
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2007

END-YEAR

COMP 310

Concurrent Programming

Time Allowed: 3 Hours

Instructions: Paper foreign language dictionaries are permitted.

Non-programmable calculators without full alphabetic keys are
permitted.

Electronic dictionaries and programmable calculators are not permitted.

An appendix at the end of the exam lists some useful algorithms.

Answer all of the following six questions:

1. Critical Sections.

2. Semaphores and Monitors.

3. The Readers/Writers Problem.

4. Channels and Data Spaces.

5. Mutual Exclusion in Distributed Systems.

6. Global Properties and Consensus.

Each question is worth 30 marks.

The exam is worth 180 marks in total.

COMP 310 continued...

Question 1. Critical Sections [30 marks]

(a) [5 marks]

Define the following terms with regards to the critical section problem.

(i) Mutual exclusion.

Only one process is in its critical section at any time.

(ii) Deadlock freedom.

If any process is executing the preprotocol (attempting to enter the critical section), then
eventually some process enters the critical section.

(iii) Starvation freedom.

If any process is executing the preprotocol (attempting to enter the critical section), then
eventually that process enters its critical section.

(b) [10 marks]

(i) What are the possible values of i after the following pseudocode has been executed.

Critical section

int i=0
p q

int x;
p1: x = i;
p2: i = x + 1;

int y;
q1: y = i;
q2: i = y + 1;

1,2

(ii) Imagine that the intention of the code above was to enable both p and q to increment i.
Write psudocode that correctly achieves this. Use the test-and-set atomic statement.

Use T&S to guarntee exlusive access to i.

(c) [15 marks]

(i) State which of the correctness conditions above are satisfied by the following solution to
the critical section problem. Justify your answers.

COMP 310 2 continued...

Critical section
int turn=1

p q

loop forever
p1: non-critical section
p2: await turn==1
p3: critical section
p4: turn := 2

loop forever
q1: non-critical section
q2: await turn==2
q3: critical section
q4: turn := 1

When turn=1 (resp. 2), p (resp. q) can enter the CS and q cannot. This guarantees both
mutual exclusion and deadlock freedom. The solution is not starvation free. If (eg) p
does not complete its NCS when turn=1, q can never enter its CS.

(ii) Prove inductively that the solution has the following invariant.

¬(p3 ∧ q3)

COMP 310 3 continued...

Question 2. Semaphores and Monitors [30 marks]

(a) [5 marks]

A semaphore s has two components: an integer s.value and a set of processses s.waitset.
Describe the effect of the wait and signal operations for a blocking semaphore s. You
should describe the effect of each operation on s.value and s.waitset, and on the invoking
processes.

wait(s) first checks whether s.value is greater than 0. If so, it decrements s.value
and returns. If not, it adds the invoking process into s.waitset and puts the invoked
process into its blocked state.

signal(s) first checks whether s.waitset is empty. If so, it increments s.value

and returns. If not, it chooses an arbitrary process p from s.waitset, removes p from
s.waitset and puts p in its ready state.

Both wait and signal execute atomically.

(b) [10 marks]

Consider the following solution to the two-process critical section problem.

Critical section

semaphore s:={1,∅}
p q

loop forever
p1: non-critical section
p2: wait(s)
p3: critical section
p4: signal(s)

loop forever
q1: non-critical section
q2: wait(s)
q3: critical section
q4: signal(s)

(i) Is this solution deadlock free? Why?

Yes. If some process is attempting to enter the CS it will eventually execute wait(s).
When this happens, either the other process is in the CS or not. In the first case, the
process in the CS will eventually complete and execute signal(s), enabling the waiting
process to enter the CS. In the second case, s.value=1, so the wait operation can complete
immediately.

(ii) Describe the difference between a weak semaphore and a strong semaphore.

A strong semaphore guarantees that waiting processes are signalled in the order in
which they executed their wait operations. A weak semaphore does not make this guar-
antee.

Saying that processes wait in a wait queue in a strong semaphore, and a wait set in a
weak semaphore is also ok.

COMP 310 4 continued...

(iii) The algorithm above could be modified to work with any number of processes (rather
than just two). With what kind of semaphore would the resulting solution to the N-process
critical section problem be starvation free? Why?

When the semaphore is a strong semaphore. With a strong semaphore, the processes
are unblocked in the order that they executed their wait operations (otherwise put, they
wait in a wait queue). For each process, the processes ahead in that order (ahead in the
queue) eventually execute signal (after their CS), so the process is eventually unblocked.

(c) [15 marks]

(i) Describe the signal and wait signalling policy for monitors.

A process that is awoken by a signal operation on a condition variable executes (gains
exclusive access to the monitor) before the process that invoked the signal operation,
and before any process waiting to enter the monitor. The signalling process then executes
before any process waiting to enter the monitor.

(ii) In Java, the nested monitor problem arises when one thread calls wait() on an object from
within a synchronized block in another object. Explain why this can lead to deadlock.

A thread which calls obj.wait() will block at least until obj.notify() is called on
that object by second thread. In a particular application, it may be that a thread will
only call obj.notify() from a synchronized block in the object on which the original
thread is synchronized. If this is the case, the original thread will never complete its
synchronized block, and so the notifying thread can never call obj.notify().

(iii) The Java language could have been designed so that when a thread calls wait(),
it releases all locks on Java objects that it currently holds. What guarantee about Java’s
synchronized blocks would this break? Why would this be a bad idea?

Java monitors need to guarantee that during the interval when some thread is executing
a synchronized block, no other thread can gain access to it. This guarantee is necessary
so that programmers can ensure that certain operations on the object are not interleaved
with other operations. The technique described above would break this guarantee.

COMP 310 5 continued...

Question 3. The Readers/Writers Problem [30 marks]

(a) [5 marks]

How can the use of mutual exclusion degrade performance on a multiprocessor?

When a process has exclusive access to some object or resource, all other processes
must wait until iit yields exclusive access. When there are many processes, potentially
runnning on different processors, this can result in significant waste of CPU time.

(b) [10 marks]

(i) What are the correctness conditions of the readers/writers problem?

Exclusion: Just readers, or one writer. Deadlock freedom: some process gets to read or
write. Starvation freedom: every process eventually reads or writes. Concurrent reads.

(ii) State which of the correctness conditions that you listed above are satisfied by the
semaphore based implementation presented in Figure 1 below. Justify your answer.

The solution satisfies the exclusion property, deadlock freedom, and concurrent reads are
possible. However, writers may be starved. Concurrent reads.

COMP 310 6 continued...

(c) [15 marks]

Figure 2 presents a solution to the Readers/Writers problem that uses monitors.

(i) Complete the if statement in the StartW operation.

w!=0 or r!=0

(ii) Write pseudocode describing how readers and writers would use this monitor.

Reader: Writer:
Loop: Loop:
NCS NCS
StartR StartW
Read Write
EndR EndW

(iii) Readers could be starved if this monitor were run using Java’s signalling policy. Ex-
plain why?

Consider the situation where there is more than one reader wiating on OKR, and one
writer in the write CS, and no writer waiting. When the writer completes, it call sig-
nalC(OKR). Then one reader continues exceution of StartR. Eventually, it executes
signalC(OKW), the intention being to wake another reader. However, under Java’s sig-
nalling policy, it is possible for a thread that is waiting to enter the monitor to gain
exclusive access before the thread that was just woken. If readers continually invoke
StartR, this thread may never gain exclusive access.

COMP 310 7 continued...

Question 4. Channels and Data Spaces [30 marks]

(a) [5 marks] Classify the following types of communication channels using the terms syn-
chronous, asynchronous, addressing and data flow. Make sure that you justify your an-
swers.

(i) Sending a letter.

(ii) Writing graffiti on a wall.

(iii) Emailing a message.

Letter is asynchronous, asymmetric addressing (unless sender has written their address
on the back), data flow is potentially two-way (same channel can carry responses back).
Grafitti is asynchronous, no addressing required (just write it in a public place) and
one-way. Email is asynchronous, symmetric addressing by default and data-flow is two
way.

(b) [15 marks] Write an algorithm for a pipeline of processes that can reverse the order
of a stream of numbers fed in one end and read out the other. Assume that there are N
processes in the pipeline and the input stream of N numbers is followed by a special end of
stream marker (EOS). For example, a pipeline composed of five processes should be able
to transform an input stream of 5, 6, 1, 10, 12, EOS into an output stream of EOS, 12, 10, 1,
6, 5.

Should have N processes. Each process accepts an input number and stores it, after
than it passes on the numbers it sees. When a -1 is accepted it passes its stored number
followed by the -1 to the next. This means that eventually the numbers are read out in
reverse. Need to describe how the processes are connected to each other.

(c) [10 marks] You are implementing an image recognition system for searching the Nevada
desert for a lost plane. You have an existing program that allows automatic recognition of a
plane in a picture but it is slow.

A friend suggested that volunteers’ idle home computers could be put to use searching
the entire desert. Sketch how the Master-Worker architecture could be used for this and
evaluate its suitability for this purpose.

Job must be capable of being subdivided without cross-communication being required.
Master creates tasks by subdividing the image into blocks. Workers contact the master
and download the tasks. Workers return result to Master. Loosely coupled so no fixed
limit to number of workers. Need to double up on some work if going to handle failure.
Some workers may be faster so could download multiple tasks as once but whether this
is more efficient depends upon bandwidth and network latency.

COMP 310 8 continued...

Question 5. Mutual Exclusion in Distributed Systems [30 marks]

(a) [5 marks] Consider the following algorithm and explain the result of its execution.
Indicate what would be printed to the console and the values of the variables at different
points in its execution.

Node 1 Node 3
p1: integer x, y
p2: send(add, 3, 1, 30, 40)
p3: receive(result, x, y)
p4: print result

q1: integer a, b, c, d
q2: receive(add, a, b, c)
q3: d = add(b,c)
q4: send(result, a, d)

Assignment of parameters. Node 3 matches add messages but not subtract messages.
The sending node id is sent with messages to allow replies to be sent back. The result of
70 is printed.

(b) [5 marks] Consider the permission-based Ricart-Agrawala algorithm. Imagine the
requestNum for every node is identical due to an error in the implementation of the al-
gorithm. What effect does this have on the fairness of the algorithm?

Granted in order of process number. Queue jumping will occur. Could lead to starva-
tion. Example should be given to make it clear.

(c) [10 marks] Consider the token-based version of the Ricart-Agrawala algorithm. Can
requested[j] be less than granted[i] for i 6= j for node i?

Each node keeps its own requested array. The granted is passed with the token. The
example could occur under the following scenario: node one makes a request, gets the
token from node two but its request to node three is delayed. Node three requests the
token and it is passed from node one. Because the request from node one has not arrived
its requested value will be less than granted.

(d) [10 marks] Harry and Hermione are arguing over his choice of the permission-based
Ricart-Agrawala algorithm instead of the token-based one.

His application has thousands of nodes, each node is connected by a slow network and the
chances of multiple nodes requiring access to the critical section at the same time is low.

Give all the advantages and disadvantages of choosing one algorithm over another and
recommend which algorithm should be used.

Two issues: size of the token and a slow network so message sending is expensive. Low
contention means that most of the time message sending will not be needed – this should
be the main factor in the decision but expect them to discuss all the tradeoffs.

COMP 310 9 continued...

Question 6. Global Properties and Consensus [30 marks]

(a) [15 marks] Consider the Dijkstra-Scholten (DS) algorithm. When drawing diagrams to
answer the questions below show each node’s outDe f icit and annotate each edge with the
appropriate inDe f icit.

(i) Using an example show how the algorithm is designed to handle a process restarting
after it has declared its intention to terminate to all dependent nodes. Follow the example
through from system start to system termination.

Need at most three processes to explain this. Environment node (node1) activates node
2 and node 3. Node 3 wants to terminate and signals parent. Node 2 wakes up node 3
and becomes its parent. Node 3 wants to terminate and signals Node 2. Node 2 now
wants to terminate and signals its parent. Parent declares termination. Should show all
outdeficits and indeficits.

(ii) Explain why the environment node would never declare termination if the parent vari-
able was not reset after the completion of signalling.

Node 3 would still signal the environment node, node 2 would never reduce its outdeficit
to zero and would never signal the environment node

(iii) Evaluate the correctness of an alternative algorithm where nodes simply inform the
environment node when they wish to terminate and the environment node declare system
termination when all nodes have reported their willingness to terminate.

A node might declare termination but in the meantime a message might be in transit to
it. This would wake it up again. The node that sent the message may have declared ter-
mination after sending the message. More problematically, just because a node declares
termination does not mean that other active nodes may not activate it.

(b) [10 marks] In the Byzantine Generals algorithm, suppose that there is exactly one traitor
and that Zoe’s data structures are:

Zoe’s Data Structure

general plan reported by majority
Basil John Leo

Basil R A R ?
John A R A ?
Leo R R R ?
Zoe A A

?

(i) What can you know about the identity of the traitor?

You cannot tell who the traitor is, but you can tell that it isn’t Leo. John and Basil must
both be loyal. But then they can’t disagree on sent A while Basil relayed R.

COMP 310 10 continued...

(ii) Fill in the values marked ?

The preliminary votes are A, R, R (from top to bottom). Together with final vote is , and
ties are resolved in favor of R.

(iii) Construct a minimal scenario leading to this data structure.

Let John be the traitor. Leo and Basil who are loyal both choose Retreat truthfully. John
sends Retreat to Leo, and Attack to both Zoe and Basil.

COMP 310 11

int nr := 0;

semaphore rw := 1; Rmutex := 1;

process Reader[i = 0 to M] {

loop {

Noncritical section;

wait(Rmutex);

nr++;

if (nr == 1) wait(rw);

signal(Rmutex);

Read;

wait(Rmutex); nr--;

if (nr == 0) signal(rw);

signal(Rmutex);

}

}

process Writer[i = 0 to N] {

loop {

Noncritical section;

wait(rw);

Read and Write;

signal(rw);

}

}

Figure 1: A Solution to the Readers/Writers problem using semaphores.

COMP 310 12 continued...

monitor RW

int r := 0, w := 0

cond OKR, OKW

op StartR

if w != 0 or

!empty(OKW)

waitC(OKR)

r := r+1

signalC(OKR)

op EndR

r := r-1

if r = 0 signalC(OKW)

op StartW

if ??? // <----------- COMPLETE THIS STATEMENT

waitC(OKW)

w := w+1

op EndW

w := w-1

if empty(OKR)

then signalC(OKW)

else signalC(OKR)

Figure 2: A solution to the Readers/Writers problem using monitors.

COMP 310 13 continued...

