School of Mathematical and Computing Sciences COMP 202: Formal Methods of Computer Science

Test (19 August, 1999)

Time allowed = 90 minutes
Answer ALL questions

There are 100 points possible. When a problem involves several steps in applying a procedure, it will be to your advantage to show your work so that proper partial credit can be assigned in the event of a minor error in applying the procedure. (Problems 3 and 4 are of this sort.)

- 1. Using and understanding regular expressions. (15 points total)
- 1(a). (5 points) Consider the regular expression

$$r = ((a + \lambda)a^*b)^*a$$

For each of the following words, determine whether the word belongs to the regular language described by r.

(1) the word λ

(4) the word baba

(2) the word a

(5) the word abab

(3) the word b^3a

1(b). (10 points) Give a regular expression that describes the language L (over the alphabet $\Sigma = \{a, b\}$) consisting of all words that do not begin with aab. That is,

$$L = \{x \in \{a,b\}^* : x \neq aaby, \ y \in \Sigma^*\}$$

Examples of words that belong to L include: λ , abab, bb and baab. Examples of words that do not belong to L include: aab, aabab, aabbb and aabbbab.

2. Designing a DFA (20 points). Find a DFA that recognizes the language L over the alphabet $\Sigma = \{a, b\}$ consisting of all words that avoid having three consecutive a's:

$$L = \{ x \in \Sigma^* : x \neq uaaav, \ u, v \in \Sigma^* \}$$

Examples of words that belong to L include: aaba, aabbaa, bbb and abab. Examples of words that do not belong to L include: aaa, bbabaaab, bbaaab and babaaabbbb. Make every state of your DFA explicit (i.e., no implicit $dead\ state$). Hint: your DFA should have 4 states.

- 3. Translating a regular expression into an NFA (20 points). Give a diagram of an NFA that accepts the regular language described by the regular expression in 1(a).
- 4. Converting a DFA to an NFA (20 points). Find a DFA that accepts the same language as the NFA described by the following information:
- (1) The set of states of the NFA is $Q = \{1, 2, 3, 4, 5\}$.
- (2) The start state of the NFA is 1.
- (3) The set F of accept states of the NFA is $F = \{1\}$.
- (4) The transition relation is given by the following table:

	λ	a	b
1	{2}	{5}	{1}
2	{3}	{4}	Ø
3	Ø	Ø	{1}
4	{5}	Ø	{3}
5	Ø	{2}	{4}

It is easy to make mistakes, so show your work in calculating the DFA using the subset construction. If time allows, it is a good idea to test your construction. (Hint: a correct solution has 6 states.)

- 5. Understanding and using the Myhill-Nerode Theorem to demonstrate nonregularity. (15 points total)
- **5(a)** (6 points) Let L be the language over the alphabet $\Sigma = \{a, b\}$ consisting of all words x for which the number of a's in x is equal to the number of b's in x:

$$L = \{ x \in \Sigma^* : n_a(x) = n_b(x) \}$$

Examples of words that belong to L include: abba, abba, abbaaba. Examples of words that do not belong to L include: bba, aba, aaa and ababa. For each of the following pairs of words x and y, determine if xR_Ly .

- (1) x = aa and y = aaa
- (2) x = aab and y = ababa
- (3) $x = \lambda$ and y = ab
- **5(b)** (9 points) Let L for this problem denote the language over the alphabet $\Sigma = \{a, b, c\}$ consisting of all words x such that the number of a's in x is equal to the sum of the number of b's in x and the number of c's in x:

$$L = \{ x \in \Sigma^* : n_a(x) = n_b(x) + n_c(x) \}$$

Give a proof using the Myhill-Nerode Theorem that L is not regular.

In order to prove that this language is regular we argue as follows. Define the relation R on Σ^* by xRy if and only if first 3(x) = first 3(y) and last 3(x) = last 3(y). It is easy to argue that this is an equivalence relation. In order to apply the Myhill-Nerode Theorem to conclude that L is regular, we have to argue two more things:

- (1) That R is a right congruence, that is, for any $x, y, z \in \Sigma^*$, if xRy then xzRyz.
- (2) That L is a union of equivalence classes of R, that is, if xRy and $x \in L$ then $y \in L$.

Give arguments for these two points. (Hint: both arguments are easy and short if you understand what is required.)