
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2009

MID-TERM TEST

COMP 202 / SWEN 202
Formal Methods of Computer
Science / Formal Foundations

of Software Engineering
WITH ANSWERS

Time Allowed: 90 minutes

Instructions: There are five (5) questions.

Answer all the questions.

The exam will be marked out of eighty (80).

Calculators ARE NOT ALLOWED.

Non-electronic foreign language dictionaries are allowed.

No other reference material is allowed.

COMP 202 / SWEN 202 continued...

Question 1. [20 marks]

The following Alloy provides a model of family relations.

abstract sig Person {

mother: lone Woman,

father: lone Man,

}

sig Man, Woman extends Person {}

(a) [8 marks]

Consider the following instance:

Man = {M0, M1} Woman = {W0, W1, W2}

father =
M1 M0
W2 M1 mother =

M1 W0
W1 W0

(i) [2 marks] Draw a visualisation (i.e. a graph representation as Alloy would give) of this
instance.

(ii) [2 marks] Compute mother.~mother

mother.~mother =
M1 W0
W1 W0 . ˜

M1 W0
W1 W0 =

M1 W0
W1 W0 .

W0 M1
W0 W1 =

M1 M1
M1 W1
W1 M1
W1 W1

(iii) [2 marks] Compute Man <: (father + mother).

(Man <: (father + mother) =
M0
M1 <: (

M1 M0
W2 M1 +

M1 W0
W1 W0)

=
M0
M1 <:

M1 M0
W2 M1
M1 W0
W1 W0

=
M1 M0
M1 W0

(iv) [2 marks] Compute ^father

COMP 202 / SWEN 202 2 continued...

ˆfather
= father + father.father + father.father.father + ...

=
M1 M0
W2 M1 +

M1 M0
W2 M1 .

M1 M0
W2 M1 +

M1 M0
W2 M1 .

M1 M0
W2 M1 .

M1 M0
W2 M1 + ...

=
M1 M0
W2 M1 + W2 M0 + none + ...

=
M1 M0
W2 M1
W2 M0

(b) [12 marks]

(i) [2 marks] Provide a run command that allows you to show instances with at least one
person (that is, in which set Person is not empty).

run { some Person }

(ii) [3 marks] Write an Alloy function that takes a person as argument and returns all his
or her descendants; i.e. children, grandchildren, great-grandchildren, etc.

fun descendant[p: Person]: set Person {

^(mother+father).p

}

(iii) [2 marks] Write a fact that ensures that no person is a descendant of itself.

fact { no p: Person | p in descendant[p] }

(iv) [2 marks] Write an Alloy predicate that takes two persons as arguments and is true if
the two have at least one child in common.

pred met[p,q: Person] {

some c: Person | c->p + c->q in father + mother

}

(v) [3 marks] Provide an Alloy command to check that, forall persons that have a child in
common, one of them must be a man and one of them a woman. Is this assertion true for
the model given above?

assert a {

all p,q: Person | met[p,q] implies

one Man & (p + q) and one Woman & (p + q)

}

check a

COMP 202 / SWEN 202 3 continued...

Question 2. [20 marks]

Consider the following Alloy model of a file system:

sig Directory {}

sig FileSystem {

root: Directory,

dirs: set (Directory-root),

parent: dirs -> one (dirs + root)

}

pred init[fs: FileSystem] {

no fs.dirs

}

(a) [2 marks]

Adding a fact to the above specification requiring the root directory to be an ancestor (i.e.
a parent or a parent of a parent etc.) of itself would make the model inconsistent. Explain,
with reference to this example, what it means for a model to be inconsistent.

The parent relation above associates directories excluding the root directory to their par-
ents. Thus the root directory cannot have a parent directory and so it cannot have ancestors.
Requiring the root directory to be one of its ancestors contradicts the fact that the root di-
rectory cannot have ancestors, making the model inconsistent.
An inconsistent specification contains contradictory facts and thus cannot be satisfied. Run
commands won’t find any instances for an inconstistent model, neither will there be any
counter-examples for assertions.

(b) [4 marks]

Provide an invariant (a predicate called inv) that is true for file systems in which the root
directory is an ancestor (i.e. a parent or a parent of a parent etc.) of all non-root directories
in the file system.

pred inv[fs: FileSystem] {

all d: fs.dirs | fs.root in d.^(fs.parent)

}

(c) [2 marks]

The given predicate init describes the initial states of the file system. What can you say
about the parent relation of initial file systems?

If relation dirs is empty, relation parent must be empty too. Thus, relation parent is empty
for all initial filesystems.

(d) [3 marks]

COMP 202 / SWEN 202 4 continued...

Write an Alloy command to check that initial file systems satisfy the invariant provided
in (b). Is this assertion true for the model given above?

assert InitEstablishesInv {

all fs: FileSystem | init[fs] implies inv[fs]

}

check InitEstablishesInv for 10

The assertion is implied by the model thus true.

(e) [3 marks]

What does it mean for an operation to preserve an invariant?

An operation preserves an invariant if all post-states of the operation satisfy the invariant
provided the pre-state of the operation satisfies the invariant.

(f) [6 marks]

Provide an operation that models adding a new directory to a given directory of a file
system. Make sure your operation preserves the invariant provided in (b).

pred add[fs, fs’: FileSystem, new, where: Directory] {

where in fs.dirs+fs.root

new !in fs.dirs+fs.root

fs.root = fs’.root

fs’.dirs = fs.dirs + new

fs’.parent = fs.parent + new->where

}

COMP 202 / SWEN 202 5 continued...

Question 3. [14 marks]

Consider the following JML annotated Java program:

public c l a s s Person
{

/ / @ i n v a r i a n t h e i g h t >= 0 ;
private /∗@ s p e c p u b l i c @∗ / i n t height ;

/ / @ e n s u r e s h e i g h t == \ o l d (h e i g h t) + d i s t a n c e ;
public void grow (i n t d i s t a n c e) {

height += d i s t a n c e ;
}

public /∗@ pure @∗ / i n t getHeight () {
return height ;

}

public s t a t i c void main (S t r i n g [] args) {
Person p = new Person () ;
p . grow (3 0) ;
System . out . p r i n t l n (p . getHeight ()) ;

}
}

(a) [1 mark]

The program compiles using jmlc without problems. What will happen if you execute it
using jmlrac?

It prints 30.

(b) [3 marks]

Provide a new main method that shows that the grow method does not preserve class
Person’s invariant. What will happen if you execute your new main method using jmlrac?

public static void main(String[] args) {

Person p = new Person();

p.grow(-30);

System.out.println(p.getHeight());

}

Running with jmlrac will produce a JMLInvariantError caused by method grow.

(c) [4 marks]

Provide a JML annotation that ensures that the grow method preserves the invariant. What
will happen if you execute your main method from part (b) with this modified program
using jmlrac?

COMP 202 / SWEN 202 6 continued...

Add requires clause for grow method:

//@ requires distance >= 0;

//@ ensures ...

public void grow(int distance)

Running with jmlrac will produce a JMLPreconditionError for method grow called
in main.

(d) [3 marks]

When does a postcondition for a method need to hold? Under which circumstances is the
postcondition not required to hold?

A postcondition needs to hold when a method finishes, provided the precondition and
class invariant were satisfied when the method was called.
If the precondition or class invariant were broken when the method was called, the method
might not establish the postcondition on termination, or might not terminate at all.

(e) [3 marks]

What is a pure method? Why can only pure methods be used in JML specifications?

Pure methods do not assign to non-local variables during their execution, thus don’t have
any side-effects.
A JML specification gets executed by tools like jmlrac but must not influence the execution
of a program (apart from signaling specification violations). A pure methods does not
change any fields so guarantees to not influence the program execution.

COMP 202 / SWEN 202 7 continued...

Question 4. [6 marks]

Do the following methods correctly implement their specification? Give a brief explanation
why you think they do or do not.

(a) [2 marks]

/ / @ r e q u i r e s t r u e ;
/ / @ e n s u r e s \ r e s u l t == 0 | | \ r e s u l t == 1 ;
i n t foo () {

return 0 ;
}

Yes, since 0 is returned and 0 or 1 is expected.

(b) [2 marks]

/ / @ r e q u i r e s x != y ;
/ / @ e n s u r e s \ r e s u l t == x | | \ r e s u l t == y ;
/ / @ e n s u r e s \ r e s u l t > x | | \ r e s u l t > y ;
i n t bar (i n t x , i n t y) {

i f (x >= y) return x ;
return y ;

}

Yes, since the method always returns either x or y and, if x != y (see precondition), the
method returns the greater of the two.

(c) [2 marks]

/ / @ r e q u i r e s f a l s e ;
/ / @ e n s u r e s t r u e ;
i n t baz () {

throw new I l legalArgumentException () ;
}

Yes, since the precondition cannot be satisfied.

COMP 202 / SWEN 202 8 continued...

Question 5. [20 marks]

Consider a Java method:

boolean equiva lent (i n t [] a , i n t [] b) {
i n t i = 0 ;
while (i < a . length && a [i] == b [i]) {

i ++;
}
return i == a . length ;

}

This method takes as input two integer arrays of the same length and determines whether
the given arrays are equivalent, that is, contain the same integers in exactly the same order.

(a) [4 marks]

Give a JML specification (precondition and postcondition) for this method.

//@ requires a != null && b != null && a.length == b.length;

//@ ensures \result <==> (\forall int k; 0 <= k && k < a.length; a[k] == b[k]);

(b) [6 marks]

Provide a loop invariant that may be used in the verification of the above implementation
of the method.

//@ loop_invariant 0 <= i && i <= a.length;

//@ loop_invariant (\forall int k; 0 <= k && k < i; a[k] == b[k]);

(c) [10 marks]

Give an argument (informal proof), using your loop invariant from part (b), to show that
the method correctly implements its specification; i.e. show that:

(i) [2 marks] The loop invariant holds on entry to the loop.

COMP 202 / SWEN 202 9 continued...

//@ requires a != null && b != null && a.length == b.length;

public static boolean diff(int[] a, int[] b)

{

// the precondition should hold at this point:

//@ assert a != null && b != null && a.length == b.length;

int i = 0;

//@ assert i == 0;

//@ assert a != null && b != null && a.length == b.length;

// these imply:

//@ assert 0 <= i && i <= a.length;

// We also know:

//@ assert (\forall int k; 0 <= k && k < 0; a[k] == b[k]);

// and with i == 0 thus

//@ assert (\forall int k; 0 <= k && k < i; a[k] == b[k]);

(ii) [3 marks] The loop invariant is preserved by the loop body.

// provided the loop invariant holds:

//@ assert 0 <= i && i <= a.length;

//@ assert (\forall int k; 0 <= k && k < i; a[k] == b[k]);

// We also know that loop condition is true

// (otherwise loop body wouldn’t be executed)

//@ assert i < a.length && a[i] == b[i];

// loop body consists only of one statement:

i++;

//@ assert 0 <= i && i <= a.length;

//@ assert (\forall int k; 0 <= k && k < (i-1); a[k] == b[k]);

//@ assert a[i-1] == b[i-1];

// these two assertions imply:

//@ assert (\forall int k; 0 <= k && k < i; a[k] == b[k]);

(iii) [5 marks] The postcondition of the method holds when the loop exits with the loop
invariant true.

COMP 202 / SWEN 202 10 continued...

while (i < a.length && a[i] == b[i]) {

i++;

}

// the loop invariant holds when the loop exists:

//@ assert 0 <= i && i <= a.length;

//@ assert (\forall int k; 0 <= k && k < i; a[k] == b[k]);

// We also know that the loop condition is false

// (otherwise loop wouldn’t have exited)

//@ assert ! (i < a.length && a[i] == b[i]);

// rewritten:

//@ assert i >= a.length || a[i] != b[i];

// together with i <= a.length:

//@ assert i == a.length || a[i] != b[i];

// Thus:

//@ assert (i == a.length &&

(\forall int k; 0 <= k && k < a.length; a[k] == b[k]))

||

(0 <= i && i < a.length && a[i] != b[i])

return i == a.length;

COMP 202 / SWEN 202 11

