CS-202-97/TestSoln(lg)

School of Mathematical and Computing Sciences
COMP 202 : Formal Methods of Computer Science

Test — Solutions

1. (a) Write a Regular Expression to describe the language in which every string
consists of either an even number of as followed by an odd number of bs or an
odd number of as followed by an even number of cs. [4 marks]

(aa)*b(bb)*|a(aa)*(cc)* or (aa)*(b(bb)*|a(cc)®)

(b) Write a Regular Expression to describe the language consisting of all strings
of as, bs and cs, where as occur in multiples of two, bs occur in multiples of
three, and consecutive groups of as or bs are separated by one of more cs. For
example, “aa”, “cbbb”, “cccc”, “aacbbbcccaaaac” and “aaccaacbbbcbbbbbb” are
in this language, but “a”, “bb”, “aca” and “aaab” are not. [4 marks]

((aa)*|(6bb)*) (c((aa)*[(bbb)*))* or (((aa)*|(bbb)*)c)* ((aa)*|(bbb)*)

(c) Write an Extended Regular Expression to describe the language consisting of
lists of one or more items, separated by commas, where each item is either a
number (a non-empty sequence of digits), two numbers separated by a colon,
or three numbers separated by colons. For example, “123”, “1,2,3” and “1,2:
3,23:1:52,1” are in this language, but “1,,2”, “1:2,” and “1:2:3:1” are not.
You may write d to stand for any digit. [4 marks]

dt[: dTP2(,dT[: dT]?)* or dt(:dT)E(,dT(: dT)3)*

2. Consider the regular expression E = a*(b|c)* | b*(alc)*.

(a) Draw a transition diagram for the simplest NFA you can construct to recognise
the language defined by E. [4 marks]

e
AT,
H\ b)
O

Note that states 1, 2 and 3 need not be marked as being final states.

(b) Give a trace showing the behaviour of your DFA with aacabc as input.

[2 marks]
States Input
1,2,3,4,5 aacabc
2,45 acabc
2,4.5 cabc
4,5 abc
5 be Reject
(c) Write a left-regular grammar equivalent to E. [3 marks]
S =T|U
T —-aT |V
V =bV||cV | A
U—=bUu|W

W —aW | cW | A

(d) Draw a transition diagram for the NFA obtained by applying either the “top
down” or the “bottom up” construction (as described in the Course Notes) to
E. [4 marks]

Top down:

Bottom up:

€ £

(e) Draw a transition diagram for the DFA obtained by applying the subset con-
struction to your NFA from part (d). Show the correspondence between states
in your DFA and sets of states in the NFA. [4 marks]

Top down:

DFA States

NFA States

< w

Bottom up:

{1,2,3,4,5,6,7,8}
{2,4,6,7,8}
{3,5,6,7,8}
{6,7,8}

{6,8}

{7,8}

DFA States

NFA States

N<XS<adwm

{1,2,3,8,10,11,12,13,14, 15,16, 17, 24, 26}
{4,6,8,10,12,13,14,15,17,20, 23, 24, 25, 26}
{5,9,11,12,13,14,15,16,17, 18,22, 25}
{12,13,14,15,16,17,19,21,22, 24, 225, 26}
{12,14,15,18, 22, 24, 26}

{13,16, 17,20, 23, 25,26}
{12,14,15,19,22, 24, 26}

{13,16,17,21,23, 25,26}

The underlined states are ones reached by a non-null transition; the others are
all reachable from these by following null transitions.

(f) Identify any states in your DFA in part (e) that can be eliminated to obtain a

smaller DFA.

[1 marks]

For the top down dfa, no states can be eliminated.

For the bottom up dfa, states W and Y can be merge, so can states X and Z.

3. Consider the language PAL of palindromes over {a,b,c}, i.e. the set of all strings
« € {a,b,c}* such that of = .

(a)

Prove that PAL is not regular, using the Myhill-Nerode Theorem. [4 marks]

Consider two strings, o™ and a™, where m < n. These strings must be distin-
guished (relative to PAL) because a™ba™ € PAL (since (a™ba™)® = a™ba™),
but a"ba™ € PAL (since (a™ba™)® = a™ba™ # a"ba™, as m # n).

Now consider the set S = {a’ | i > 0}. It follows from the above that any two
strings in S must be distinguished.

Since we have an infinite set of strings, any two of which must be distinguished
(relative to PAL), so PAL is not regular.

Note that it is not sufficient to show that there is an infinite number of pairs of
strings that must be distinguished! If we consider the language L = { a* | i >
0}U{b |i>0}, there are an infinite number of pairs (a',b") that must
be distinguished, but L is clearly regular since it is denoted by the regular
expression a*|b*.

Write a Context Free Grammar that defines PAL. Give a brief explanation of
why your grammar defines the required language. [4 marks]

S—>)\(1)|a(2)|b(3)|C(4)|aSa(5)|bSb(6)|cSC(7)

Note that PAL includes palindromes of both even and odd length! Omitting
rule (1) gives only palindromes of odd length; omitting rules (2), (3) and (4)
gives only palindromes of even length.

To show that this grammar defines PAL, we show that (i) every parse tree from
S has a palindrome as its fringe (i.e. £(S) C PAL), and (ii) every palindrome
can be parsed with this grammar (i.e. PAL C L(S5)).

To simplify the argument we introduce the following piece of terminology. We
say a parse tree produces a string « if it has « as its fringe.

(i) We prove that every parse tree produces a palindrome by induction on the
height of the parse tree.

Base: Every parse tree of height 1 produces either A, a, b or ¢ (using rules
(1), (2), (3) and (4), respectively). Since these are all palindromes, every
parse tree of height 1 produces a palindrome.

Step: Assume that every parse tree of height A (where h > 1) produces a
palindrome. Suppose T is a parse tree of height h with fringe & (so @ must
be a palindrome). We can extend T to a parse tree of height h + 1 only by
adding an application of rule (5), (6) or (7) above the root. In each case
the fringe of the new tree is zaz, where z € {a, b, c}, which is a palindrome
since « is a palindrome.

Thus, every parse tree produces a palindrome.

(ii) We prove every palindrome can be parsed with the above grammar by
induction on the “half-length” of the palindrome, where the “half-length”
of a string « is |a| mod 2 (or ||a|/2]).

Base: If « is a palindrome with half-length 0, then |a| is 0 or 1, and « is
either A, a, b or c. We can construct a parse tree for o with one application

of rule (1), (2), (3) or (4). Thus, every palindrome with half-length 0 can
be parsed with the grammar.
Step: Assume that every palindrome with half-length & (for £ > 0) can be
parsed with the grammar. If « is a palindrome with half-length £+ 1, there
must be a string # and a symbol z € {a,b,c} such that o = z(8z, where
(B is a palindrome. By the inductive hypothesis, there must be a parse
tree, T', for 8. We can therefore construct a parse tree for a by adding an
application of rule (5), (6) or (7) above the root (according to whether z

is a, b or ¢).

Thus, every palindrome can be parsed with the grammar.

I didn’t expect a proof in as much detail as this. Note that it is important to
show both parts of the proof: just showing that every sentence produced by the
grammar is a palindrome does not guarantee that the grammar can produce all

palindromes!

4. Well-formed formulas of propositional logic (known as wffs) can be defined as follows:

(i) The propositional constants, true and false, are both wifs.

(ii) Every propositional variable is a wif.
(iii) If X and Y are wifs, then - X, X A Y, X VY, X = YV, X =Y and (X)

are also wifs.

(iv) Nothing else is a wif.

In order to avoid ambiguity, we adopt the following conventions
and associativity of the propositional connectives:

for the precedence

Connective(s) | Precedence | Associativity
=, = 1 Non-associative
V 2 Left-associative
A 3 Left-associative

- 4 Associative

As usual, parentheses are treated as having higher precedence that any of the propo-

sitional connectives.

(a) Write a Context Free Grammar for wifs, which will give every wif a unique parse

tree reflecting these conventions for precedence and associativity. [8 marks]
A - B|B = B|B=B

B —-C|BvC

C - D|CAD

D —» E|-D

E — poar |true| false| (A)

(b) Draw a parse tree for each of the following wifs (where p, ¢ and r are assumed

to be propositional variables):

i) pANg=pVyg

i) Ag=r)=@{@=>r71)A(@g=r)

[4 marks]

pvar

pvar

pvar

©

pvar

pvar

pvar

pvar

pvar

) B

B C

C D

D E
E pvar

pvar g

pvar

