
Family Name: . Other Names: .

Student ID: . Signature .

COMP 261 : Test 1

16 March 2023, ** WITH SOLUTIONS **

Instructions

• Time allowed: 50 minutes

• Attempt all the questions. There are 50 marks in total.

• In-person: Write your answers in this test paper and hand in all sheets.
Remote: Type your answers in the template file and submit to “Test 1 Remote” on the COMP
261 submission system.

• If you think a question is unclear, ask for clarification.

• This test contributes 10% of your final grade.

• You may use dictionaries and calculators.

• You may write notes and working on this paper, but make sure your answers are clear.

Questions Marks

1. Grammars and Parse Trees [10]

2. Abstract Syntax Trees. [5]

3. Coding a Parser [15]

4. Printing an Abstract Syntax Tree [10]

5. LL(1) grammars and recursive descent parsing [10]

TOTAL:

Student ID: .

Question 1. Grammars and Parse Trees [10 marks]

Consider the following grammar that describes a made-up language for specifying filters.

In this grammar

• Non-terminals are in uppercase; terminals are enclosed in quotation marks,
• | means OR.
• [...]+ means one or more repetitions of what is in the brackets.
• SIGNAL matches any terminal that is a single letter followed by a single digit, such as “a1”.
• NUM matches any terminal that is a non-negative integer.

FILTER ::= [SPEC]+

SPEC ::= MULTI | STATE

MULTI ::= "many" NUM SPEC "ynam"

STATE ::= "((" [SIGNAL]+ "))"

SIGNAL ::= matches "[a-z][0-9]"

NUM ::= matches "[0-9]+"

(a) [5 marks]

The following three sentences are almost, but not quite valid sentences of the grammar above. For
each sentence, circle the first token where a parser could identify the error.

(i) many 4 ((a3 ab)) ynam

(ii) ((d1 d2 d3)) many a1 ((a2)) ynam

(iii) many 1 many ((a3 b7)) ynam ynam

(Question 1 continued on next page)
COMP 261 (Test 1) Page 2 of 12

Student ID: .

(Question 1 continued)

(b) [5 marks] Draw the Concrete Parse Tree of the following filter according to the grammar
above.

((a1)) many 4 many 3 ((b2 b3)) ynam ynam

FILTER
/ \

SPEC SPEC
| |

STATE MULTI
/ | \ / / \ \

"((" SIGNAL "))" "many" "4" SPEC "ynam"
| |

"a1" MULTI
/ / | \

"many" "3" SPEC "ynam"
|

STATE
/ / \ \

((SIGNAL SIGNAL))
| |

"b2" "b3"

COMP 261 (Test 1) Page 3 of 12

Student ID: .

Stage 1 grammar from Assignment 1 (RoboGame):

PROG ::= [STMT]*

STMT ::= ACT ";" | LOOP | IF | WHILE

ACT ::= "move" | "turnL" | "turnR" | "turnAround" | "shieldOn" |

"shieldOff" | "takeFuel" | "wait"

LOOP ::= "loop" BLOCK

IF ::= "if" "(" COND ")" BLOCK

WHILE ::= "while" "(" COND ")" BLOCK

BLOCK ::= "{" STMT+ "}"

COND ::= RELOP "(" SENS "," NUM ")

RELOP ::= "lt" | "gt" | "eq"

SENS ::= "fuelLeft" | "oppLR" | "oppFB" | "numBarrels" |

"barrelLR" | "barrelFB" | "wallDist"

NUM ::= "-?[1-9][0-9]*|0"

SPACE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 261 (Test 1) Page 4 of 12

Student ID: .

Question 2. Abstract Syntax Trees. [5 marks]

Consider the following Concrete Parse Tree of a program for the Robot in assignment 1.
(The Stage 1 grammar is given on the previous page.)

PROG

BLOCK

SENS NUM "}" ","

"oppLR"

COND

 "{"

ACT

STMT

";"

"move"

ACT

STMT

";"

"turnL"

RELOP

STMT

WHILE

 ")" "("

"while"

"3""gt"

Identify nodes of the Concrete Parse Tree which could be removed to leave an Abstract Syntax
Tree by drawing an X over the unnecessary nodes in the diagram.

Give a brief explanation of why removing those nodes does not lose any information that would
be needed to either print out or to execute the program.

The tokens that are removed do not carry any information -
they are just there to help specify the structure
The STMT nodes that are removed are unnecessary because
they only contain a single subnode and there is no additional
information attached to the STMT node

COMP 261 (Test 1) Page 5 of 12

Student ID: .

Question 3. Coding a Parser [15 marks]

Suppose you are writing a parser for the grammar in question 1 which should return an Abstract
Syntax Tree of FNodes, or throw an exception if a program is invalid.

Your parser program (below) already includes some constants, parseSignal(..) and parseNum(..)
methods, utility methods (require(..) and fail(..)), and classes defining the different kinds of FN-
odes.

You are to complete the three methods on the next page (in Java, not pseudocode).

// −−−−−−−− constants (patterns) −−−−−−−−−−−−−−−−−−−
static final Pattern MANY PAT = Pattern.compile("many");
static final Pattern YNAM PAT = Pattern.compile("ynam");
static final Pattern LEFT PAT = Pattern.compile("\\(\\("); // matches ((
static final Pattern RIGHT PAT = Pattern.compile("\\)\\)"); // matches))
static final Pattern SIG PAT = Pattern.compile("[a-z][0-9]");

// −−−−−−−− parse... methods −−−−−−−−−−−−−−−−−−−
:

public int parseNum(Scanner s){
if (s .hasNext("[0-9]")) {return s.nextInt ();}
fail ("Expecting integer"); return −1;

}
public FNode parseSignal(Scanner s){

if (s .hasNext(SIG PAT)) {return new SignalNode(s.next());}
fail ("Expecting signal"); return null;

}
// −−−−−−−− Utility methods −−−−−−−−−−−−−−−−−−−

public void require (Pattern pat, Scanner s){
if (s .hasNext(pat)) {s.next (); return;}
fail ("expecting "+ pat);

}
public void fail (String msg){ System.out. println (msg); throw new RuntimeException(msg);}

// −−−−−−−− Node classes −−−−−−−−−−−−−−−−−−−
interface FNode{}

class FilterNode implements FNode{
final List<FNode> specs;
public FilterNode(List<FNode> spcs){specs=spcs;}

}
class MultiNode implements FNode{

final int num;
final FNode spec;
public MultiNode(int n, FNode spc){num=n; spec=spc;}

}
class StateNode implements FNode{

final List<FNode> signals;
public StateNode(List<FNode> sigs){signals=sigs;}

}
class SignalNode implements FNode{

final String signalName;
public SignalNode(String sig){signalName=sig;}

}

(Question 3 continued on next page)
COMP 261 (Test 1) Page 6 of 12

Student ID: .

(Question 3 continued)

Complete the parseSpec(..), parseMulti(..), and parseState(..) methods below:
(Note: the AST does not need SPEC nodes.)

if (s .hasNext(MANY PAT)){return parseMulti(s);}
if (s .hasNext(LEFT PAT)){return parseState(s);}
fail ("invalid SPEC");

return null ;

require (MANY PAT, s);

int num = parseNum(s); // or s . nextInt ();
FNode spec = parseSpec(s);

require (YNAM PAT, s);

return new MultiNode(num, spec);

List<FNode> signals = new ArrayList<FNode>();

require (LEFT PAT, s);

do {
signals .add(parseSignal (s));

} while (! s .hasNext(RIGHT PAT)); // or s .hasNext(SIG PAT);
require (RIGHT PAT, s);

return new StateNode(signals);

/* * Parses the rule : SPEC ::= MULTI | STATE */
public FNode parseSpec(Scanner s){

}
/* * Parses the rule : MULTI ::= ”many” NUM SPEC ”ynam” */
public FNode parseMulti(Scanner s){

}
/* * Parses the rule : STATE ::= ”((” [SIGNAL]+ ”))” */
public FNode parseState(Scanner s){

}

COMP 261 (Test 1) Page 7 of 12

Student ID: .

Grammar and example filter specification from question 1 repeated for convenience:

Grammar:

FILTER ::= [SPEC]+

SPEC ::= MULTI | STATE

MULTI ::= "many" NUM SPEC "ynam"

STATE ::= "((" [SIGNAL]+ "))"

SIGNAL ::= matches "[a-z][0-9]"

NUM ::= matches "[0-9]+"

Example filter:

((a1)) many 4 many 3 ((b2 b3)) ynam ynam

COMP 261 (Test 1) Page 8 of 12

Student ID: .

Question 4. Printing an Abstract Syntax Tree. [10 marks]

The parser in question 3 also needs toString() methods for the four node classes below so that the
filter specification in an Abstract Syntax Tree of FNodes could be printed out in the same syntax as
specified in the grammar. (The grammar is repeated on the previous page.)

Note: the String returned by toString() does not need to include newlines or indentation.

String ans = "";

for (FNode spec : specs) {ans = ans+spec.toString()+" ";}
return ans;

return "many "+num+" "+spec.toString()+" ynam";

String ans = "((";

for (FNode node : signals) {ans = ans+node.toString()+" ";}
return ans+"))";

return signalName;

class FilterNode implements FNode{
final List<FNode> specs;

public FilterNode(List<FNode> spcs){specs=spcs;}
public String toString (){

}
}
class MultiNode implements FNode{

final int num;

final FNode spec;

public MultiNode(int n, FNode spc){num=n; spec=spc;}
public String toString (){

}
}
class StateNode implements FNode{

final List<FNode> signals;

public StateNode(List<FNode> sigs){signals=sigs;}
public String toString (){

}
}
class SignalNode implements FNode{

final String signalName;

public SignalNode(String sig){signalName=sig;}
public String toString (){

}
}

COMP 261 (Test 1) Page 9 of 12

Student ID: .

Question 5. LL(1) grammars and recursive descent parsing [10 marks]

Ambiguous grammars (where a text can have multiple different parse trees) cannot be parsed by
deterministic top-down recursive descent parsers, like the parsers described in the lectures.

In some cases, it is possible to rewrite the rules of a grammar so that it describes the same language
but is no longer ambiguous.

The following grammar for sequences of file commands is ambiguous.

SEQ ::= CMD | SEQ CMD SEQ

CMD ::= "copy" FILE | "delete" FILE | "restore" FILE

FILE ::= matches "[a-z]"

(a) [3 marks] Draw the two alternative parse trees of the following sequence according to this
grammar:

copy a delete a delete b restore a restore b

Tree #1 SEQ

/ | \
/ | \

SEQ CMD SEQ

/ | \ / \ |

SEQ CMD SEQ "restore" "a" CMD

| / \ | / \
CMD "delete" "a" CMD "restore" "c"
/ \ / \

"copy" "a" "delete" "b"

Tree #2 SEQ

/ | \
/ | \

SEQ CMD SEQ

| / \ / | \
CMD "delete" "a" SEQ CMD SEQ

/ \ | / \ |

"copy" "a" CMD "restore" "a" CMD
/ \ / \

"delete" "b" "restore" "c"

(Question 5 continued on next page)
COMP 261 (Test 1) Page 10 of 12

Student ID: .

(Question 5 continued)

(b) [2 marks] Rewrite the rule for SEQ (and any additional rules you need) so that the grammar
covers the same language but is no longer ambiguous.

SEQ ::= CMD | CMD CMD SEQ
or ::= CMD [CMD CMD]∗

CMD ::= "copy" FILE | "delete" FILE | "restore" FILE

FILE ::= matches "[a-z]"

(c) [2 marks] The following grammar for Instructions is not LL(1) and cannot be parsed by a
deterministic recursive descent parser with just 1 token look ahead.

INSTR ::= SELDIR "backup" | SELDRIVE "copy"

SELDIR ::= "select" DIR

SELDRIVE ::= "select" DRIVE

DIR ::= matches "[a-z/]+/"

DRIVE ::= matches "[A-Z]:"

Explain briefly what makes this grammar not LL[1].

The initial token of both SELDIR and SELFILE is ”select” so
the parser cannot tell which of the two options of INSTR will apply
based on the next token

(d) [3 marks] Rewrite the grammar for “Instructions” so that it still describes the same language,
but is now LL(1). (you do not need to write the rules for DIR and DRIVE).

INSTR ::= "select" ARG
ARG ::= DIR "backup" | DRIVE "copy"

DIR ::= matches "[a-z/]+/"

DRIVE ::= matches "[A-Z]:"

* * * * * * * * * * * * * * *

COMP 261 (Test 1) Page 11 of 12

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

COMP 261 (Test 1) Page 12 of 12

