CS-202-97/Test(lg)

School of Mathematical and Computing Sciences
COMP 202 : Formal Methods of Computer Science

Test (21 August, 1997)

Time allowed = 90 minutes
Total marks = 50

Answer ALL questions

1. (a) Write a Regular Expression to describe the language in which every string
consists of either an even number of as followed by an odd number of bs or an
odd number of as followed by an even number of cs. [4 marks]

(b) Write a Regular Expression to describe the language consisting of all strings
of as, bs and cs, where as occur in multiples of two, bs occur in multiples of
three, and consecutive groups of as or bs are separated by one of more cs. For
example, “aa”, “cbbb’, “cccc’, “aacbbbcccaaaac” and “aaccaacbbbcbbbbbb” are
in this language, but “a”, “bb”, “aca” and “aaad’ are not. [4 marks]

(c) Write an Extended Regular Expression to describe the language consisting of
lists of one or more items, separated by commas, where each item is either a
number (a non-empty sequence of digits), two numbers separated by a colon,
or three numbers separated by colons. For example, “123”, “1,2,3” and “1,2:
3,23:1:52,1” are in this language, but “1,,2”, “1:2,” and “1:2:3:1” are not.
You may write d to stand for any digit. [4 marks]
An Extended Regular Expression is like an ordinary Regular Expression, except
that it can also use the following notations:

[e] means “zero one or more occurrences of e¢” (i.e. [e] = e|A)

et means “one or more occurrences of e” (i.e. et = ee*)

e™ means “n occurrences of ¢” (i.e. " =¢ ~--- ~¢)
~————

n
ey, means “at least m and at most n occurrences of ¢” (i.e. €™ —~ [e]"™)

Your answer should make best use of these extensions.
2. Consider the regular expression E = a*(b|c)* | b*(alc)*.

(a) Draw a transition diagram for the simplest NFA you can construct to recognise
the language defined by E. [4 marks]
(b) Give a trace showing the behaviour of your DFA with aacabc as input.

Make sure that at each step you show the states that can be reached by following
null transitions. [2 marks]

(c) Write a left-regular grammar equivalent to E. [3 marks]

(d) Draw a transition diagram for the NFA obtained by applying either the “top
down” or the “bottom up” construction (as described in the Course Notes) to
E.

Indicate clearly which construction you are using. [4 marks]

(e) Draw a transition diagram for the DFA obtained by applying the subset con-
struction to your NFA from part (d). Show the correspondence between states
in your DFA and sets of states in the NFA. [4 marks]

(f) Identify any states in your DFA in part (e) that can be eliminated to obtain a
smaller DFA. [1 marks]

3. Consider the language PAL of palindromes over {a,b,c}, i.e. the set of all strings
a € {a,b,c}* such that oft = a.

(a) Prove that PAL is not regular, using the Myhill-Nerode Theorem. [4 marks]

(b) Write a Context Free Grammar that defines PAL. Give a brief explanation of
why your grammar defines the required language. [4 marks]

4. Well-formed formulas of propositional logic (known as wffs) can be defined as follows:

(i) The propositional constants, true and false, are both wifs.
(ii) Every propositional variable is a wif.

(iii) If X and Y are wifs, then - X, X A Y, X VY, X = YV, X = Y and (X)
are also wifs.

(iv) Nothing else is a wif.

In order to avoid ambiguity, we adopt the following conventions for the precedence
and associativity of the propositional connectives:

Connective(s) | Precedence | Associativity
=>,= 1 Non-associative
\Y% 2 Left-associative
A 3 Left-associative

- 4 Associative

As usual, parentheses are treated as having higher precedence that any of the propo-
sitional connectives.

(a) Write a Context Free Grammar for wifs, which will give every wif a unique parse
tree reflecting these conventions for precedence and associativity. [8 marks]

(b) Draw a parse tree for each of the following wffs (where p, ¢ and r are assumed
to be propositional variables): [4 marks]
(i) pAg=pVyg
i) (pAg=r)=p@=>r)A@g=r)

