Victoria University of Wellington

DEGREE EXAMINATIONS — 1998 cowmp 202

END OF YEAR

COMP 202

Formal Methods of Computer Science

Time Allowed: 3 Hours

Instructions: ~ Candidates should attempt all questions.

This exam will be marked out of 100.

Question 1. [15 marks]

Consider the regular expression (aa)*b | a(aa)*c.

(a) Construct a transition diagram for an NFA to recognise the language defined by
this regular expression, using the “top-down construction”. [5 marks]

You do not need to show all of the steps in the construction, but you should show
all of the states and transitions resulting from using the top-down construction.

COMP 202 continued...

(b) Construct a transition diagram for a DFA, equivalent to your NFA in part (a),
using the “subset construction”.

Show the relationship between states in your DFA and those in the NFA.
[5 marks]

)

The correspondence is:

DFA NFA

11 {1,2,6}
12 {3,4,5,8}
13 {2,6,7}
14 {3,538}
15 {9}

(c) Write a Regular Grammar, equivalent to the original regular expression, based on
your DFA in part (b). [5 marks]

al | bW
aU | W
aV | bW
AU | W
A

S9N
R

COMP 202 continued...

Question 2. [40 marks]

Suppose you wish to write a program to solve sets of algebraic equations. The first thing
you need is a parser that allows you to read a list of equations and build a representation
of them which your solver can operate on.

Suppose we define the syntax of equation lists as follows:

eq-list — eqn | eg-list “;” eqn
eqn — exp “=" exp

exp — id | id “(exp-list «)”
exp-list — exp | exp-list “) exp

where id is an identifier.

(a) Explain what it means for a grammar to be in LL(1) form, and why this property
is important in the construction of recursive descent parsers. [5 marks]

A grammar is LL(1) if:

(i) For any two (distinct) rules N — a and N — g, first(a) N first(8) =0,
where first(vy) is the set of terminals that start strings produced from 7.

(ii) If G contains a rule N — «, where a =* A, then first(a) N follow(a) = 0,
where follow(c) is the set of terminals that can follow a string produced
from N in a sentence.

These conditions are important, because ensure that a recursive descent parser
can always chose the appropriate rule to use at every step, based on a one-symbol
lookahead (i.e. just by looking a the next input symbol).

(b) Identify any places where the above grammar fails to meet the LL(1) conditions.
[3 marks]

The rules for eq-list, exp and exp-list all break the first LL(1) condition. In each
case the first sets for the two rules are identical.
Specifically (though not expected):

first(eqn) = {id} = first(eq-list ; eqn)
first(id) = {id} = first(id (exp-list))
first(exp) = {id} = first(exp-list , exp)

(c) Write a (plain) CFG in LL(1) form, equivalent to the grammar above.

Show that your grammar is in LL(1) form, by constructing the necessary first and
follows sets.

Explain why constructing an LL(1) grammar in this way often has undesirable
consequences. [7 marks|

COMP 202 continued...

eq-list — eqn rest-eq-list (1)

rest-eq-list — X\ | 7 eq-list (2,3)

eqn — exp “=" exp (4)

exp — id rest-exp (5)

rest-erp = X | “(" exp-list)" (6,7)

exp-list — exp rest-exp-list (8)

rest-exp-list — X | 7 exp-list (9,10)
This is usually undesirable, because it changes the structure of the grammar. In
particular, we have to replace left recursion with right recursion.
(Insert first/follows sets and explanation of why it’s bad.)

(d) Construct an LL(1) parser table, based on your grammar in part (c). [5 marks]

id ; = (), 8
eq-list 1 - - - - - -
rest-eq-list |- 3 - - - - 2
eqn 4 - - - - - -
exp 5 - - - - - -
rest-exp - - 6 7 - - -
exp-list 8 - - - - - -
rest-exp-list | - - - - 9 10 -

(e) Extended Context Free Grammars (ECFGs) provide an attractive basis for con-
structing recursive descent parsers, because repetition can be handled by loops,
both in the grammar and in the parser.

Write an ECFG, in LL(1) form, equivalent to the grammar given above.

You should make best use of the features of ECFGs to obtain a compact and
intelligible grammar, reflecting the structure of the original grammar as closely as
possible. [5 marks]

@, ”

eq-list — eqn{ “” eqn }
eqn — exp “=" exp
exp — dd [“(” exp-list)" |

w»

exp-list — exp { “ exp }

(f) Write the procedures required for a recursive descent parser to recognise lists of
equations, based on your grammar from part (e).

You should assume the availability of a scanner, recognising the terminal symbols
used in this grammar (i.e. 7, “=", “(”, “)”, “” and id). [10 marks]

(INSERT)

(g) Explain how you would extend your parser in part (f) to build a representation of
the list of equations recognised.

COMP 202 continued...

You may assume any reasonable representation for lists of equations, provided you
explain the operations used in its construction. [5 marks|

(INSERT)

COMP 202 continued...

Question 3. [25 marks]

(a) Explain briefly the difference between strong equivalence and weak equivalence of
programs. [4 marks]

| Standard “book work”. |

(b) Consider the following three while programs, where B; and B, are any Boolean
expressions and Sy, S, S are any statements:

P]_Z if B]_ then Sl else SQ ﬁ, PQZ if Bl then
if B, then S5 else S, fi S1; if By then S; else S, fi
else

So; if B, then S5 else S, fi
fi

Pgl if Bl then
if BQ then Sl; 53 else Sl; 54 fi
else
if B2 then SQ; 53 else SQ; 54 fi

fi
(i) Show that P, and P, are strongly equivalent. [4 marks]
Call the programs P; and P;, and let Paths(P) be the RE for all potential paths
in P. Then: o o
Paths(Pl) = (B1 Sl |Bl SQ)(BQ S3‘B2 54) ==

(Bl 515' (B2 Sg'FQ S4)|F1 SQ (BQ Sg‘FQ 54)) = Paths(Pg)
The two REs are equal, by distributivity.
(NB: This is blurring the distinction between S; and Paths(S;), etc.)

(ii) Under what circumstances will P; and P; be weakly equivalent? [2 marks|

When the value of B is not affected by executing S; or Ss.

(c) Show that, for any Boolean expression B and any statements S; and Sy, there is
a while program which is strongly equivalent to the following flowchart program:

[5 marks]
1: Sl;
if B then 2 else 3;
2: SQ;
goto 1;
3: skip

COMP 202 continued...

The following while program is strongly equivalent to the given flowchart program
(for any ...):

S1;

while C' do
Sa;
S1

od

The paths RE in both cases is: S;(B Sy S1)*B

(d) Show that, for any while program, there is a weakly equivalent while program
containing only one while statement. [5 marks|

(You may assume results about program transformations that were proved in the
course notes.)

Translate the while program into a (strongly equivalent) flowchart program, us-
ing the T, function defined in the notes. Then translate that into a (weakly
equivalent) while program using the T, function defined in the notes.

The resulting program is weakly equivalent to the original program (by a sort of
transitivity).

The resulting program also has only one while statement (because Ty, constructs
a program with a single while statement whose body is a multiway if statement).

(e) Demonstrate the effect of the transformation you described in part (d) on the
following while program: [5 marks]

k:=1;
while n # 0 do
while A[k] # = do
k=k+1
od;
n:=n—1k:=k+1
od

COMP 202 continued...

Applying T, to the given while program gives (the line numbers on the left are
used in the next step):

(1) k:=1;
(2) 1: if n # 0 then 2 else 3;
(3) 2: skip;
(4) 4: if A[k] # x then 5 else 6;
(5) 5: skip;
(6) k:=k+1
(7) goto 1;
(8) 6: skip
9) n:=n-—1;
(10) k:=k+1,
(11) goto 1;
(12) 3: skip

Applying Ty, to the flowchart program gives:

§:=1;
while s < 12 do
if s=1then k:=1;s:=2
elsif s = 2 then if n # 0 then s := 3 else s := 12
elsif s = 3 then skip ; s :=4
elsif s =4 then if A[k] # = then s:=5 else s : =8
elsif s =5 then skip ; s :=6
elsif s=6then k:=k+1;s5:=7
elsif s =7 then s :=4
elsif s = 8 then skip ; s:=9
elsif s=9thenn:=n—-1; s:=10
elsif s =10 then £k :=k + 1; s := 11
elsif s =11 then s :=2
elsif s = 12 then skip ; s:=13
fi
od

COMP 202 continued...

Question 4. [20 marks]

The following is an algorithm to count the number of index positions at which two strings
s and ¢ have identical elements, assuming that |s| = m and [t| = n.

k:=0;c:=0;
while £k #m A k#n do
if s[k+ 1] = t[k + 1] then
c:=c+1
fi;
k=k+1
od

If we write count(i, S, P) for the number of elements, i, in set S, satisfying property P
(i.e. count(i,S,P)=1{i|i€ S AN P}|),and u..v for the set {j | u < j < v}, we can
express the postcondition for this program as:

k = count(i, 1..min(m,n), s[i] = t[i])

(a) Explain what is meant by a “loop invariant”, and how a loop invariant can be used
in proving that a loop satisfies a given specification. [5 marks]

|This is standard “book work”.

(b) Give a loop invariant that could be used to verify the loop in the above program.
[5 marks|

0 <k <min(m,n) A c¢= count(i,1..k, s[i] = t[i])

(c) Use your loop invariant from part (b) to prove that the program correctly computes
the number of index positions at which s and ¢ have identical elements.

You should give the verification conditions that must hold in order for the program
to be correct, and clearly identify any mathematical properties of strings and/or
of counting that your proof relies upon. [10 marks]

COMP 202 continued...

10

(i)

(ii)

(iii)

(iv)

The loop invariant holds on entry to the loop. [2 marks]
k=0Ac=0= 0<k<min(m,n) A c=count(i, ..k, s[i] = t[i])

0 <0< min(m,n) A 0= count(i,1..0, s[i] = t[i])

true

The loop invariant is preserved by the loop body. [6 marks]

We need to consider two cases, according to whether s[k + 1] = ¢[k + 1] holds
or not. The resulting verification conditions are:
(i) 0 <k <min(m,n) N c¢=count(i,1..k, s[i] = t[i]) A

k#m N k#m A sfk+1] =tk+1] =

0<k+1<min(m,n) A c+1=count(i,1..k + 1, s[i] = t[i])
This holds, since s[k + 1] = t[k + 1] = count(i,1..k + 1,s[i] = t[i]) =
count(i, 1..k, s[i] = t[i]) + 1
(ii)) 0 <k <min(m,n) A c= count(i,1..k, s[i]| = t[i]) A

k#m AN k#m A slk+1] #tk+1] =

0<k+1<min(m,n) N c=count(i,1..k + 1, s[i] = t[i])
This holds, since s[k + 1] # t[k + 1] = count(i,1..k + 1,s[i] = t[i]) =
count (i, 1..k, s[i] = t[i])
Note that we can obtain these verification conditions via several routes: the
details of how they are obtained is not so important as what they are.

The postcondition k& = count(i, 1..min(m,n), s[i] = t[i]) holds when the loop
exits with the loop invariant true. [2 marks]
The verification condition is:

0 <k <min(m,n) A ¢c=count(i,1..k,s[i] = t[i]) A

“(k#m AN k#m) =

¢ = count(s, 1..min(m, n), s[i] = t[i])
This holds, since 0 < k < min(m,n) A —(k #m A k #m) = k =
min(m,n).
The loop terminates for any strings s and ¢. [2 marks|
Take the bound function to be t = min(m,n) — k.

Every iteration of the loop increases k, and the loop must exit when
min(m,n) — k = 0, i.e. k = min(m,n).

COMP 202

skokosk sk skokosk sk skoskosk skoskok skoskoskok skoskoskokoskok ok skokokskoskx

