
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2004

COMP 310
System and Network

Programming

Time Allowed: 3 Hours

Instructions: Answer all six questions.

Each question is worth 30 marks.

The exam is worth 180 marks in total.

Paper foreign language dictionaries are permitted.

Non-programmable calculators without full alphabetic keys are
permitted.

Electronic dictionaries and programmable calculators are not permitted.

COMP 310 continued...

Question 1. General Concepts of Concurrency [30 marks]

(a) [20 marks] Explain briefly what is meant by each of the following terms. Discuss, using
appropriate examples, their relevance to describing the behaviour of concurrent systems.

(i) Safety properties

(ii) Liveness properties

(iii) Fairness

(iv) Data independence

(b) [10 marks] The following is a proof outline, showing that the concurrent statement
co x = x+1; // x = x+2; oc will establish the condition x == 3, provided x == 0 holds
initially:

{ x == 0 }
co

{ x == 0 ∨ x == 2 }
x = x+1;

{ x == 1 ∨ x == 3 }
//

{ x == 0 ∨ x == 1 }
x = x+2;

{ x == 2 ∨ x == 3 }
oc

{ x == 3 }

List the interference freedom conditions that must hold in order for this proof outline to be
valid, and briefly explain why each of them does or does not hold.

COMP 310 2 continued...

Question 2. Critical Sections and Locks [30 marks]

A course grained solution to the critical section problem for two processes has the form:

bool in1 = false, in2 = false;

process CS1 {
while (true) {
〈 await (!in2) in1 = true; 〉 /* entry */

critical section;
in1 = false; /* exit */

noncritical section;
}

}

process CS2 {
while (true) {
〈 await (!in1) in2 = true; 〉 /* entry */

critical section;
in2 = false; /* exit */

noncritical section;
}

}

(a) [10 marks] Explain how this solution guarantees mutual exclusion, by showing that the
property ¬(in1 ∧ in2) is a global invariant.

(b) [10 marks] Explain how the await statements in this solution can be implemented as a
spin lock using a Test-And-Set instruction.

Explain how this solution can be improved by using a Test-And-Test-And-Set protocol.

(c) [5 marks] Explain why the spin-lock solution if not fair (assuming a weakly fair sched-
uler).

(d) [5 marks] EITHER:

Briefly describe one of the following fair solutions to the critical section problem: the Tie-
Breaker Algorithm, the Ticket Algorithm, or the Bakery Algorithm. Explain how this solution
guarantees mutual exclusion, and how it guarantees fairness. (Make sure you state clearly
which algorithm you are describing.)

OR:

Explain how the critical section problem can be solved using semaphores. Explain how
this solution guarantees mutual exclusion, and how a solution based on semaphores can
guarantee fairness.

COMP 310 3 continued...

Question 3. Monitors and Java [30 marks]

(a) [10 marks] Explain briefly what is meant by a monitor, and show how a shared variable
can be implemented using a monitor, assuming that only one operation may be performed
on the shared variable at a time.

(b) [10 marks] Show how a monitor can be used to control access to a shared variable,
assuming that several processes may read the variable concurrently, but that a write cannot
be performed concurrently with any other operation.

(c) [10 marks] Briefly describe the facilities in Java that support the implementation of
monitors. Explain why nested monitors cannot be used in Java.

Question 4. Asynchronous and Synchronous Communication [30 marks]

(a) [7 marks] Andrews introduces the channel with send and receive primitives as a nota-
tion for asynchronous message passing:

chan ch(type1 id1, . . . , typen idn);
send ch(expr1, . . . , exprn);
receive ch(var1, . . . , varn);

Define the semantics of the channel (chan) and the send and receive operations.

The channel is a queue that stores messages. Order and integrity are preserved.
Send evaluates the expressions and places the values as a message into the channel. It
does not block.
Receive takes the next message out of the channel and places the values in the vars.
Receive blocks if no message is available.

(b) [9 marks] Hoare developed CSP as a notation for synchronous message passing and
guarded communication.

(i) Define the semantics of CSP’s output and input statements:

destination!port(e1, . . . , en);
source?port(x1, . . . , xn);

Destination and source are names of processes. If destination is attempting to send a
message on the named port and source is attempting to receive a message on a port of
the same name and the types of the evaluated expressions match the types of the vars the
values are assigned to the vars. Both statements block until both are available. There is
no buffering. (5 marks)

(ii) Explain the operation of the following guarded communication statement:

COMP 310 4 continued...

do B1; C1 → S1;
[] B2; C2 → S2;
od

Evaluate both/all Bi. If both fail (are false) the loop exits. If at least one guard succeeds
(Bi is true and Ci would not cause a delay) then choose one nondeterministically and
execute Si. If no guard succeeds, but Bi is true then block until Ci is ready. (4 marks)

(c) [8 marks] Consider a simple server that provides two distinct operations, for example
get and put.

(i) Outline the body of this server if channels are used for communication.

while (true) {
receive ch (kind, . . .);
if (kind == get) . . .
else . . . ; # kind == put

}

(ii) Outline the body of this server if CSP style guarded communication is used.

do source?get → . . . ;
[] source?put → . . . ;]] od

(d) [6 marks] Explain the implementation of guarded synchronous communication, as-
suming that asynchronous communication using channels is available.

The answer should be based on the use of a clearinghouse and based on figure 10.6 of the
text.

Pi Pj

CH

�
�

�
���

1
�

�
�

�	
2

@
@

@
@R

2
@

@
@

@@I

1

-
3

Each process sends a template to the clearinghouse (1). When the clearinghouse has
identified a match it send an “ok” message to both processes. Pi then sends the data to
Pj.

COMP 310 5 continued...

Question 5. Remote Invocation [30 marks]

The syntax of a module that supports remote invocation of operations op1, . . . , opn is:

module modName

op op1(...);

...;

op opn(...);

body

... # implementation
end modName

(a) [7 marks] The body a module which uses rendezvous would use the following basic
implementation:

process P {
initialisation
while (true)

in op1(args) and B1 → S1;

[] ...;

[] opn(args) and Bn → Sn;

ni

}

Use this example to explain how rendezvous works. Include all key aspects of its semantics.

The in statement provides guarded communication. All service is provided by one pro-
cess. On each iteration one of the true guards is selected nondeterministically and its
corresponding statements executed. If no guard is enabled execution is blocked. The
boolean component of the guard can reference the parameters of the op. Because there is
only one process there is no requirement to implement concurrency control.

(b) [6 marks] Ada83 provides a form of guarded communication using rendezvous:

select when B1 ⇒ accept E1(args) do S1 end;

or ...;

or when Bn ⇒ accept En(args) do Sn end;

end select;

Explain how Ada83 differs from the guarded communication using rendezvous described
in part (a). Describe one situation in which the difference makes an implementation more
complicated, and another situation in which it does not.

The boolean cannot examine the args to the entry. This would not impact the bounded
buffer solution. However the TimeServer is made more difficult as we saw in homework
assignment 4.

COMP 310 6 continued...

(c) [12 marks] Using Andrew’s Multiple Primitives Notation for remote invocation provide
an implementation of the Readers and Writers problem that gives priority to waiting Writ-
ers over waiting Readers. In other words provide the implementation of the following
module:

module ReadersWriters

op read(result result types);
op write(value types);

body

... # implementation
end ReadersWriters

From figure 8.13.

module ReadersWriters
op read(result result types);
op write(value types);

body
op startread(), endread();
storage for data;

proc read(results) {
call startread();
read the data;
send endread();

}

process Writer {
int nr = 0;
while (true) {

in startread() and ?write 0 → nr = nr + 1;
[] endread() → nr = nr - 1;
[] write(values) and nr == 0 →

write the database;
ni

}
}

end ReadersWriters

(d) [5 marks] Explain your choice of remote invocation primitives used to answer question
(c).

We want to allow concurrent readers so a rendezvous would be inappropriate – it would
restrict us to a single reader. On the other hand we do need mutual exclusion when
updating nr and writing. Thus we use rendezvous for these operations while using rpc
for the read op.

COMP 310 7 continued...

Question 6. Process Interaction Paradigms [30 marks]

(a) [5 marks] Define both the heartbeat and probe/echo process interaction paradigms in
a way that clearly shows the similarities and differences between the two.

Both paradigms involve the exchange of information amongst processes. In the heartbeat
paradigm the information exchange is restricted to a process and its immediate “neigh-
bours”. In the probe echo paradigm exchanges may be forwarded (probing) from one
process to another, results collected and returned (echo).

(b) [12 marks] Explain how the pipeline algorithm can be used for square matrix multipli-
cation. You are not required to give a full implementation including all of the detail in the
text or covered in lecture. Provide sufficient detail to indicate how the process interaction
is structured, the task performed by each process and how concurrency is achieved.

There is a manager process that starts the computation and collects the result and n
worker processes for an n x n matrix. The workers are arranged in a pipeline that starts
and finishes with the manager.

Assume we are computing C = A × B. The manager starts by sending A through
the pipeline a row at a time. Each worker keeps the first row it receives and sends the
remaining rows down the pipeline. As a consequence each worker has a unique row.

The manager then sends B through the pipeline a column at a time. Each worker multi-
plies the column by the row it holds to compute one element of C and passes the column
of B to the next in the pipeline. Once the worker has processed all columns of B it will
have computed a row of C.

Finally the worker receives preceeding rows of C from the pipeline, passes them on and
then sends its row. The manager receives C row by row.

The concurrency occurs because each worker can be multiplying its row of A by one
column of C. Each worker has a different row and column.

(c) [5 marks] Define the happened before relation and state any important properties.

We say event a “happened before” event b if either a and b are events in the same process
with a occurring before b or a is the sending of a message and b is the receipt of the same
message. Happened before is transitive.

(d) [8 marks] A set of interacting processes, P1 to Pn, need to implement logical clocks to
enable them to order events. State what is meant by a logical clock and give the rules that
each process needs to follow to successfully implement a logical clock.

A logical clock is simply an integer that monotonically increases. Each process incre-
ments the clock when an event occurs within the process. When a process sends a
message it timestamps the message with its logical clock and then increments the clock.
When a process receives a message it compares the timestamp with its logical clock and
selects the maximum plus one for the time of arrival. It then sets its clock to this value
plus one.

COMP 310 8

COMP 310 9 continued...

