
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2007

MID-TERM TEST

COMP/SWEN 202
Formal Foundations of

Computer Science and

Software Engineering

Time Allowed: 90 minutes

Instructions: There are four (4) questions.
Answer all the questions.
Show all your working.

COMP/SWEN 202 continued...

Question 1. [15 marks]

For each the following languages described below, (i) write a regular expression that de-
fines the language, and (ii) draw a transition diagram for a (nondeterministic) finite accep-
tor that recognises the language:

(a) The set of all strings over {a, b, c} containing at least one a and at least one b.

(b) The set of all strings over {a, b, c} in which every occurrence of a is immediately fol-
lowed by a c, and no occurrence of c is immediately followed by an a.

Question 2. [15 marks]

Consider the NFA M = (Q, qI , A, N, F), where:

• Q = {1, 2, 3, 4, 5, 6}

• qI = 1

• A = {a, b}

• N(1, a) = {2, 3},
N(2, a) = {2, 4},
N(2, b) = {5},

N(3, b) = {3, 6},
N(1, x) = {}, otherwise

• F = {4, 6}

(a) Draw a transition diagram for M.

(b) Describe, in English, the language recognised by M.

(c) Draw a transition diagram for a complete DFA equivalent to M.

(d) Write a regular expression which defines the language recognised by M.

COMP/SWEN 202 2 continued...

Question 3. [20 marks]

Let M1 and M2 be two NFAs, where Mi = (Qi, qIi
, Ai, Ni, Fi) for i = 1, 2.

(a) Explain, in English, how M1 and M2 can be combined to obtain an NFA that recognises
L1 ∪ L2, where L1 and L2 are the languages recognised by M1 and M2, respectively.

(b) Give a mathematical definition of the NFA described in part (a), and give a brief argu-
ment explaining why this NFA recognises L1 ∪ L2.

(c) Draw a transition diagram for the NFA obtained by applying this construction to the
two NFAs you drew for Question 1.

Question 4. [20 marks]

Consider the following grammar:

E → F | F ∗ F | F + F
F → 1 | 2 | 3 | (E − E)

(a) Draw a parse tree for the string 1 + 2 ∗ 3.

(b) Draw a parse tree for the string 1 + (2 − 1 + 3).

(c) Explain, giving an example, why this grammar is ambiguous.

(d) Show how you would construct an equivalent unamibiguous grammar by treating ∗
and + as left associative.

(e) Show how you would construct an equivalent unamibiguous grammar by treating ∗ as
having higher precedence (i.e. as binding more tightly) than +.

In parts (d) and (e), you should give the new grammar, explain how and why you have
changed it, and show how the new grammar addresses the example you used in part (c).

COMP/SWEN 202 3

