Victoria University of Wellington

DEGREE EXAMINATIONS — 1998 cowmp 202

END OF YEAR

COMP 202

Formal Methods of Computer Science

Time Allowed: 3 Hours

Instructions: ~ Candidates should attempt all questions.

This exam will be marked out of 100.

Question 1. [15 marks]

Consider the regular expression (aa)*b | a(aa)*c.

(a) Construct a transition diagram for an NFA to recognise the language defined by
this regular expression, using the “top-down construction”. [5 marks]

You do not need to show all of the steps in the construction, but you should show
all of the states and transitions resulting from using the top-down construction.
(b) Construct a transition diagram for a DFA, equivalent to your NFA in part (a),
using the “subset construction”.
Show the relationship between states in your DFA and those in the NFA.
[5 marks]

(c) Write a Regular Grammar, equivalent to the original regular expression, based on
your DFA in part (b). [5 marks]

COMP 202 continued...

Question 2. [40 marks]

Suppose you wish to write a program to solve sets of algebraic equations. The first thing
you need is a parser that allows you to read a list of equations and build a representation
of them which your solver can operate on.

Suppose we define the syntax of equation lists as follows:

eq-list — eqn | eg-list “;” eqn

w__»

eqn — exp exrp
exp — id | id “(" exp-list «)”
exp-list — exp | exp-list “) exp

where 7d is an identifier.

(a)

(b)

(c)

(d)

(f)

(g)

Explain what it means for a grammar to be in LL(1) form, and why this property
is important in the construction of recursive descent parsers. [5 marks|

Identify any places where the above grammar fails to meet the LL(1) conditions.
[3 marks]
Write a (plain) CFG in LL(1) form, equivalent to the grammar above.

Show that your grammar is in LL(1) form, by constructing the necessary first and
follows sets.

Explain why constructing an LL(1) grammar in this way often has undesirable
consequences. [7 marks|

Construct an LL(1) parser table, based on your grammar in part (¢). [5 marks]

Extended Context Free Grammars (ECFGs) provide an attractive basis for con-
structing recursive descent parsers, because repetition can be handled by loops,
both in the grammar and in the parser.

Write an ECFG, in LL(1) form, equivalent to the grammar given above.

You should make best use of the features of ECFGs to obtain a compact and
intelligible grammar, reflecting the structure of the original grammar as closely as
possible. [5 marks]

Write the procedures required for a recursive descent parser to recognise lists of
equations, based on your grammar from part (e).

You should assume the availability of a scanner, recognising the terminal symbols
used in this grammar (i.e. 7, “=", “(”, “)”, «,” and id). [10 marks|
Explain how you would extend your parser in part (f) to build a representation of
the list of equations recognised.

You may assume any reasonable representation for lists of equations, provided you
explain the operations used in its construction. [5 marks]

COMP 202 continued...

Question 3. [25 marks]

(a) Explain briefly the difference between strong equivalence and weak equivalence of
programs. [4 marks]

(b) Consider the following three while programs, where B; and B, are any Boolean
expressions and S, S, S3 are any statements:

P: if B; then S else 5 fi; P,: if B; then
if By then S; else S, fi Si1; if B, then S5 else S, fi
else

So; if B, then S5 else S, fi
fi

P3Z if Bl then
if By then Si; S3 else Si; Sy fi

else
if Bg then Sg, 53 else SQ, 54 fi
fi
(i) Show that P, and P, are strongly equivalent. [4 marks]
(ii) Under what circumstances will P; and P; be weakly equivalent? [2 marks]

(c) Show that, for any Boolean expression B and any statements S; and Ss, there is
a while program which is strongly equivalent to the following flowchart program:

[5 marks]
1: Sl;
if B then 2 else 3;
2: SQ;
goto 1;
3: skip

(d) Show that, for any while program, there is a weakly equivalent while program
containing only one while statement. [5 marks]

(You may assume results about program transformations that were proved in the
course notes.)

(e) Demonstrate the effect of the transformation you described in part (d) on the
following while program: [5 marks]

k=1,
while n # 0 do
while A[k] # = do
k:=k+1
od;
n:=n—1k:=k+1
od

COMP 202 continued...

Question 4. [20 marks]

The following is an algorithm to count the number of index positions at which two strings
s and ¢ have identical elements, assuming that |s| = m and [t| = n.

k:=0;c:=0;
while £k #m A k#n do
if s[k + 1] = t[k + 1] then
c:=c+1
fi;
k=k+1
od

If we write count(i, S, P) for the number of elements, i, in set S, satisfying property P
(i.e. count(i,S,P)=1{i|i€ S AN P}|),and u..v for the set {j | u < j < v}, we can
express the postcondition for this program as:

c = count(i, 1..min(m,n), s[i| = t[i])
(a) Explain what is meant by a “loop invariant”, and how a loop invariant can be used

in proving that a loop satisfies a given specification. [5 marks]

(b) Give a loop invariant that could be used to verify the loop in the above program.
[5 marks]

(¢) Use your loop invariant from part (b) to prove that the program correctly computes
the number of index positions at which s and ¢ have identical elements.

You should give the verification conditions that must hold in order for the program
to be correct, and clearly identify any mathematical properties of strings and/or
of counting that your proof relies upon. [10 marks|

>k >k >k >k >k sk sk ok skokookok ok ok sk sk sk sk sk sk sk ok sk ko kokoskokokoskok sk

COMP 202

