COMP/SWEN 202 5 continued...

E → F | E ∗ F | E + F
F → 1 | 2 | 3 | (E − E)

Now, the only parse tree we can construct for 1 + 2 ∗ 3 is:

1

E

E

E

F

2

*

+ F

3

F

(e) Show how you would construct an equivalent unambiguous grammar by treating ∗ as
having higher precedence (i.e. as binding more tightly) than +.

To give ∗ higher precedence than +, we add a new “layer” in the grammar, along with
a new nonterminal. This forces ∗ to appear deeper in a parse tree, so expressions of the
form 1 + 2 ∗ 3 and 1 ∗ 2 + 3 are naturally interpreted in the same way as 1 + (2 ∗ 3) and
(1 ∗ 2) + 3. Thus, we rewrite the grammar as:

E → F | E + F
F → G | F ∗ G
G → 1 | 2 | 3 | (E − E)

Now, the only parse tree we can construct for 1 + 2 ∗ 3 is:

F

E

E * F

E

F

+F

G

1

2

3G

G

In parts (d) and (e), you should give the new grammar, explain how and why you have
changed it, and show how the new grammar addresses the example you used in part (c).

COMP/SWEN 202 6

