
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2005

END-YEAR

COMP 310
System and Network

Programming

Time Allowed: 3 Hours

Instructions: Answer all six questions.

Each question is worth 30 marks.

The exam is worth 180 marks in total.

Paper foreign language dictionaries are permitted.

Non-programmable calculators without full alphabetic keys are
permitted.

Electronic dictionaries and programmable calculators are not permitted.

COMP 310 continued...

Question 1. General Concepts of Concurrency [30 marks]

(a) [10 marks]

(i) Explain what is meant by data independence, and how data independence simplifies
the design of concurrent programs. Illustrate your answer by showing how data
independence can be exploited in designing a program to sum an array using two
processes.

(ii) Suppose a concurrent program to sum an array is run on a multiprocessor system
where the two processes execute on separate processors of greatly differing speed.
Would a data independent solution be suitable to use in this environment? Explain
why or why not.

(b) [20 marks]

(i) Explain, with reference to the following program, how different assumptions about
what actions can be performed atomically can affect the possible outcomes of a con-
current program.

int x = 0; y = 0;

co x = y+1; // y = x+1; oc;

(ii) Explain briefly how the At-Most-Once Property can be used to determine whether an
assignment statement can be considered to be atomic when read and write are the
only atomic operations on variable locations.

(iii) Explain why it is often advantageous when designing concurrent programs to make
unrealistic assumptions about what actions can be performed atomically. Illustrate
your answer using a suitable example.

COMP 310 2 continued...

Question 2. Synchronisation and Barriers [30 marks]

(a) [6 marks] Explain what is meant by barrier synchronisation, and describe the kind of
situation where a concurrent application would need to use barrier synchronisation.

(b) The following is an outline of the code to implement a simple barrier using a shared
counter:

int count = 0;

process W[i=1 to n] {
while (true) {

code for task i;

<count = count+1;>

<await (count == n);>

}
}

(i) [2 marks] Explain briefly how this solution works.

(ii) [6 marks] Describe and explain two ways in which the action <count = count+1;>

could be implemented.

(iii) [6 marks] Describe and explain two ways in which the action <await (count == n);>

could be implemented.

(c) [10 marks] The above implementation has two important problems: firstly, it does not
reset the counter; and secondly, all of the processes access the same counter.

Explain why each of these is a problem, and describe a way of implementing a barrier that
avoids both problems.

COMP 310 3 continued...

Question 3. Monitors and Java [30 marks]

Consider the following monitor to be used in solving the Readers/Writer Problem:

monitor RW Controller {
int nr = 0, nw = 0; ## (nr == 0 ∨ nw == 0) ∧ nw <= 1

cond oktoread; # signalled when nw == 0

cond oktowrite; # signalled when nw == 0 and nw == 0

procedure request read() {
while (nw > 0) wait(oktoread);

nr = nr + 1;

}
procedure release read() {

nr = nr - 1;

if (nr == 0) signal(oktowrite);

}
procedure request write() {

while (nr > 0 || nw > 0) wait(oktowrite);

nw = nw + 1;

}
procedure release write() {

nw = nw - 1;

signal(oktowrite);

signal all(oftoread);

}
}

(a) [2 marks] Explain how procedures request read, release read, request write and
release write are used to control access to the database.

(b) [2 marks] Why would you use a monitor like this rather than simply encapsulating the
database in a monitor?

(c) [6 marks] Explain the effects of the signal and signal all statements.

(d) [12 marks] Explain the significance of the invariant (nr == 0 ∨ nw == 0) ∧ nw <= 1,
and present an argument to show that this invariant always holds.

(e) [8 marks] Explain briefly how you would implement this monitor in Java.

COMP 310 4 continued...

Question 4. Asynchronous and Synchronous Communication [30 marks]

Consider the following monitor to be used in solving the Resource Allocation Problem.

monitor Resource Allocator {
int avail = MAXUNITS;

set units = initial values;

cond free; # signaled when a process wants a unit

procedure acquire(int &id) {
if (avail == 0)

wait(free);

else

avail = avail - 1;

remove(units, id);

}
procedure release(int id) {

insert(units, id);

if (empty(free))

avail = avail + 1;

else

signal(free);

}
}

(a) [8 marks] Rewrite the monitor as a server using Andrews’ channel notation for asyn-
chronous message passing.

See figure 7.7

(b) [4 marks] Explain how you have simulated the monitor by a server process. In particu-
lar, explain how you have simulated procedure calls, monitor entry, procedure return and
conditional variables.

Looking for understanding of the code

(c) [4 marks] Explain why synchronous message passing places an upper bound on the
size of communication channels and may lead to reduced concurrency.

Bound on size of communication channels and on buffer space. Until message is received
the sender will block preventing the sending of additional messages. Each sender process
can have a maximum of one message queued on the sender channel.

Reduced concurrency because at least one of two communication processes will block.
Depends on who tried to communicate first.

COMP 310 5 continued...

(d) [2 marks] Briefly describe the changes required to your server to make it use syn-
chronous message passing.

There is no change required to the server, the only change required is to the client who
should use synch send statements

(e) [8 marks] Rewrite the monitor as a server using CSP.

the answer should make use of the ability to use guarded communication

(f) [4 marks] What features of CSP lead to a more concise implementation than the one you
wrote for part (a).

Ability to more acquire and release messages on the same channel; just use different
ports and do statement for each case. Ability to delay receing an acquire message until
there are available units; removes need to store pending requests.

COMP 310 6 continued...

Question 5. Remote Invocation [30 marks]

(a) The following is an outline of a module implementing a time server that provides timing
services to client processes in other modules:

module TimeServer

op delay(int interval);

body

int tod = 0;

queue of (int waketime, int process id) napQ;

proc delay(interval) {
int waketime = tod + interval;

insert (waketime, myid) at appropriate place on napQ;

}
process Clock {

while (true) {
increment tod using hardware clock;

while (tod >= smallest waketime on napQ) {
remove (waketime, id) from napQ;

}
}

}
end TimeServer

(i) [2 marks] Identify the background process and exported operation in the module.

BP is ... and exported operation is ... Clock is the background process and delay are the
exported operations.

(ii) [2 marks] Briefly describe how two modules in different address spaces can communi-
cate.

Process in one module will invoke exported operations of another module.

(iii) [4 marks] What concurrency problems might occur in the above example? Justify your
answer.

delay and Clock both update the queue (a shared variable). Each invocation of delay is
serviced by a new process and these may interfere with each other as well as with the
Clock process.

(iv) [6 marks] As well as concurrency problems, the module does not currently delay pro-
cesses correctly. Rewrite the module so as to fix both these problems.

COMP 310 7 continued...

Need to add two variables: sem m = 1 for controlling access to the queue and sem d[n]
(initialised to 0) for each process.

Modify delay so insert is surrounded by P(m) and V(m). Last statement should call
P(d[myid])).

Modify Clock so access to queue is protected andwhenremovetakesplacethattheprocessisawoken(V(d[id])).

(b) [6 marks] Describe how you would use rendezvous to implement the Shortest-Job-Next
allocator module shown below. What special features of rendezvous make it a more concise
implementation than an equivalent implementation using monitors?

module SJN Allocator

op request(int time) # shortest requests honoured first

op release(); # job has finished

body

...

end SJN Allocator

Request should have a synch boolean preventing access unless free plus a scheduling
expression that chooses smallest time first. No need to maintain internal queue. Merely
delays accepting calls of request until the resource is free, and only accept the call with
the smallest argument for time.

(c) [4 marks] In Andrews’ Multiple Primitives Notation there are two ways to invoke an
operation (call and send) and two ways to service an invocation (proc and in). What are
the four possible effects of combining these?

call + proc = procedure call.
call + in = rendezvous
send + proc = dynamic process creation
send + in = asynchronous message passing

(d) [6 marks] Ada95 introduced protected types and the requeue statement. Briefly define
the semantics of these two mechanisms and discuss why they were introduced.

Protected types support synchronized access to shared data – like monitors, only one
thread of control can be active at one time in a body. This saves the programmer needing
write their own synchronisation calls. Synchronisation is required because tasks can
share variables.

Requeue resubmits a call. It allows scheduling and synchronization that depends upon
the arguments of calls. Ada 83 didn’t allow accept statements to include references to
arguments of calls.

COMP 310 8 continued...

Question 6. Process Interaction Paradigms [30 marks]

(a) [4 marks] Contrast the manager/workers interaction paradigm with the pipeline pro-
cess interaction paradigm.

Manager/worker is a distributed bag-of-tasks. Worker processes share a bag of tasks
held by a manager. The tasks are received from the manager and results returned to the
manager. It’s a many-to-one interaction. In the pipeline paradigm information flows
from one process to another using a receive then send interaction. It is a one-to-one
interaction.

(b) [4 marks] Use the logical clock update rules to assign timestamps to the following send
and receive events amongst a group of communicating processes. Does event f happen
before event d? Justify your answer.

Note that the initial values of the local clock for each process are shown on the left of the
diagram and time advances monotonically from left to right.

(c) Consider the following “solution” for the distributed dining philosophers problem.

module Waiter[5]

op getforks(), relforks();

body

process the waiter {
while(true) {

receive getforks();

receive relforks();

}
}

end Waiter

COMP 310 9 continued...

process Philosopher[i = 0 to 4] {
int first = i, second = (i+1) mod 4;

while (true) {
call Waiter[first].getforks();

call Waiter[second].getforks();

eat;

send Waiter[first].relforks();

send Waiter[second].relforks();

think;

}
}

(i) [2 marks] What is wrong with the above “solution”? Explain.

The current solution will deadlock. If every philosopher gets their left fork then each will
be waiting for the other philosopher to put it down.

(ii) [6 marks] Rewrite the “solution” so it is correct.

module Waiter[5]

op getforks(), relforks();

body

process the waiter {
while(true) {

receive getforks();

receive relforks();

}
}

end Waiter

process Philosopher[i = 0 to 4] {
int first = i, second = i+1;

if (i == 4) {
first = 0; second = 4; }

while (true) {
call Waiter[first].getforks();

call Waiter[second].getforks();

eat;

send Waiter[first].relforks();

send Waiter[second].relforks();

think;

}
}

(iii) [4 marks] Is your corrected solution fair? Explain why or why not.

COMP 310 10 continued...

Yes because forks are requested one at a time and invocations of getfork are serviced
in the order they are called. Each call of getforks is serviced eventually, asssuming
philosophers eventuall release forks they have acquired.

(d) [10 marks] Explain briefly how you would implement the Game of Life using the heart-
beat interaction paradigm. Describe how the process interaction is structured, the details
of the task performed by each process, and how concurrency is achieved. Do not write any
code when answering this question.

Recall that the Game of Life is as follows. A two-dimensional board of cells is given. Each
cell either contains an organism (it’s alive), or is empty (it’s dead). Each cell has eight
neighbours (ignore the issue of cells at the edge of the board). The cells live or die according
to the following rules:

• A cell will live if it has two or three live neighbours, otherwise it will die.

• A dead cell with exactly three live neighbours becomes alive.

Each cell is modelled by a separate process. The cells are arranged in a nxn matrix. This
provides good concurrency. Because of the blocking receive each cell cannot get more
than an iteration ahead of each other. (4 marks)

Communication is via a set of exchange channels, one for each process. Each cell will
announce its position and its state to the other cells. (2 marks)

There are three main phases to the algorithm (6 marks):

• Exchange state with 8 neighbours. Loop over each neighbour cell and announce
this cell’s position and state to them. (send operation)

• Receive state updates from all 8 neighbours. (receive operation)

• Apply the Game of Life rules.

This algorithm repeats as many times as there are generations of cells.

COMP 310 11

