(CS-202-98/TestSoln(lg)

School of Mathematical and Computing Sciences
COMP 202 : Formal Methods of Computer Science

Test — Solutions

1. A string s is a common prefiz of strings ¢ and u iff s is a prefix of ¢ and also a prefix of u;
i.e. t = st’ and u = su’ for some strings ¢’ and u'.

s is the longest common prefix of t and u iff s is a common prefix of ¢t and u and there is
no string s’ such that s’ is a common prefix of ¢ and u and |s'| > |s|.

(a) Prove the following properties of common prefixes:

(i)

(i)

Every pair of strings s and ¢ has at least one common prefix. [2 marks]

A is a prefix of any string (i.e. As = s, for any string s), so A is a common prefix
for any pair of strings.

If s is a common prefix of ¢ and u, and v is a common prefix of s\t and s\u, then
s ~ v is a common prefix of ¢ and w. [4 marks]

If s is a common prefix of ¢ and u, there are strings ¢’ and u’ such that ¢t = st/
and u = su/, i.e. t' = s\t and v’ = s\u.

Now, if v is a common prefix of s\t and s\u, there must be strings ¢ and «" such
that s\t = vt” and s\u = vu".

But since t' = s\t and u' = s\u, this means (substituting in ¢ = st’ and u = su’),
t = svt” and u = svu'.

Thus, sv is a common prefix of ¢ and v.

(b) Explain how the above properties can be used to construct an algorithm to find the
longest common prefix of two strings, s and t.

Write the resulting algorithm as a functional program, using head, tail, NULL and
~ to access and manipulate strings. [6 marks]

These properties mean that we can find the longest common prefix, p, of s and ¢ by
starting with p = A (which is the always the shortest common prefix) and adding
characters from the front of s and ¢ to p, until p\s and p\¢ have no common prefix
other than A (in which case either p\s = X, p\t = A or head(p\s) # head(p\t)).

As a functional program:

or:

lep(s,t) = if s= NULL V s = NULL then NULL
elsif head(s) # head(t) then NULL
else (head(s)) —~ lep(tail(s),tail(t)) fi

lep'(s,t, NULL)

if s= NULL V s=NULL then u
elsif head(s) # head(t) then u

else lcp/ (tail(s),tail(t),u ~ (head(s))) fi

lep(s, t)
lep'(s,t,u)

£
£

2. (a) Write a Regular Expression to describe the language consisting of all strings over
{a, b, c} which contain either exactly one a or exactly two bs.

For example, a, bb, bab, ccbbbabc and acacbcacba are in this language, but A, b, aba
and ccc are not. [4 marks]

(ble)*a(ble)* | (alc)*b(alc)*b(alc)®
(b) Write a Regular Expression to describe the language consisting of all strings over

{a,b,c} for which all of the following conditions hold:

e all of the as and bs occur before all of the cs,
o if the first a occurs before the first b, there must be an even number of cs, and
e if the first a occurs after the first b, there must be an odd number of cs.

For example, A, a, b, ¢, cc, ac, bee, abee, bac, abaaccccec and bbaabece are in this
language, but ba, abc, abcee, bacc and babababaccce are not. [4 marks]
a*c* | b*c* | aa*b(alb)*(cc)* | bb*a(al|b)*c(cc)*
or
(a* [0%)c" | alalb)*(cc)* | b(alb)*c(ce)®
3. Consider the regular expression (b|c)*(a(b|c)(b|c)*)*a*.

Draw a transition diagram for the NFA obtained by applying the “top down” construction
(as described in the Course Notes).

Make sure you show all states and edges given by the construction! [6 marks]

4. Consider the NFA M = ({1,2,3,4,5,6,7,8},1,{a,b,c}, N,{8}), where N is defined by the
following transitions:

(1,a;1),(1,62),(1,63),(2,b;4), (2,¢5),(3,;5), (3,¢;4),
(4,a;6), (5,a;7),(6,¢;8), (7,€8),(8,¢2), (8,€3)

(a) Draw a transition diagram depicting this NFA. [2 marks]

(b)

()

Give a trace showing the behaviour of the the NFA with aabaca as input.

Be sure to show all states the NFA could be in at each step. [4 marks]
States Input
1,2,3 aabaca
1,2,3 abaca
1,2,3 baca
4,5 aca
6,7,8,2,3 ca
4,5 a
6,7,8,2,3 A Accept

Construct an equivalent DFA, using the subset construction.

Show the relationships between the states in your DFA and those of the NFA.
[6 marks]

DFA state NFA states

11 {1,2,3}
12 {4,5}
13 {2,3,6,7,8}

Give the equations relating the regular expressions denoting the From sets for the
states in your DFA.

Solve these equations to obtain a regular expressions denoting the F'rom set for each
state in your DFA. [6 marks]

Let E, F and G be the RE’s corresponding to states 11, 12 and 13, respectively. The
equations are:

E aE|bF|cG
F = ad
G = XN|bF|cF

Solving these equations (solving for G first), we get:
G = X (ble) F = M| (ble) a G = ((blc) a)*
F = a((blc) a)*
E = aFE|(ble) F = a* (ble) a ((blc) a)*

Solving for F' first leads to the alternative (but equivalent) solutions:

F = (a(blc))* a
G = Al (o) (a (ble))* a
E = a* (ble) (a (blc))* a
5. Consider the language L containing all strings over {a, b, c}, in which there are an equal
number of as and bs.

Prove that L is not regular, using the Myhill-Nerode Theorem. [6 marks]

Consider the set D = {a* | k> 0}.

If a* and o’ are distinct members if D (i.e. i # j), then a’ and o/ must be distinguished
(with respect to L), since a'b’ € L (because a'b’ has an equal number of as and bs) and
a’b* ¢ L (because a’b* does not have an equal number of as and bs, as i # j).

Since D is infinite (it has a unique element corresponding to every natural number) and
any two members of D must be distinguished (with respect to L), L is not regular.

