School of Mathematical and Computing Sciences COMP 202: Formal Methods of Computer Science

Test — Solutions

1. A string s is a common prefix of strings t and u iff s is a prefix of t and also a prefix of u; i.e. t = st' and u = su' for some strings t' and u'.

s is the longest common prefix of t and u iff s is a common prefix of t and u and there is no string s' such that s' is a common prefix of t and u and |s'| > |s|.

- (a) Prove the following properties of common prefixes:
 - (i) Every pair of strings s and t has at least one common prefix. [2 marks] λ is a prefix of any string (i.e. $\lambda s = s$, for any string s), so λ is a common prefix for any pair of strings.
 - (ii) If s is a common prefix of t and u, and v is a common prefix of $s \setminus t$ and $s \setminus u$, then $s \frown v$ is a common prefix of t and u. [4 marks]

If s is a common prefix of t and u, there are strings t' and u' such that t = st' and u = su', i.e. $t' = s \setminus t$ and $u' = s \setminus u$.

Now, if v is a common prefix of $s \setminus t$ and $s \setminus u$, there must be strings t'' and u'' such that $s \setminus t = vt''$ and $s \setminus u = vu''$.

But since $t' = s \setminus t$ and $u' = s \setminus u$, this means (substituting in t = st' and u = su'), t = svt'' and u = svu''.

Thus, sv is a common prefix of t and v.

(b) Explain how the above properties can be used to construct an algorithm to find the longest common prefix of two strings, s and t.

Write the resulting algorithm as a functional program, using head, tail, NULL and to access and manipulate strings. [6 marks]

These properties mean that we can find the longest common prefix, p, of s and t by starting with $p = \lambda$ (which is the always the shortest common prefix) and adding characters from the front of s and t to p, until $p \setminus s$ and $p \setminus t$ have no common prefix other than λ (in which case either $p \setminus s = \lambda$, $p \setminus t = \lambda$ or $head(p \setminus s) \neq head(p \setminus t)$).

As a functional program:

$$lcp(s,t) \stackrel{\triangle}{=} if \ s = NULL \ \lor \ s = NULL \ then \ NULL$$

 $elsif \ head(s) \neq head(t) \ then \ NULL$
 $else \ \langle head(s) \rangle \frown lcp(tail(s), tail(t)) \ fi$

or:

$$\begin{array}{cccc} lcp(s,t) & \stackrel{\triangle}{=} & lcp'(s,t,NULL) \\ lcp'(s,t,u) & \stackrel{\triangle}{=} & \textbf{if } s = NULL \ \lor \ s = NULL \ \textbf{then } u \\ & & \textbf{elsif } head(s) \neq head(t) \ \textbf{then } u \\ & & & \textbf{else } lcp'(tail(s),tail(t),u \frown \langle head(s) \rangle) \ \textbf{fi} \end{array}$$

- 2. (a) Write a Regular Expression to describe the language consisting of all strings over $\{a, b, c\}$ which contain *either* exactly one a or exactly two bs.
 - For example, a, bb, bab, ccbbbabc and acacbcacba are in this language, but λ , b, aba and ccc are not. [4 marks]

$$(b|c)^*a(b|c)^* \mid (a|c)^*b(a|c)^*b(a|c)^*$$

- (b) Write a Regular Expression to describe the language consisting of all strings over $\{a, b, c\}$ for which all of the following conditions hold:
 - all of the as and bs occur before all of the cs,
 - if the first a occurs before the first b, there must be an even number of cs, and
 - if the first a occurs after the first b, there must be an odd number of cs.

For example, λ , a, b, c, cc, ac, bcc, abcc, bac, abaaccccc and bbaabccc are in this language, but ba, abc, abcc, bac and bababaacccc are not. [4 marks]

$$a^*c^* \mid b^*c^* \mid aa^*b(a|b)^*(cc)^* \mid bb^*a(a|b)^*c(cc)^*$$

or

$$(a^* \mid b^*)c^* \mid a(a|b)^*(cc)^* \mid b(a|b)^*c(cc)^*$$

3. Consider the regular expression $(b|c)^*(a(b|c)(b|c)^*)^*a^*$.

Draw a transition diagram for the NFA obtained by applying the "top down" construction (as described in the Course Notes).

Make sure you show all states and edges given by the construction!

[6 marks]

4. Consider the NFA $M = (\{1, 2, 3, 4, 5, 6, 7, 8\}, 1, \{a, b, c\}, N, \{8\})$, where N is defined by the following transitions:

$$(1, a; 1), (1, \epsilon; 2), (1, \epsilon; 3), (2, b; 4), (2, c; 5), (3, b; 5), (3, c; 4),$$

 $(4, a; 6), (5, a; 7), (6, \epsilon; 8), (7, \epsilon; 8), (8, \epsilon; 2), (8, \epsilon; 3)$

(a) Draw a transition diagram depicting this NFA.

[2 marks]

(b) Give a trace showing the behaviour of the the NFA with *aabaca* as input. Be sure to show *all* states the NFA could be in at each step. [4 marks]

$\underline{\text{States}}$	Input	
1,2,3	$\overline{aabac}a$	
1, 2, 3	abaca	
1, 2, 3	baca	
4, 5	aca	
6, 7, 8, 2, 3	ca	
4, 5	a	
6, 7, 8, 2, 3	λ	Accept

(c) Construct an equivalent DFA, using the subset construction.

Show the relationships between the states in your DFA and those of the NFA.

[6 marks]

(d) Give the equations relating the regular expressions denoting the *From* sets for the states in your DFA.

Solve these equations to obtain a regular expressions denoting the From set for each state in your DFA. [6 marks]

Let E, F and G be the RE's corresponding to states 11, 12 and 13, respectively. The equations are:

$$E = a E | b F | c G$$

 $F = a G$
 $G = \lambda | b F | c F$

Solving these equations (solving for G first), we get:

$$G = \lambda \mid (b|c) F = \lambda \mid (b|c) \ a \ G = ((b|c) \ a)^*$$
 $F = a \ ((b|c) \ a)^*$
 $E = a \ E \mid (b|c) \ F = a^* \ (b|c) \ a \ ((b|c) \ a)^*$

Solving for F first leads to the alternative (but equivalent) solutions:

$$F = (a (b|c))^* a$$

$$G = \lambda | (b|c) (a (b|c))^* a$$

$$E = a^* (b|c) (a (b|c))^* a$$

5. Consider the language L containing all strings over $\{a, b, c\}$, in which there are an equal number of as and bs.

Prove that L is not regular, using the Myhill-Nerode Theorem.

[6 marks]

Consider the set $D = \{ a^k \mid k \ge 0 \}.$

If a^i and a^j are distinct members if D (i.e. $i \neq j$), then a^i and a^j must be distinguished (with respect to L), since $a^ib^i \in L$ (because a^ib^i has an equal number of as and bs) and $a^jb^i \notin L$ (because a^jb^i does not have an equal number of as and bs, as $i \neq j$).

Since D is infinite (it has a unique element corresponding to every natural number) and any two members of D must be distinguished (with respect to L), L is not regular.