Victoria University of Wellington

DEGREE EXAMINATIONS — 1999 cowmp 202

END OF YEAR

COMP 202

Formal Methods of Computer Science

Time Allowed: 3 Hours

Instructions: ~ Candidates should attempt all questions.
This exam will be marked out of 100.

Foreign language dictionaries are permitted.

Question 1. [20 marks]

(a) Design a DFA that correctly recognizes the language L over the alphabet ¥ = {a, b}
L={ze€ ¥ :3xy,29,23,24 € X" such that x = z1 a2 b3 024}

(In other words, L consists of all words in ¥* that contains aba as a subsequence.)
[5 marks]

(b) Give a regular expression that describes L. [5 marks]

(c) Use the Myhill-Nerode Theorem to prove that the language of squares over ¥ =
{a, b} is not regular. The language of squares is:

L={ze ¥ :3y e ¥ such that z = yy}

[5 marks|
(d) Define the relation R on ¥* for ¥ = {a, b} by:
xRy if and only if n,(z) — np(z) = na(y) — ns(y)
Justify your answer to the following questions:
(i) Is R a right congruence?
(ii) Does R have a finite number of equivalence classes?
[5 marks]

COMP 202 continued...

Question 2. [12 marks]
The following Context Free Grammar defines the language of well-formed formulas (wffs)
of propositional logic:

W = atom|-W|WAW |WVW |W=W | W=W | (W)

where W denotes a wff and atom is an atomic wif consisting of a propositional symbol.
We will assume that p, ¢ and r are propositional symbols.

(a) Explain what it means for a Context Free Grammar to be ambiguous, and show
that the above grammar is ambiguous. [4 marks]

(b) Write an unambiguous Context Free Grammar for the language of wffs, assuming
the following properties for the operators:

Operator Associativity Precedence
- Associative High (performed first)
A Left-associative
\% Left-associative
=, = Non-associative Low (performed last)
[5 marks]
(c) Give a parse tree showing that the string “(pAg= 1) = (—pVqVr) is a wif,
using your grammar from part (b). [3 marks|

COMP 202 continued...

Question 3. [30 marks]

Consider the following Context Free Grammar:

S — FEzps Fxp

Ezps — Ezp “” Exps | A

Ezp — number | id | id “(” EL “)”
EL — Ezp | EL“) Exp

This grammar defines a language in which each sentence is a non-empty list of expres-
sions, separated by semicolons. An expression is either a number, an identifier, or a
function application of the form id(ey,---,e,), where n > 0 and ey, -- -, e, are expres-
sions. We will assume that a number is a non-empty sequence of digits and an identifier
is a non-empty sequence of letters.

(a) Explain what it means for a grammar to be in LL(1) form, and why this property
is important in the construction of an LL(1) parser. [5 marks]

A grammar is LL(1) if:

(i) For any two (distinct) rules N — «a and N — (3, first(a) N first(8) = 0,
where first(vy) is the set of terminals that start strings produced from 7.

(ii) If G contains a rule N — «, where a =* A, then first(a) N follow(a) = 0,
where follow(c) is the set of terminals that can follow a string produced
from N in a sentence.

These conditions are important, because ensure that an LL(1) parser can always
chose the appropriate rule to use at every step, based on a one-symbol lookahead
(i.e. just by looking a the next input symbol).

(b) Identify any places where the above grammar fails to meet the LL(1) conditions.
[3 marks|

The rules for eg-list, exp and exp-list all break the first LL(1) condition. In each
case the first sets for the two rules are identical.
Specifically (though not expected):

first(eqn) = {id} = first(eq — list ; eqn)

first(id) = {id} = first(id (exp — list))
first(exp) = {id} = first(exp — list , exp)

(c) Write a (plain) CFG in LL(1) form, equivalent to the grammar above. Show that
your grammar satisfies the LL(1) conditions. [7 marks]

COMP 202 continued...

eq-list — eqn rest-eq-list (1)
rest-eq-list — X\ | 7 eq-list (2,3)
eqn — exp “=" exp (4)
exp — id rest-exp (5)
rest-erp = X |« exp-list)" (6,7)
exp-list — exp rest-exp-list (8)
rest-exp-list — X | “ exp-list (9,10)
(d) Construct an LL(1) parser table, based on your grammar in part (c). [5 marks]
d ; = (), 8
eq-list 1 - - - - - -
rest-eq-list |- 3 - - - - 2
eqn 4 - - - - - -
exp 5 - - - - - -
rest-ezxp - - 6 7 - - -
exp-list 8 - - - - - -
rest-exp-list | - - - - 9 10 -

(e) Show the steps taken by an LL(1) parser, using your table from part (d), in parsing
the string “f(1,a);b”.
At each step you should show the current contents of the stack, the remaining input,
and the action taken by the parser, including which rule is used in each “expand”
step. You may use suitable abbreviations for non-terminal symbols, provided the
intended meaning is clear. [5 marks]

(f) Write an Extended Context Free Grammar (ECFG), equivalent to the grammar
given above.

You should make best use of the ECFG notation to obtain a compact and intelli-
gible grammar, reflecting the structure of the language as clearly as possible.

[5 marks|
eq-list — eqn{ “” eqn }
eqn — exp “=" exp
exp — dd [“(” exp-list “)"]
exp-list — exp { “) exp }

COMP 202 continued...

Question 4. [20 marks]

(a) Explain briefly the difference between strong equivalence and weak equivalence of
programs. [4 marks]

| Standard “book work”.

(b) Show that the following while programs are strongly equivalent, where B; and B,
are any Boolean expressions and S7, Sy, S3 are any statements:

Pli if Bl then S]_ else SQ ﬁ, PQI if Bl then
if B, then S5 else S, fi S1; if B, then S5 else Sy fi
else
Sy if B, then S; else S, fi
fi
[4 marks|
Call the programs P; and P,, and let Paths(P) be the RE for all potential paths
in P. Then:
Paths(P;)

= B SIBS) (B S By S)
= (B1 S1S (BQ S3|B2 S4)|Bl SQ (B2 S3|B2 54))
= Paths(P,)

The two REs are equal, by distributivity.
(NB: This is blurring the distinction between S; and Paths(S;), etc.)

(c) We can translate any while program, P, into a while program, P’, containing no
if statements, by applying the following transformation to each if statement:

if B then S; else S, i — v:=1;
while BAv=1do S}; v:=0 od;
while v =1 do S4; v:=0od

where S| and S} are the results of applying this transformation to S; and So,
respectively, and a new variable v, not appearing anywhere else in the program, is
used for each if statement transformed.

(i) Show that P’ is not strongly equivalent to P. [2 marks]
(ii) Show that P’ is weakly equivalent to P. [5 marks]

(iii) Show the result of applying this transformation to the following program:

COMP 202 continued...

1:=1;r:=0;
while : <nAr=0do
if a[i] = b[7] then
if b[i| = c[i] then

r:=1
else
=1+ 1
fi
else
1:=1+1
fi
od
[5 marks]
1:=1;r:=0;
while i <nAr=0do
vy =1

while a[i] = b[i] Avy =1 do

vg 1= 1;

while b[i] = c[i] Av, =1 do

r:=1;v:=0
od;
while v, = 1 do
1:=1+1;v9:=0
od;
v :=0
od;
while v; =1 do
1:=1+1
od
od

COMP 202

continued...

Question 5. [18 marks]

The following program sums the elements in an array segment A[1..n], by adding the
first and last elements, then the second and second to last elements, etc.

{ even(n) }
p:=1;q:=mn;s:=0;
while p < ¢ do
s:=s+ Alp|+ Alq];
p=p+lgqg=qg-1
od
{s=% Al }

We want to show that this program does correctly compute the sum of A[1..n], provided
that n is even. To do this, we first need to find a loop invariant. Consider the following
condition, which is a possible loop invariant:

(a)

(b)

(c)

(d)

I = even(n) AN1<p<n+l A0<g<n A SZZf;fA[i]—I—E?:qHA[i]

Show that I is invariant in the loop; i.e. show (i) that I holds on entry to the loop,
and (ii) that I is preserved by the loop.

Give the conditions that must be satisfied, and give a brief argument to show why
they hold, identifying any properties of summation of arrays required in the proof.
[5 marks]

Unfortunately, I is not strong enough to allow us to show that the required post-

condition, s = Y- ; A[4], holds on exit from the loop.
Explain why this is, and give an example to show that s = Y- | A[7] may not hold
in a state where I A =(p < ¢) holds. [3 marks|

Give an additional condition which, when added to I to obtain a new loop invariant,
does allow us to show that s = Y ; A[7] holds on exit from the loop.

Show that the additional condition is invariant in the loop (i.e. that it holds on
entry to the loop and is preserved by the loop).

Show that the postcondition holds on exit from the loop, using the new invariant.

Give the conditions that must be satisfied, and give a brief argument to show why
they hold, identifying any properties of summation of arrays required in the proof.
[7 marks]

Explain, using an example, why the program will not always correctly compute
the sum of A[1..n] if n is odd.

Show how the program can be made to work correctly for any n, by adding one
statement. [3 marks|

>k >k >k >k >k ok sk ok sk skookok ok ok sk sk sk sk sk sk sk ok sk ko kokoskokokskok sk

COMP 202

