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COMP 421

Machine Learning

Time Allowed: 3 Hours

Instructions: ~ There are 5 questions to choose from: each question is worth 45 marks.

Answer FOUR questions (180 marks).
If you answer more questions, only your best 4 will be taken.

Pay close attention to the number of marks for each sub-question, which
gives an indication of the depth of answer that is expected.

Non-electronic Foreign-English language dictionaries are permitted.
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Question 1. [45 marks]

Bayesians sometimes refer to the quantity P(D|H) as the “evidence” for H. Here D is data
and H denotes a “hypothesis” space that captures a whole family of possible predictors
P(D"™"Y|6, H) corresponding to different settings of parameters 6.

(@) [5 marks] Give an expression for P(D|H) in terms of parameters 6.

(b) [12 marks] Explain why the evidence P(D|H) is not required for sampling from the pos-
terior distribution over 6, or for optimising 6, but is required for comparing two hypotheses
Hj and H».

(c) [10 marks] For a discrete (“1-0f-N”) variable x the Kullback-Lieber divergence measure
between two distributions P and Q is

KL(P,Q) = Y P(x)log g((’;))

Discuss the relationship between this and the “expected surprise” of an agent that believes
events happen with probabilities Q(x) when in fact they happen with probabilities P(x).

(d) [8 marks] Suppose a Hopfield network with initial weights set to zero uses the Hebb
rule to update weights when exposed to a single pattern X composed of elements chosen
from {—1,+1}. Show that X is a stable state of the network after this update.

Suppose that the world generates some number x from a zero-mean Gaussian distribution
with variance ¢2. This is not directly observable itself, but emits an observation y that is
simply x corrupted by measurement noise. This noise is additive and zero-mean Gaussian

with variance (7]3.

(e) [4 marks] Given a single datum, y, show that the posterior distribution is Gaussian as
well.

(f) [6 marks] Given a single datum, y, show that the MAP (maximum a posteriori) estimate

for x is
X = U’%
"R \o2+of 4

Hint: differentiate the log posterior and set the gradient to zero.
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Question 2. [45 marks]

(a) [6 marks] Metropolis sampling involves selecting an appropriate proposal distribution
to use, for which a common choice is the spherical Gaussian with variance o2. Discuss the
issues involved in determining a suitable value for o2.

(b) [2 marks] What is the relationship between the Metropolis algorithm and Simulated
Annealing?

Consider data consisting of a set of (x, y) pairs, where “inputs” x may be vectors and “out-
puts” y are scalars. A Gaussian process model could be used to predict y given a new x, by
giving Py, (y|x). Suppose the Gaussian process uses the following covariance function:

—|x—x
S .

C(x,x") = 61 exp [
where J, v = 1 if x = x’ and zero otherwise. 6y, 6, and 63 are hyperparameters.

(c) [6 marks] Describe the role played by each of the hyperparameters 61, 6, and 63 in such
a Gaussian process.

(d) [6 marks] Briefly describe a method for learning hyperparameters such as 6 from data.

(e) [20 marks] Discuss the pros and cons of using Gaussian process inference versus Bayesian
neural networks (in which predictions are made by integrating out weights using MCMC)
for regression problems.

(f) [5 marks] Basic Q-learning only takes reinforcement r;, 1 into account in updating Qy, x,
(this is the “TD trick”). Give a Q-learning algorithm that uses both r;,1 and r4;> to update
Qﬂt,xt'
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Question 3. [45 marks]

(a) [6 marks] Bayesians often need to calculate integrals over probability distributions,
such as

Elfl = [ f()px) dx

Only rarely do such integrals have analytic solutions, however. Show how to approximate
such an integral by drawing samples x() ~ p(x).

(b) [6 marks] Importance sampling is a technique for approximating integrals over proba-
bility distributions such as the above when p(x) is easy to evaluate but difficult to sample
from directly. Explain how importance sampling achieves this approximation, using a sec-
ond distribution g(x) that is easy to draw samples from.

(c) [6 marks] Describe how you could use Gibbs Sampling to perform inference in a directed
graphical model with discrete states.

(d) [8 marks] Would Gibbs sampling would work in an undirected graphical model (with
discrete states)? If so, explain how. If not, explain why not.

(e) [20 marks] Suppose an agent is at a position x in a 2 dimensional world, and it has 4
possible actions, labelled “North”, “South”, “East” and “West”. Each of these actions has
the effect of deterministically moving x in the corresponding direction by 1 step of some
predetermined, fixed size.

In reinforcement learning scenarios one is interested in the expected reward that follows
from being in any given state x. Suppose we try to represent this with a Gaussian process
model, pgp(7]x).

The agent also has uncertainty about its current position, represented by some distribution
p(x). You may assume the agent can “look up” this probability for any given x, and that
it uses a Gaussian process model to capture its knowledge about worthwhile states via
pgp (r|x), with r being the immediate reward that follows from being in state x.

What quantity should the agent calculate in order to decide what action to take? Give an
expression for this quantity in terms of p(x) and pgp(r|x), and indicate how you might go
about calculating it in practice.
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Question 4. [45 marks]

(a) [5 marks] Give one advantage, and one disadvantage, of using Gibbs sampling com-
pared to the Metropolis algorithm, for drawing samples from some known probability dis-
tribution p(x).

(b) [6 marks] Give the joint probability distribution @

embodied by the probabilistic graphical model shown W
here, and list the conditional independencies that are /® @
being assumed in adopting this model. @

(c) [6 marks] Draw the belief network (not the factor graph) corresponding to the following
factorisation of the joint probability over hidden variables x(.7 and observations y1.1

T

p(xo.r,y1.:7) = p(x0) H p(xt|xi—1) p(yelxe, xi-1)
t=1

and describe in words (a sentence or two) what this model assumes about the origins of the
data.

(d) [8 marks] Could the graphical model X Y V4 X represent a joint probabil-
ity distribution? If so, give an example. If not, explain why not.

(e) [4 marks] Consider two observable variables X and Y, which are known to be depen-
dent. Use probability theory to explain why measurements of X and Y alone provide no
evidence at all as to whether X is a cause of Y.

(f) [8 marks] Suppose there is another observable variable, Z, that is thought to relate
to X and Y, and that you collect a set of observations of all three. What relationships
(dependencies and independencies) would these observations have to exhibit in order for
you to conclude that X is not a cause of Y?

(g) [8 marks] Now suppose that you are certain a priori that an observable variable W is
a cause of X. What relationships (dependencies and independencies) would your obser-
vations need to exhibit in order for you to conclude that X is a cause of Y? Explain your
answer.
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Question 5. [45 marks]

(@) [12 marks] Consider the simple HMM with X, Xr_1 Xy Xond
start and end states shown on the right, in which Q+Q+Q ——————— Q+Q+Q
the black squares refer to factors. Could either of

the two graphical models shown below be used T f * f

to model the same joint distribution as the one de- O O O O

fined by this graph? Explain your answer. % Ya Yra Yr

L [

Xstart XT-1 Xt Xend Xstart X7-1 X7 Xend

G R B S S I N NG SO MR B

A O to4 4 ¢
O

O O O O O O O

Y Yo Yra Yy Y Yo Yra Yo

(b) [8 marks] Consider searching a continuous space for the maximum of some function
F(x) amounting to the height of a surface at point x. Suppose you start from a random
position and make a path of n steps of fixed size. Making these steps “up” the gradient
VxF(x) must lead to a higher point on the surface that is at least as high as making the
steps down the gradient, from any given starting position. How can this be reconciled with
the No Free Lunch theorem, which states that all search algorithms perform the same when
averaged over all surfaces?

(c) [8 marks] Explain why the sum-product algorithm is incorrect for loopy graphs.

(d) [6 marks] Explain how variables can be merged in order to remove loops, and point
out the main disadvantage involved in doing so.

lates states (x and x’), action (4), observation (y) and rein-
forcement signal (r). The black squares refer to factors, one
of which is a “policy” 7. Others are p(x), p(x|x,a), p(y|x’)

and p(r|x’). ) ()

(e) [4 marks] Assuming that states and actions are discrete, give an expression for the
overall transition probability M, ...

Consider the graphical model shown on the right, which re-
O

() [7 marks] Now suppose that the above graph is repeated over time, so that x’ becomes
x for the next time step and so on for a long sequence of actions and observations. How
could you go about finding the expected reward under the current policy?
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