Victoria University of Wellington

DEGREE EXAMINATIONS — 1997 cowmp 202

END OF YEAR

COMP 202

Formal Methods of Computer Science

Time Allowed: 3 Hours

Instructions: ~ Candidates should attempt all questions.

This exam will be marked out of 100.

COMP 202 continued...

Question 1. [24 marks]

For each of the languages described below:

(i)

(i)

Say whether the language is regular, context free but not regular, or not context
free.

If the language is regular, write a regular expression which defines it.

If the language is context free but not regular, write an extended context free
grammar which defines it.

If the language is not context free, write a context free covering grammar.
Explain what constraints on sentences in the language are not imposed by your
grammar, and why these constraints cannot be imposed using a context free gram-
mar.

Your covering grammar should enforce any constraints that can reasonably be imposed
using a context free grammar.

The languages are:

(a)

(b)

(c)

The set of all strings over {a, b, ¢} where each string contains exactly two ¢’s, and
there are no b’s between the two ¢’s. For example, “cc”, “acac’, “bbbccaaa” and
“abcaacbba” are in this language, but “aca”, “cbc” and “cech” are not. [4 marks]

(i) Regular
(ii) (alb)*ca*c(alb)*

The set of all strings over {a, b, c} where each string contains exactly one ¢, and the
number of a’s before the c is equal to the number of a’s after the c. For example,

c’, “aca”, “abbbaabacbbaabbbbaa” and “ababcaabbb’ are in this language, but “cc”,
“aaca” and “bbbca” are not. [4 marks]

(i) Context Free

i) S — aSa |bS|Sb]|c

Note that this grammar is ambiguous. I think the following is an unambiguous
grammar for this — an unambiguous grammar is certainly more complicated!

S — aSa |bSb|bU | Vb|c

U — aSa |bU |c

V. — aSa |Vb|c

The set of all strings over {a, b, c} where each string contains exactly one ¢, and the

sequence of a’s and b’s before the c is identical to that following the c. For example,

“c”, “aca”, “aaacaaa” and “ababbacababba” are in this language, but “cc”, “aaca”,

“bbbca”, “abbbaabacbbaabbbbaa” and “ababcaabbb” are not. [4 marks]

COMP 202 continued...

(i) Not context free
(ii) Covering grammaris S — ASA|c

A — alb
This ensures that we get the same number of symbols before and after then ¢, but
doesn’t ensure that they are the same symbols. We can’t impose that requirement
using a CFG, because it can’t be checked by pairing symbols in a nested fashion.

(d) The set of all strings of the form a*b'c™d", where k,l,m,n > 0, and k+1 = m+n.
For example, “ac”, “abed”, “aacd”, “aabced” and “aaabcedd” are in this language,
but “aabc”, “badc” and “aaabbcedd” are not. [4 marks]

(i) Context free
(il) S — aSd|aTc|bUd|V

T — alc|V
U — bUd|V
Voo bVel A

(e) The set of all strings of the form oy + -+ £ o, 3,, where n > 0, each + is
either “+” or “—”, and for each i = 1,---,n, o; is an optional natural number (a
sequence of zero or more digits) and (; is an identifier (a sequence of one or more
letters). For example, “2z”, “z —y” and “23ab + 4z — 143x” are in this language,
but “z2 — 3y” and “2x + —3y” are not. [4 marks]

l(l ”

In defining this language, you should use “d” to denote a digit and to denote a letter.

(i) Regular
(i) d* It ((+]—)d 1)

(f) The set of all strings over {0,1} where the distances between successive 1’s form
a strictly increasing sequence. For example, “117, “000”, “000101000100” and
“1101001” are in this language, but “111”7, “0010101” and “1010001001” are not.

[4 marks|

(i) Not context free

(ii) The language has no interesting context-free structure, so the best we can do
is to describe it by a regular expression (in the form of a one rule ECFG). Here are
three possible ways to write the definition:

S — {0H{1{0}}

S — {0H{1{0}}[1{0}]

S — {0}1{{0}1}]{0}
These grammars doesn’t impose the constraint that the sequences of 0s have to be
of increasing length — we can’t check that by pairing symbols in a nested fashion.

(These are also equivalent to S — {1|0}, but that doesn’t allow us to extract
sequences of 0.)

COMP 202 continued...

Question 2.

[21 marks]

Let L; be the set of all strings over {a, b, c} that start with “ab”, and Ly be the set of
all strings over {a, b, ¢} that end with “ba”.

L, can be described by the regular expression ab(a|b|c)*, and Ly can be described by the
regular expression (a|b|c)*ba.

(a) Draw a transition diagram for a DFA to recognise L;. [2 marks]
a b c
Transition table is: L2 - -
12 |- 3 -
313 3 3
(b) Draw a transition diagram for a DFA to recognise Ls. [2 marks]
You are not required to use a specific method to construct these DFAs.
a b c
- .11 201
Transition table is: 9 13 2 1
3|1 2 1
(c) Construct a DFA to recognise the intersection of L; and Ly (i.e. L N Lo, the set of
all strings that begin with “ab” and end with “ba”), by applying the “pair machine”
construction to the two DFAs in parts (a) and (b). [8 marks|
a b ¢
1:(1,1) | 2:(2,1) - -
- .| 2:(2,1) - 3:(3,2)
Transition table is: 3:(3.2) | 5:(3.3) 3:(3.2) 4:(3.1)
4:(3,1) | 4:(3,1) 3:(3,2) 4:(3,1)
5:(3,3)* | 4:(3,1) 3:(3,2) 4:(3,1)
(d) What is the shortest string accepted by your machine in part (c)? [1 mark]
| “aba’
(e) Give a set of equations relating regular expressions describing the sets of strings

COMP 202

that can be accepted starting in each state of your DFA in part (c). (These were
called “F'rom sets” in the Course Notes).

Solve these equations to obtain a regular expression describing the language ac-
cepted by your DFA. [8 marks]

You should simplify your regular expression, so as to write it in its simplest form.

continued...

Equations:
Writing A as the RE for state 1, B as the RE for state 2, etc.
A=aB
B =uC
C = aE|bC|cD
D =aD|bC|cD

E = aD|bC|cDI|\
Solving these (with a bit of simplification), gives:
A = ab((alc)*b)*a
which is equivalent to ab[(a|b|c)*bla

COMP 202 continued...

Question 3. [30 marks]

Consider a variant of the while program language, called the “loop language”, with the
following syntax:

program — statement-list
statement-list — statement { ;" statement }
statement — assignment-statement
| if-statement
| do-statement
| exit-statement
assignment-statement — wvariable-name “:=" arithmetic-expression
if-statement — “if” Boolean-expression “then” statement-list
[“else” statement-list | “f”
do-statement — “do” statement-list “od”
exit-statement — “exit”

In this language, a do-statement, do S od, repeatedly executes the enclosed statement,
S, until terminated by an exit-statement. An exit-statement causes the closest enclosing
do-statement to terminate. (Input and output statements are omitted for simplicity.)

For example, the following is a loop program which compares two character strings, A
and B, which are assumed to be both of length n. The program returns (as the value of
r) 0 if A and B are identical, —1 if A would come before B in an alphabetical listing,
and 1 if A would come after B in an alphabetical listing.

if £ = n then exit fi;

k:=k+1;

if A[k] < B[k]| then r := —1; exit fi;

if A[k] > B[k| then r :=1; exit fi
od

(a) Suppose you wanted to translate loop programs into strongly equivalent flowchart
programs. Explain how you would translate if-statements, do-statements and exit-
statements. [5 marks|

You should describe the transformation in a similar manner to the transformation T,
given in the Course Notes, if you can. It will be possible to get full marks for a clear
description of the transformation expressed in English.

(b) Show the flowchart program obtained by applying your translation from part (a)
to the loop program given above. [5 marks]

COMP 202 continued...

(c) Show that the flowchart program you gave in part (b) is strongly equivalent to the
given loop program, by finding a regular expression describing the set of possible
execution paths for each program. [5 marks|

(d) Write the procedures you would use in a recursive descent parser to parse if-
statements, do-statements and exit-statements, based on the grammar given on
page 6.

Extend these procedures so that they implement the translation described in part
(a).
[10 marks]

You do not need to give the plain/unextended procedures separately, so long as the
extensions are clearly marked and explained. In implementing the translation, you should
assume suitable functions are available to create the structures required in the flowchart,
such as labels and various statement types.

(e) Suppose we extend the loop language to provide multi-level loop exits. We allow a
do-statement to be labelled, and allow a label to be provided in an exit-statement
to indicate which loop is to be exited.

For example, we might write a program to search for a given value, z, in an x n
array A as follows:

1:=1;r:=0;
outer:
do
if 7 > n then exit fi;
j=1
do

if j > n then exit fi;
if Afi,j] =z then r := 1; exit outer fi;
J=7+1
od;
1:=14+1
od

Explain how you would modify you parser procedures in part (d) to implement
multi-level exits. [5 marks]

COMP 202 continued...

Question 4. [25 marks]

The following is an algorithm to compute (as the value of z) the intersection of two sets,
X and Y:

(a)

(b)

z:=X;y:=Y; z:=0;
while z #0 A y # 0 do
if min(z) < min(y) then
x =z —{min(z)}
elsif min(z) > min(y) then
y =y — {min(y) }
else
z = zU{min(x) }
x =z — {min(z) };
y =y —{min(y)}

Y

fi
od

Give a loop invariant that could be used to verify the loop. [5 marks]

You should think carefully about the relationships between the variables that this algo-
rithm relies upon. In particular, think about why the algorithm only needs to compare
the minimum of one set with the minimum of the other, rather than comparing it with
every element of the other set. This has something to do with the relationships between
the parts of X and Y that have already been examined (i.e. X — z and Y — y) and the
parts that have yet to be examined (i.e. z and y).

uCx ANvCy Az—uly—v<uUv A z=(z—u)N(y—v)
where s; < s means (Vp € s1,¢ € s9)p < g.

Use your loop invariant from part (a) to prove that the program correctly computes
the intersection of x and y, by showing that:

(i) The loop invariant holds on entry to the loop. [2 marks]

Whenu=x A v=y A z =0, we clearly have
e u Cx,sinceu =21
e v Cy,since v=y
ez —uUy—v<uUwv, sincex —uUy—v=>0_

e 2= (zr—u)N(y—v),since z =0 and (x —u) N (y — v) = @ because
(z—u)=(y—v)=0

(ii) The loop invariant is preserved by the loop body. [6 marks]

COMP 202 continued...

Since the loop body is entered, we can assume that u # () A v # () holds.
We need to consider three cases, according to which branch of the if is taken.

e When min(u) < min(v) we just remove min(u) from wu.

In this case, we have:

— u C z, because we have just removed an element from u which was
already a subset of z,

— v C y, because neither has changed,

— r—uUy—v < uUw, because we have added one element to x —u which
is smaller that anything else in v and smaller than everything in v, and

— z=(z—u)N(y —v), because we have added one element to x — u which
is not in y (and therefore not in y — v).

e When min(u) > min(v), we remove min(v) from v.

In this case, we have:

— u C z, because neither has changed,

— v C y, because we have just removed an element from v which was
already a subset of y,

— z—uUy—v < uUwv, because we have added one element to y — v which
is smaller that anything else in v and smaller than everything in u, and

— z=(z—u)N(y—v), because we have added one element to y — v which
is not in = (and therefore not in z — u).

e When min(u) = min(v), we add min(u) to z, remove min(u) from u and
min(v) from v.

In this case, we have:

— u C z, because we have just removed an element from u which was
already a subset of z,

v C y, because we have just removed an element from v which was
already a subset of y,

— r—uUy—v < uUwv, because we have added one element to x —u which
is smaller that anything else in u and smaller than everything in v and
added one element to y — v which is smaller that anything else in v and
smaller than everything in u, and

— z=(x —u)N(y —v), because we have added one element to a, z — u
and y — v. Le. 2U {p} = ((z —u) U{p}) N ((y — v) U {p})

(iii) The postcondition z = X NY holds when the loop exits with the loop invariant
true. [2 marks]

COMP 202 continued...

10

If the loop exits with the invariant true, we have:
uCrAvCyAz—uly—v<uUv Az=(@—u)N(y—v) A (u=0V v=0)
If w = (), the remaining elements in v cannot be in z (because ...), so we have
z=xMNy.

Similarly, if v = (), the remaining elements in u cannot be in y (because ...), so
we have z =z Ny.

(iv) The loop terminates for any finite sets X and Y. [2 marks]

Take the bound function to be t = |u| + |v].
Every iteration of the loop removes one element from u or from v, or both, so
|u| + |v| must decrease. The loop will terminate when |u| + |v| = 0, or before,
since this can only hold when u =0 A v = 0.

(c) The following is a version of the above algorithm, using arrays to represent the
sets. Sets X and Y are represented by the array segments a[l..M] and b[1..N],
respectively, where M = |X| and N = |Y|; z is represented by an array segment
c[l1..k], where k is the current size of z. All arrays are assumed to be at least as big
as the set being represented. Elements of a and b are stored in strictly ascending
order.

1:=1;5:=1; k :=0;
while 1 <m A j<ndo
if a[i] < b[j] then

1:=14+1

elsif a[i] > b[j] then
J=7+1

else
k:=k+1,;
clk] := ali];
=1+ 1;
ji=j+1

fi

od

(i) Give an abstraction relation explaining the relationship between the variables
used in this version of the program and those in the earlier version. [4 marks]

(ii) Use your abstraction relation to explain how a[i] and b[j] in this version cor-
respond to min(z) and min(y) in the earlier version, and why the operations
i:=1+1and j:=j+ 1 correctly implement the operations z := z — {min(x)}
and y := y — {min(y)} in the earlier version. [4 marks]

kokookoskoskokosk sk skoskosk skokokoskoskoskok skoskokok skok kok skokokskkok

COMP 202

