
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON Student ID: .

EXAMINATIONS — 2010

END-OF-YEAR

COMP 261
ALGORITHMS

and
DATA STRUCTURES

Time Allowed: 3 Hours******** WITH SOLUTIONS **********
Instructions: Attempt ALL Questions.

Answer in the appropriate boxes if possible — if you write your answer elsewhere,
make it clear where your answer can be found.

The exam will be marked out of 180 marks.

Non-programmable calculators without a full alphabetic key pad are permitted.

Non-electronic foreign language dictionaries are permitted.

Useful formulas are listed on the last page of the exam.

Questions Marks

1. File Structures [22]
2. Union Find [17]
3. Searching in Graphs [26]
4. String Searching [16]
5. Graphics Rendering [9]
6. Advanced Tree Structures [30]
7. Text Processing [40]
8. File Structures and Hashing [20]

COMP 261 continued...

ANSWERS

Question 1. File Structures [22 marks]

Suppose a file contains 100, 000 fixed length records describing individual students. Each record
has the following fields:

StudentID: (length = 5 characters),

Name: (length = 50 characters),

Address: (length = 120 characters),

DoB: (length = 10 characters).

Assume that the file blocks are stored contiguously and that the block size for the file is 1024 char-
acters.

(a) [4 marks] Calculate the record size L in characters. Show your working.

record has (5 + 50 +120 + 10) = 185 characters,
1 byte per character.
therefore 185 bytes

(b) [4 marks] Calculate the blocking factor f and the number of file blocks b. Assume an unspanned
file organisation. Show your working.

Blocking factor = b1024/185c = 5
Number of blocks = 100, 000/5 = 20, 000 blocks

(c) [4 marks] Calculate the average number of block accesses needed to perform a linear search for a
random record in the file given its StudentID. Show your working.

Assume have to look at half the records on average = 50,000 records
Number of blocks = 50, 000/5 = 10, 000 blocks

(Question 1 continued on next page)

COMP 261 2 continued...

Student ID: .

(Question 1 continued)

(d) [4 marks] Calculate the worst case number of block accesses needed to perform a binary search
for a random record in the file given its StudentID. Assume the file is ordered by StudentID. Show
your working.

May have to look at blog2(100, 000)c+ 1 = 17 records.
Assume that every record we look at is in a different block from the previ-
ous one, and that we don’t remember earlier blocks, then need 17 blocks.
Note that it is not possible for the last three records you look at to be in
more than two different blocks.

(e) [6 marks] Explain the differences between primary file organisation and secondary file organi-
sation.

Primary file organisation is the way the records are organised in the file on
the disk. Secondary file organisation is the additional indexing structures
that enable fast access to items in the file, but is not part of the file itself.

COMP 261 3 continued...

ANSWERS

Question 2. Union Find [17 marks]

(a) [4 marks] Explain why Kruskal’s algorithm for finding minimum spanning trees needs to keep
track of a set of sets of nodes.

Kruskal

An Efficient Union-Find algorithm:

MakeSet(x):
x.parent ← x
x.rank ← 0
add x to collection of sets.

Find(x):
if x.parent = x then return x
else

x.parent ← Find(x.parent)
return x.parent

Union(x, y):
xroot ← Find(x)
yroot ← Find(y)
if xroot.rank < yroot.rank then

xroot.parent ← yroot
remove xroot from collection of sets.

else
yroot.parent ← xroot
remove yroot from collection of sets.

if xroot.rank = yroot.rank then
xroot.rank++

(Question 2 continued on next page)

COMP 261 4 continued...

Student ID: .

(Question 2 continued)

(b) [8 marks] Consider the following diagram of a collection of four sets represented using the
Union-Find data structure. The numbers are the ranks of the nodes.

K
2

C
2

A
0

B
0

L
1

N
0

D
0

E
1

F
0

M
1

P
0

Q
0

sets:

G
2

H
1

J
0

Using the efficient Union-Find algorithm on the facing page, show the changes that will be made to
the graph by the following sequence of operations.

(i) Find(Q)

(ii) Union(A, B)

(iii) Union(B, F)

(iv) Find(J)

(vi) Union(N,J)

Draw the changes on the diagram above.
Hint: note the order of the arguments of Union carefully.

(Question 2 continued on next page)

COMP 261 5 continued...

(Question 2 continued)

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

(Question 2 continued on next page)

COMP 261 6 continued...

Student ID: .

(Question 2 continued)

(c) [5 marks] The efficient Union-Find algorithm moves nodes around in the tree when searching
for a value in order to make future searches in the tree more efficient. Could a similar technique be
used for improving binary search trees? If you think it could, briefly suggest how and the conditions
under which it might help. If you think it couldn’t, explain why not.

Yes. Every time you find a value in the binary search tree, you could move it to
the top of the tree. That involves changing all the nodes of the tree along the path
to the node so that they become descendants of the node instead of ancestors. But
it is possible, and only nodes along the path need to be changed.
It would help if a few nodes in the tree are searched for much more frequently
than the rest of the nodes, because these few nodes would tend to be near the top
of the tree. However, it wouldn’t help (and would cost a lot more because of all
the tree restructuring) if all nodes were roughly equally likely to be searched for.

COMP 261 7 continued...

ANSWERS

Question 3. Searching in Graphs [26 marks]

(a) [5 marks] Prim’s algorithm for minimum spanning trees is very similar to Djikstra’s algorithm
for single source shortest paths. Explain the key way in which Prim’s algorithm differs from Djik-
stra’s algorithm, and explain why this difference results in two different trees.

When choosing the next node to explore, Djikstra’s algorithm chooses the unvis-
ited node with the shortest length path to the node from the start node; Prim’s
algorithm just chooses the unvisited node with the shortest edge to the node.
This means that Djikstra’s algorithm always finds the shortest path to each node,
whereas Prim’s algorithm will happily add a very short edge to a node, even if
there is a much shorter path to the node if that path includes longer edges.

(b) [5 marks] Give an example of a small graph, including a start node and a goal node, and an
inadmissable heuristic estimate of remaining path length for each of the nodes and show how A*
would find the wrong path to the goal node using this heuristic. Show the path that A* would find
and show the shortest path that it should have found.

Note: show all the edge lengths and show the heuristic estimate on each node.

G
/0

S
/

(Question 3 continued on next page)

COMP 261 8 continued...

Student ID: .

(Question 3 continued)

(c) [8 marks] Suppose you are using A* to search for the shortest path from S to G in the graph
below, where the heuristic estimate for each node is shown in the node (the heuristic is admissable).
Show the order in which nodes will be added to the queue, and the order in which they are removed
from the queue. (When visiting a node, consider the neighbours of the node in alphabetic order.)
Hint: keep track of the queue, along with the total path length (path so far plus heuristic estimate)
for all the nodes on the queue.

A
/10

B
/16

K
/9

J
/8

C
/9

D
/2

H
/8

F
/3

G
/0

E
/4

S
/11

5

5 9

4

21

5

71

1

4

6

6

3
2

3

2

4

Added to Queue: [shown as Node/priority(pathLength+estimate)]
[initialise:] S/11(0+11)
[from S:] A/13(3+10), B/20(4+16), J/14(6+8), K/11(2+9)
[from K:] A/13(3+10), H/11(3+8)
[from H:] E/10(6+4), F/15(10+5), J/13(5+8)
[from E:] D/13(11+2), F/10(7+3)
[from F:] G/9(9+0), (H is visited)

Removed from Queue: S/11, K/11, H/11, E/10, F/10, G/9

(Question 3 continued on next page)

COMP 261 9 continued...

(Question 3 continued)

(d) [8 marks] Suppose you are using Djikstra’s algorithm to find the shortest path from S to G in
the graph below (the same as in part (c), but without heuristic estimates). Show the order in which
nodes will be added to the queue, and the order in which they are removed from the queue. (When
visiting a node, consider the neighbours of the node in alphabetic order.)
Hint: keep track of the queue, along with the priority for all the nodes on the queue.

A

B

K

J

C D

H F

GES

5

5 9

4

21

5

71

1

4

6

6

3
2

3

2

4

Added to Queue: [shown as Node/priority]
[initialise:] S/0
[from S:] A/3, B/4, J/6, K/2
[from K:] A/3, H/3
[from A:] B/8, (K visited)
[from H:] E/6, F/10, J/5
[from B:] C/9
[from J:] C/11, E/9, (H visited)
[from E:] D/11, F/7, (J visited)
[from F:] G/9

Removed from Queue:
S/0, K/2, A/3, H/3, B/4, J/5, E/6, F/7, B/8(visited), G/9

COMP 261 10 continued...

Student ID: .
ANSWERS

Question 4. String Searching [16 marks]

(a) [5 marks] To search a text for an occurrence of any of a set of words, it is efficient to construct a
trie of the words. Draw a trie for the following set of words.
Note: The characters should be attached to the edges in the trie, and all terminal nodes should be
indicated clearly.

red strike sell search read sea
ready strings strict reach seat string

(Question 4 continued on next page)

COMP 261 11 continued...

(Question 4 continued)

The simplified Boyer-Moore string searching algorithm shown on the facing page constructs a “Bad-
Character” table and then uses it while matching to work out how far to move the string forward
when there is a mismatch. It does not use a “GoodSuffix” table.

If the string being searched for is agkga, the BadCharacter table would be the following:

BC:

0
’a’

5
’b’

5
c

5
d

5
e

5
f

1
g

5
h

5
i

5
j

2
k

5
l

5
m

5
n

. . .
. . .

(b) [11 marks] Show the first 8 sets of values of i, k, and T[i] at the point marked *** (the test in the
while loop) in the simplified Boyer-Moore algorithm when it is used to search for the string agkga
in the following text. (The first set of values is given.)

a
0
gkbba

5
gkgkk

10
gagkg

15
amcdk

20
gaaka

25

i k T[i]
4 4 b
9 4 k

11 4 g
12 4 a
11 3 g
10 2 k
9 1 k

13 4 g

(Question 4 continued on next page)

COMP 261 12 continued...

Student ID: .

(Question 4 continued)

A simplified version of the Boyer-Moore algorithm which only uses the “BadCharacter” table, not
the “goodSuffix” table.

Boyer−Moore Search:
Input: string S[0 .. m−1] ,

text T[0 .. n−1]
Output: the position in T at which S is found, or −1 if not present
Variables: i // position of current character in T

k // position of current character in S
BC[char] // Bad Character table

Actions:
BC← computeBadCharTable(S)
i ← m−1
while i < n do

k ← m−1
while k >= 0 and S[k] = T[i] do ∗∗∗ // record i , k , and T[i] at this point

i ← i−1,
k ← k−1

if k = −1 then return i+1

i ← i + max(BC[T[i]], m−k) // mismatch⇐ advance

return −1

COMP 261 13 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 261 14 continued...

Student ID: .
ANSWERS

Question 5. Graphics Rendering [9 marks]

(a) [6 marks] Show the values in the edge-lists that would be constructed when rendering the fol-
lowing polygon. The (x, y, z) coordinates of the vertices are shown.

(Note that the z values are chosen carefully to make the interpolation easy.)

9 10 11 12 13 14 15

x

19

20

21

22

23

24

25

y

(11.0, 20.0, 100.0)

(10.0, 24.0, 116.0)
(14.0, 23.0, 109.0)

x left rightzleft x zright

20

21

22

23

24

Edge-Lists

(b) [3 marks] In constructing and using the edge-lists, you had to convert floating point numbers
to integers. Explain why this can introduce errors unless you are careful.

The interpolation process can introduce very small errors. This can mean that
two numbers that are extremely close (eg 12.999999 and 13.00001, or 22.49999 and
22.500001) may be converted to different integers, producing “holes” or artifacts
in the images, where a pixel is missed out or an extra pixel is added. It doesn’t
matter whether you round numbers to the closest integer, or use floor and ceil to
round up or round down, two numbers just either side of the decision value can
be converted to different integers.

COMP 261 15 continued...

ANSWERS

Question 6. B-Trees [30 marks]

(a) [10 marks] State the constraints that must be maintained by a B-tree with order p = 2m + 1 and
height h. Indicate which constraints ensure that a B-tree will be kept well-balanced.

.

(b) [10 marks] Consider the B-tree of order 5 illustrated below.

18 34 58

12 15 21 28 36 49 62 75 78

Update the B-tree by successively deleting the key values 75, 15, 62, 21. In your answer, show the
B-tree after each deletion and briefly describe what you have done.
Note, the empty trees below are to save you time; you may modify their structure if you choose.

The B-tree after deleting key value 75:

(Question 6 continued on next page)

COMP 261 16 continued...

Student ID: .

(Question 6 continued)

The B-tree after deleting key values 75 and 15:

The B-tree after deleting key values 75, 15, and 62:

The B-tree after deleting key values 75, 15, 62, and 21:

(Question 6 continued on next page)

COMP 261 17 continued...

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 261 18 continued...

Student ID: .

(Question 6 continued)

(c) [5 marks] Consider a B-tree file of order p = 2m + 1 = 199 that contains r = 107 records. How
many disk accesses will it take to retrieve a random record from the file using the B-tree in the worst
case?
You may assume that the block size is larger than the size of the B-tree nodes and larger than the
size of the records.
Show your working.

(d) [5 marks] Explain the difference between B-tree and B+-tree index structures.

.

COMP 261 19 continued...

ANSWERS

Question 7. Text Processing [40 marks]

(a) [5 marks] Explain the difference between an Abstract Syntax Tree and a Concrete Parse Tree.

.

(Question 7 continued on next page)

COMP 261 20 continued...

Student ID: .

(Question 7 continued)

(b) [10 marks] Write a parser for the simple Query grammar below that returns true or false.
Assume nonterminals are always in quotes and there are spaces separating tokens for simplicity.

QUERY :== "SELECT" "*" ["FROM" NAME] ["WHERE" NAME "=" DATA] ";"
NAME :== [A−Za−z]+
DATA :== [A−za−z0−9]∗

Hint: It is easier to write the parser in Java, but you may use clear pseudocode if you prefer.

public boolean parseQuery(Scanner s) .

(Question 7 continued on next page)

COMP 261 21 continued...

(Question 7 continued)

Consider the following grammar where nonterminals are in uppercase and terminals are enclosed
in quotation marks. Assume that tokens will be separated by spaces.

EXPRESSION :== FOO "+" BAR "end"
FOO :== [a−z0−9]+ | EXPRESSION
BAR :== EXPRESSION FOO | a∗b∗c+

(c) [10 marks] For each of the following sentences, state whether it belongs to the language defined
by this grammar.

yes abracadabraend + abc end

yes 0 + c end + c end

yes aabbc + aacc end

yes 0 + abc end + c end + c end

no 0 + 0 + c end c end c end + c end

(d) [5 marks] Explain why the grammar above cannot be parsed by a predictive, one symbol looka-
head, left-to-right (LL(1)) parser.

??

(Question 7 continued on next page)

COMP 261 22 continued...

Student ID: .

(Question 7 continued)

(e) [10 marks] Write a new grammar for EXPRESSIONs which specifies the same language as the
grammar on the facing page, but which can be parsed using an LL(1) parser.

EXPRESSION :== .

COMP 261 23 continued...

ANSWERS

Question 8. File structures and Hashing [20 marks]

(a) [10 marks] For each of the following file structures, discuss their advantages and disadvantages
by explaining the efficiency of the different file operations (insertion, deletion, search, sequential
access) with different structures, and giving examples of when it is appropriate to use each kind of
file.

(i) Heap file:

Heap files are very fast to insert into, but slow to search, and therefore delete from.
They are also slow for sequential access. They are only good for constructing
files that are not read often, or along the way to constructing a sequential file
(constructing the file and then sorting it).

(ii) Sequential file.

Sequential files are slow to insert into and slow to delete from, but are fast to
search and for sequential access. They are good for files that will be read very
frequently, but only infrequently modified.

(iii) Hash file.

Hash files are fast to search, to insert into, and to delete from, but they require
additional disk memory. They are slow for sequential access. As long as disk
space is not very tight, they are the best choice for random access files, as long as
sequential access is not required.

COMP 261 24 continued...

Student ID: .

(Question 8 continued)

(b) [10 marks] Describe how extendible hash files work.

.

COMP 261 25

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 261 26

Student ID: .

Useful Formulas

You may tear off this page if you wish. You do not need to hand it in.

File Performance Formulas

• blocking factor: f =
⌊ B

L

⌋
• number of blocks: b =

⌈
r
f

⌉
• external sort-merge: N = 2b · (1 +

⌈
(logn−1 b)− 1

⌉
) = 2b · (1 +

⌈
(

log10 b
log10(n−1) − 1

⌉
(where n is the number of buffers)

B-tree (worst case)

• height: h = 1 +
⌊
logm+1

r+1
2

⌋
= 1 +

⌊
log10

r+1
2

log10(m+1)

⌋
• number of leaves: Nleaves = 2(m + 1)h−2 ≤ Nleaves ≤ (2m + 1)h−1

B+-tree (worst case)

• height: h = 2 +
⌊
logm+1

r
2m

⌋
= 2 +

⌊
log2

r
2m

log2(m+1)

⌋
• number of leaves: Nleaves =

⌈ r
m

⌉
Index-Sequential File with a B-tree

• number of sequence sets: s =
⌈

r
f

⌉
≤ s ≤

⌈
2r
f

⌉

Logs to base 2

n 1 2 4 8 16 32 64 128 256 512 1,024 1,048,576
log2 n 0 1 2 3 4 5 6 7 8 9 10 20

Logs to base 10

n 5 10 50 100 500 1000 5000 10,000 106 5× 106 10× 106 50× 106

log10 n 0.7 1 1.7 2 2.7 3 3.7 4 6 6.7 7 7.7

COMP 261 27

