
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2009

END-OF-YEAR

COMP 202 / SWEN 202
Formal Methods of Computer
Science / Formal Foundations

of Software Engineering

Time Allowed: 3 Hours

Instructions: • Answer all five questions.

• The exam will be marked out of one hundred and eighty (180).

• Calculators ARE NOT ALLOWED.

• Non-electronic Foreign language dictionaries are allowed.

• No other reference material is allowed.

COMP 202 / SWEN 202 continued...

Question 1. Alloy [40 marks]

Consider the following Alloy specification, which models items taken on a trip. Since some
of the items may be containers, such as bags or suitcases, we also record whether one item
is inside other item.

sig Item {}

sig Trip {

items: set Item,

isInside: items->items

}

pred loneLoc[t: Trip] {

all i: t.items | lone t.isInside[i]

}

pred transLoc[t: Trip] {

t.isInside = ^(t.isInside)

}

pred addItem[t,t’: Trip, i: Item] {

t’.items = t.items + i

}

Now consider the following instance of this model:

Item = {Bag, Coin, Wallet}

Trip = {T0, T1, T2}

items =

T0 Bag
T0 Wallet
T1 Bag
T1 Wallet
T2 Bag
T2 Coin
T2 Wallet

isInside =

T0 Wallet Bag
T1 Wallet Bag
T1 Bag Wallet
T2 Wallet Bag
T2 Coin Bag
T2 Coin Wallet

COMP 202 / SWEN 202 2 continued...

(a) [13 marks] Understanding Alloy.

(i) [1 mark] Compute T2.isInside.

Wallet Bag
Coin Bag
Coin Wallet

(ii) [1 mark] Compute ^(T2.isInside).

^
Wallet Bag
Coin Bag
Coin Wallet

=
Wallet Bag
Coin Bag
Coin Wallet

+
Wallet Bag
Coin Bag
Coin Wallet

.
Wallet Bag
Coin Bag
Coin Wallet

+ . . .

=
Wallet Bag
Coin Bag
Coin Wallet

+ Coin Bag

=
Wallet Bag
Coin Bag
Coin Wallet

(iii) [2 marks] Is the predicate loneLoc[T2] true for this instance? Briefly explain why or
why not.

Predicate loneLoc[T2] is not true for this instance since Coin is both inside Bag and Wallet
for trip T2.

(iv) [2 marks] In your own words, describe which trips satisfy the predicate loneLoc.

A trip satisfies predicate loneLoc if every item taken to that trip is inside at most one item
for that trip.

(v) [2 marks] Is the predicate transLoc[T2] true for this instance? Briefly explain why or
why not.

The predicate transLoc[T2] is true for this instance since T2.isInside = ^(T2.isInside)
(see answers to questions i and ii).

(vi) [2 marks] In your own words, describe which trips satisfy the predicate transLoc.

A trip satisfies predicate transLoc if the relation isInside for this trip is equivalent to the
transitive closure of the isInside relation for this trip. That is, if an item i taken to a trip is
inside an item j, which in turn is inside an item k, then i must also be inside k for this trip.

(vii) [1 mark] Compute T0.items+ Wallet.

Bag
Wallet + Wallet =

Bag
Wallet

COMP 202 / SWEN 202 3 continued...

(viii) [2 marks] Is the predicate addItem[T0, T0, Wallet] true for this instance? Briefly ex-
plain why or why not.

The predicate addItem[T0, T0, Wallet] is true for this instance
since T0.items = T0.items + Wallet (see answer to question vii).

(b) [7 marks] Writing Alloy.

(i) [1 mark] Provide a run command that shows only trips for which the predicate loneLoc

holds.

run { all t: Trip | loneLoc[t] }

(ii) [2 marks] Write a predicate called noCycles that is true if, for a given trip, an item
cannot be inside itself (neither directly nor indirectly).

pred noCycles[t: Trip] { all i: Item | i->i !in ^(t.isInside) }

(iii) [4 marks] Can a trip with an item that both contains an item and is inside another item
satisfy both predicates loneLoc and transLoc at once? Write an Alloy assertion that can be
used to check your answer.

Assuming cycles are not allowed, such a trip cannot exist.

check { no t: Trip | loneLoc[t] and transLoc[t] and noCycles[t] and

some i1,i2,i3: Item | i1->i2 + i2->i3 in t.isInside }

(c) [8 marks] Adding items.

(i) [3 marks] Write an Alloy command to check that the operation addItem preserves the
invariant noCycles.

check { all t,t’: Trip, i: Item |

noCycles[t] and addItem[t,t’,i] implies noCycles[t’] }

(ii) [3 marks] Does the operation addItem preserve the invariant noCycles? Explain why
or why not.

The operation addItem does not preserve the invariant noCycles because the isInside rela-
tion is not constrained by the operation so can introduce cycles.

(iii) [2 marks] The given addItem operation allows an item to be added that is already an
item of the trip. How could you improve the operation so that it only allows new items to
be added that are not yet items of the trip?

By adding the constraint/precondition i !in t.items to the operation.

(d) [12 marks] Packing items.

COMP 202 / SWEN 202 4 continued...

(i) [5 marks] Write an operation that models putting an item into another item that pre-
serves the invariants noCycles and loneLoc.

pred put[t,t’: Trip, item, into: Item] {

item != into // Can’t put into itself.

no t.isInside[item] // Not yet inside something.

into->item !in ^(t.isInside) // Item to put into cannot be inside item.

t’.items = t.items

t’.isInside = t.isInside + item->into

}

(ii) [7 marks] Write an operation that models putting an item into another item that pre-
serves the invariants noCycles and transLoc.

pred put[t,t’: Trip, item, into: Item] {

item != into // Can’t put into itself.

no t.isInside[item] // Not yet inside something.

item !in t.isInside[into] // Item to put into cannot be inside item.

t’.items = t.items

t’.isInside = ^(t.isInside + item->into)

}

COMP 202 / SWEN 202 5 continued...

Question 2. JML [40 marks]

(a) [10 marks] Pre- and Postconditions.

Do the following methods correctly implement their specification? Give a brief explanation
why you think they do or do not.

(i) [2 marks]

//@ r e q u i r e s t rue ;
//@ ensures t rue ;
i n t magicNumber () {

re turn 4 2 ;
}

Yes, since the method always terminates and true (the postcondition) is satisfied when the
method finishes.

(ii) [2 marks]

//@ r e q u i r e s t rue ;
//@ ensures f a l s e ;
i n t magicNumber () {

re turn 4 2 ;
}

(iii) [2 marks]

//@ r e q u i r e s t rue ;
//@ ensures f a l s e ;
boolean boo () {

re turn f a l s e ;
}

No, since the postcondition is not (and cannot be) satisfied.

(iv) [2 marks]

//@ r e q u i r e s s i z e > 5 ;
//@ ensures \ r e s u l t != n u l l && \ r e s u l t . length > 5 ;
i n t [] intArray (i n t s i z e) {

re turn new i n t [s i z e] ;
}

Yes, since the method always returns a non-null array of size greater than 5 provided that
an integer greater than 5 was provided as an input.

(v) [2 marks]

//@ r e q u i r e s a != n u l l ;
/∗@ ensures a != n u l l &&

(\ f o r a l l i n t i ; 0 < i && i < a . length ; a [i] >= a [i −1]) ; @∗/

COMP 202 / SWEN 202 6 continued...

void s o r t (i n t [] a) {
f o r (i n t i = 0 ; i < a . length ; i ++) {

a [i] = i ;
}

}

Yes, since provided a non-null array is given as argument, the method returns a non-null
array that is sorted.

COMP 202 / SWEN 202 7 continued...

(b) [12 marks] Class Invariants.

Consider the following Java class to represent the time of day using 24 hour format.

publ ic c l a s s TimeOfDay
{

p r i v a t e i n t hour ;
p r i v a t e i n t min ;

publ ic TimeOfDay (i n t hour , i n t min) { . . . }

publ ic void setHour (i n t hour) { . . . }
publ ic void setMinute (i n t min) { . . . }

}

(i) [2 marks] Explain what a class invariant is.

(ii) [2 marks] Give a class invariant for the above TimeOfDay class using JML notation,
which restricts the values of hour and min to 24 hour format.

(iii) [4 marks] Suppose you want to check class invariants at run-time but you do not have
JML tools installed. Add assertions using Java’s assert keyword into the TimeOfDay class
that check the constraints imposed by the invariant from part (ii), making clear exactly
where in the code your assertions are to be added.

(iv) [2 marks] Assume you implement a class that extends TimeOfDay. What are the re-
quirements on the class invariant for this subclass?

(v) [2 marks] Escj performs compile time checking of JML annotations. Sometimes escj
warns about code that is correct with respect to the JML annotations, that is, it gives false
positives. Do false positives occur when you use jmlrac to perform run-time checking of
JML annotations? Explain your answer.

COMP 202 / SWEN 202 8 continued...

(c) [18 marks] Loop Invariants and Variants.

Consider the following Java method:

publ ic s t a t i c boolean binarySearch (i n t [] a , i n t t a r g e t)
{

i n t gazeUp = a . length −1;
i n t gazeDown = 0 ;
while (gazeUp >= gazeDown) {

i n t gaze = gazeDown+(gazeUp−gazeDown) / 2 ;
i f (a [gaze] == t a r g e t) {

re turn true ;
}
i f (t a r g e t < a [gaze]) {

gazeUp = gaze−1;
} e l s e {

gazeDown = gaze +1;
}

}
re turn f a l s e ;

}

This method implements a binary search. It takes a sorted integer array and a target integer
as input, and returns true if the target integer is one of the integers in the provided array,
and false otherwise.

(i) [4 marks] Give a JML specification (precondition and postcondition) that formalises the
above description of the binarySearch method.

(ii) [8 marks] Provide a loop invariant and explain how it can be used to prove that the
method satisfies its specification. You do not need to give the proof.

(iii) [6 marks] Give a loop variant and an argument (informal proof) to show that the
method terminates.

COMP 202 / SWEN 202 9 continued...

Question 3. Regular Languages [40 marks]

(a) [5 marks] Write a regular expression that defines the set of all strings over {a, b, c}
whose length is a multiple of three.

(b) [10 marks] Draw a transition diagram for a finite acceptor that recognises all strings
over {1, 2, 3, $} which start and end with a $, and in which any two $’s are separated by a
non-empty ascending sequence of digits (for example the strings “123” and “$1$3$13$”
are in this languages, but “$$” and “312” are not).

(c) [25 marks] Consider the NFA M = (Q, qI , A, N, F), where:

• Q = {1, 2, 3, 4}

• qI = 1

• A = {a, b, c}

• F = {4}

N a b c
1 {1, 2, 3} {1, 4} ∅
2 ∅ {2, 4} ∅
3 ∅ ∅ {3, 4}
4 ∅ ∅ {3, 4}

and N is given by the table on the right. For example, this means that N(1, a) = {1, 2, 3}
and N(3, b) = ∅ (the empty set).

(i) [5 marks] Draw a transition diagram for M.

(ii) [5 marks] Show a sequence of configurations giving all states that M could be in at each
step while reading the input “aaabbcc”.

(iii) [10 marks] Draw a transition diagram for a DFA which is equivalent to M. Explain the
relationship between the states of your DFA and those of M.

(iv) [5 marks] Write a regular expression that defines the language accepted by M.

COMP 202 / SWEN 202 10 continued...

Question 4. Context Free Languages [40 marks]

Consider the following grammar:

S → if B then S |
S ; S |
{ S } |
A

A → a1 | a2 | a3
B → b1 | b2 | b3

(a) [6 marks] Draw a parse tree for each of the following sentences:

(i) if b1 then {a1 ; a2}

(ii) if b1 then if b2 then a1

(b) [6 marks] Explain, with reference to the following sentence, what it means for a gram-
mar to be ambiguous:

if b1 then a1 ; a2

(c) [10 marks] Explain, with reference to the above grammar, what it means for a grammar
to be in LL(1) form. Write an equivalent grammar in LL(1) form and show that it is an LL(1)
grammar.

(d) [18 marks] Explain how you would construct a recursive descent parser from your
grammar in part (c), and give pseudo-code for the resulting parser.

COMP 202 / SWEN 202 11 continued...

Question 5. Program Equivalence [20 marks]

(a) [5 marks] Explain briefly what it means for two programs to be:

(i) strongly equivalent

(ii) weakly equivalent

(b) [15 marks] It is possible to remove all if statements from a While program, replacing
them by while statements as follows.

Each if statement, if B then S1 else S2 fi, is replaced by the code fragment:

b := true;
while b and B do S′1; b := f alse od;
while b and not B do S′2; b := f alse od

where: • S′1 and S′1 are the results of applying the transformation to S1 and S2, respectively;

• a new boolean variable b, not occurring anywhere else in the program, is used
for each if statement translated; and

• all other statements remain unchanged.

(i) [10 marks] Show that the result of applying this transformation to a program P is weakly
equivalent to P.

(ii) [5 marks] Explain why the result of applying this transformation to a program P is not
strongly equivalent to P.

COMP 202 / SWEN 202 12

