## **Victoria University of Wellington**

## **DEGREE EXAMINATIONS — 1998**

**COMP 202** 

END OF YEAR

**COMP 202** 

Formal Methods of Computer Science

Time Allowed: 3 Hours

Instructions: Candidates should attempt all questions.

This exam will be marked out of 100.

Question 1. [15 marks]

Consider the regular expression  $(aa)^*b \mid a(aa)^*c$ .

(a) Construct a transition diagram for an NFA to recognise the language defined by this regular expression, using the "top-down construction". [5 marks] You do not need to show all of the steps in the construction, but you should show all of the states and transitions resulting from using the top-down construction.

(b) Construct a transition diagram for a DFA, equivalent to your NFA in part (a), using the "subset construction".

Show the relationship between states in your DFA and those in the NFA.

[5 marks]

(c) Write a Regular Grammar, equivalent to the original regular expression, based on your DFA in part (b). [5 marks]

COMP 202 continued...

Question 2. [40 marks]

Suppose you wish to write a program to solve sets of algebraic equations. The first thing you need is a parser that allows you to read a list of equations and build a representation of them which your solver can operate on.

Suppose we define the syntax of equation lists as follows:

$$eq$$
-list  $\rightarrow$   $eqn \mid eq$ -list ";"  $eqn$   
 $eqn \rightarrow exp$  "="  $exp$   
 $exp \rightarrow id \mid id$  "("  $exp$ -list ")"  
 $exp$ -list  $\rightarrow exp \mid exp$ -list ","  $exp$ 

where id is an identifier.

- (a) Explain what it means for a grammar to be in LL(1) form, and why this property is important in the construction of recursive descent parsers. [5 marks]
- (b) Identify any places where the above grammar fails to meet the LL(1) conditions.

  [3 marks]
- (c) Write a (plain) CFG in LL(1) form, equivalent to the grammar above. Show that your grammar is in LL(1) form, by constructing the necessary first and follows sets.
  - Explain why constructing an LL(1) grammar in this way often has undesirable consequences. [7 marks]
- (d) Construct an LL(1) parser table, based on your grammar in part (c). [5 marks]
- (e) Extended Context Free Grammars (ECFGs) provide an attractive basis for constructing recursive descent parsers, because repetition can be handled by loops, both in the grammar and in the parser.
  - Write an ECFG, in LL(1) form, equivalent to the grammar given above.
  - You should make best use of the features of ECFGs to obtain a compact and intelligible grammar, reflecting the structure of the original grammar as closely as possible. [5 marks]
- (f) Write the procedures required for a recursive descent parser to recognise lists of equations, based on your grammar from part (e).
  - You should assume the availability of a scanner, recognising the terminal symbols used in this grammar (i.e. ";", "=", "(", ")", "," and id). [10 marks]
- (g) Explain how you would extend your parser in part (f) to build a representation of the list of equations recognised.
  - You may assume any reasonable representation for lists of equations, provided you explain the operations used in its construction. [5 marks]

COMP 202 continued...

Question 3. [25 marks]

(a) Explain briefly the difference between strong equivalence and weak equivalence of programs. [4 marks]

(b) Consider the following three while programs, where  $B_1$  and  $B_2$  are any Boolean expressions and  $S_1$ ,  $S_2$ ,  $S_3$  are any statements:

```
P_1: if B_1 then S_1 else S_2 fi; P_2: if B_1 then if B_2 then S_3 else S_4 fi else S_2; if B_2 then S_3 else S_4 fi fi
```

```
P_3: if B_1 then
if B_2 then S_1; S_3 else S_1; S_4 fi
else
if B_2 then S_2; S_3 else S_2; S_4 fi
```

(i) Show that  $P_1$  and  $P_2$  are strongly equivalent.

[4 marks]

(ii) Under what circumstances will  $P_1$  and  $P_3$  be weakly equivalent?

[2 marks]

(c) Show that, for any Boolean expression B and any statements  $S_1$  and  $S_2$ , there is a while program which is strongly equivalent to the following flowchart program:

[5 marks]

```
1: S_1;

if B then 2 else 3;

2: S_2;

goto 1;

3: skip
```

- (d) Show that, for any while program, there is a weakly equivalent while program containing only one while statement. [5 marks]
  - (You may assume results about program transformations that were proved in the course notes.)
- (e) Demonstrate the effect of the transformation you described in part (d) on the following while program: [5 marks]

```
k := 1;
while n \neq 0 do
while A[k] \neq x do
k := k + 1
od;
n := n - 1; k := k + 1
```

COMP 202 continued...

Question 4. [20 marks]

The following is an algorithm to count the number of index positions at which two strings s and t have identical elements, assuming that |s| = m and |t| = n.

```
k := 0; c := 0;
while k \neq m \land k \neq n do
if s[k+1] = t[k+1] then
c := c+1
fi;
k := k+1
```

If we write count(i, S, P) for the number of elements, i, in set S, satisfying property P (i.e.  $count(i, S, P) = |\{i \mid i \in S \land P\}|$ ), and  $u \dots v$  for the set  $\{j \mid u \leq j \leq v\}$ , we can express the postcondition for this program as:

$$c = count(i, 1 ... min(m, n), s[i] = t[i])$$

- (a) Explain what is meant by a "loop invariant", and how a loop invariant can be used in proving that a loop satisfies a given specification. [5 marks]
- (b) Give a loop invariant that could be used to verify the loop in the above program.

  [5 marks]
- (c) Use your loop invariant from part (b) to prove that the program correctly computes the number of index positions at which s and t have identical elements.

You should give the verification conditions that must hold in order for the program to be correct, and clearly identify any mathematical properties of strings and/or of counting that your proof relies upon. [10 marks]

\*\*\*\*\*\*\*\*\*\*\*