
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2006

MIDTERM TEST

COMP 206

PROGRAM AND
DATA STRUCTURES

Time Allowed: 90 minutes

Instructions: You should attempt all the questions.
The exam will be marked out of 90. =87+3!
Write your answers in the exam paper and hand in all sheets.
Operator precedences are given in Appendix A.

COMP 206 continued...

Student ID:

Question 1. [24 marks]

(a) [8 marks] Suppose that a has been declared:

char a[] = "COMP206";

State the value of each of the following expressions:

a => "COMP206"

2 marks

*a => C (or 67)

2 marks

*(a+7) => null character (or ’\0’)

2 marks

*a+7 => J (or 74)

2 marks

(Question 1 continued on next page)

COMP 206 2 continued...

Student ID:

(Question 1 continued)

(b) [6 marks] I wrote the following code to read a name and an age from the terminal and to write
them back out:

#include <stdio.h>

int main()
{

int age;
char name[20];

printf("Enter the person’s name and his or her age:\n");
scanf("%s %d", name, age);
printf("\nName = %s\nAge= %d\n", name, age);

return 0;
}

The code compiles, but causes a runtime error when executed:

circa % gcc -o qn1 qn1.c
circa % ./qn1
Enter the person’s name and his or her age:
Noah 950
Segmentation fault

In the box below, explain what the problem is, and how to fix my code.

C uses call-by-value, so the actual parameters of a function cannot be changed by the function
call. If we want to use a function to update the value stored in a variable we need to pass in a
reference (i.e. a pointer) to the variable. The purpose of scanf is to read in values so scanf needs
to be supplied with pointers: name is OK, but we need &age:

scanf("%s %d", name, &age);

Marks: 4 for the explanation, 2 for the code.

(Question 1 continued on next page)

COMP 206 3 continued...

Student ID:

(Question 1 continued)

(c) [10 marks] You want to write a C function swap which swaps the values of two integer variables.
Fill in the boxes in the following program:

#include <stdio.h>

/* swap prototype */
void swap(int *px, int *py);

2 marks

int main()
{
int x = 0;
int y = 1;

printf("x = %d\ny = %d\n", x, y);

/* call to swap x and y */
swap(&x, &y);

2 marks

printf("x = %d\ny = %d\n", x, y);

return 0;
}

COMP 206 4 continued...

Student ID:

/* swap definition */
void swap(int *px, int *py){

int tmp;

tmp=*px;
*px=*py;
*py=tmp;
return;

}

6 marks

This output should be generated:

x = 0
y = 1
x = 1
y = 0

COMP 206 5 continued...

Student ID:

Question 2. [14 marks]

A person’s weight can be expressed in either kilograms (kg) or pounds (lbs).

• If we express a weight in kilograms we use a floating point number, e.g. 75.5 kg.

• If we express a weight in pounds we use an integer, e.g. 165 lbs.

Th following C type definitions allow us to represent a weight:

typedef enum {kilos, pounds} Scale;

typedef union{
float kg;
int lbs;

} Value;

typedef struct {
Scale unit;
Value reading;

} Weight;

(a) [6 marks] Define a function with prototype void printweight(Weight w); which will print out
a weight, stating whether it is a weight in kilograms or pounds.

void printweight (Weight w){
switch (w.sort){

case pounds: printf("%d pounds\n", w.reading.lbs);
break;

case kilos: printf("%f kgs\n", w.reading.kg);
break;

}
}

6 marks
Using if(w.sort == pounds){...} was also OK.

(Question 2 continued on next page)

COMP 206 6 continued...

Student ID:

(Question 2 continued)

(b) [8 marks] It is useful to be able to convert a weight from kilograms to pounds. Define a function
with prototype void topounds(Weight *w);

Suppose that v is a weight, which may be in either kilograms or pounds. After topounds(&v) has
been called v should be expressed in pounds. There are 2.2 pounds in a kilogram.

void topounds(Weight *w){
switch (w->sort){

case pounds: break;
case kilos: { w->sort=pounds;

w->reading.lbs=w->reading.kg*2.2;
break;
}

}
}

Using (*w).sort etc. instead of w->sort was OK, as was using if rather than switch.

COMP 206 7 continued...

Student ID:

Question 3. [18 marks]

(a) [6 marks] You have been hired as a C programmer to lead a programming team. Unfortunately,
although your colleagues are experienced Java programmers, they know nothing about C, and you
soon realise that you must help them to understand C.

In the box below state what you consider to be the three most important differences between C and
Java

2 marks each for sensible answers, such as:

• Java supports object oriented programming, whereas C does not;

• Java compiles to bytecodes which are executed on the Java Virtual Machine, thereby provid-
ing a degree of machine independence. C lacks this degree of machine independence as C
programs are compiled to instructions for a specific architecture;

• C allows/forces the programmer to manage dynamically allocated memory.

It was up to the markers to decide if an answer was sensible or not.

(b) [6 marks]

In the box below give the prototype for malloc and a description of its behaviour.

From the BSD Library Functions Manual:

void *malloc(size_t size);

The malloc() function allocates size bytes of memory and returns a pointer to the
allocated memory. malloc() returns a NULL pointer if there is an error.

2 marks for the prototype. Allocating size bytes, returning a pointer, and what happens in the
event of failure to allocate were what got the other marks.

(Question 3 continued on next page)

COMP 206 8 continued...

Student ID:

(Question 3 continued)

(c) [6 marks] Explain how a make file helps the programmer when writing large programs.

Basically provide some support for abstraction (and hence automation) in the compilation process.
2 marks each for points such as:

• provides automated support – complex collections of commands reduced to one command

• since make files allow the programmer to express dependencies between files code can be
structured to exploit this support

• allows for easy customisation – variables can be used to specify e.g. architecture, location of
compiler, location of libraries, compiler flags

• keep track of dependencies, and only re-compile what needs to be recompiled

• provides documentation for programmer

COMP 206 9 continued...

Student ID:

Question 4. [21 marks]

The following C program defines and operates on a datatype of lists of integers. Fill in the boxes to
complete the program. It should output Sum = 55.

#include <stdio.h>
#include <stdlib.h>

#define list_struct_size sizeof(struct list)

typedef enum {false=0, true=1} bool;

typedef struct list {
int value;
struct list *next;

} *ListPtr;

int suml(ListPtr pl); /* Add all the items in a list */
void enlist(ListPtr* ppl, int i); /* Put an item into a list */
bool isempty(const ListPtr pl); /* Test if a list is the empty list */

int main()
{

ListPtr lp = NULL;
int i;

for(i=1; i <= 10; enlist(&lp, i), i++);

printf("Sum = %d\n", suml(lp));

return 0;
}

(Question 4 continued on next page)

COMP 206 10 continued...

Student ID:

(Question 4 continued)

int suml(ListPtr pl){
int sum;
sum = 0;

while(pl!=NULL){
sum+=pl->value;
pl=pl->next;

}
return sum;

}

8 marks

void enlist(ListPtr* ppl, int i) {
ListPtr tmp;

tmp = malloc(list_struct_size);
if(tmp==NULL){exit -1;}

tmp->value = i;
tmp->next = *ppl;
*ppl = tmp;

}

8 marks

(Question 4 continued on next page)

COMP 206 11 continued...

Student ID:

(Question 4 continued)

bool isempty(const ListPtr pl){
return(pl==NULL);

}

5 marks

COMP 206 12 continued...

Student ID:

Question 5. C++ Fundamentals [13 marks]

(a) [10 marks] Prior to decimalisation on 10 July 1967, New Zealand used a system of currency
made up of pounds, shillings and pence. One pound was equivalent to 20 shillings, and 12 pence
made up one shilling.

The class definition below describes values in this currency.

class Value {
public:
Value();
~Value();
void setValue (int l, int s, int d);
void printValue();
private:
int pounds;
int shillings;
int pence;

};

Identify the constructor, destructor, member functions, data members, and the member access spec-
ifiers:

Constructor: Value

2 marks

Destructor: ~Value

2 marks

Member functions: void setValue (int l, int s, int d), void printValue()

2 marks

(Question 5 continued on next page)

COMP 206 13 continued...

Student ID:

(Question 5 continued)

Data members:int pounds, int shillings, int pence

2 marks

Member access specifiers:private, public

2 marks

COMP 206 14 continued...

A Operator Precedence

1 (), ->, [], .

2 ~, ++, --, + (unary), - (unary), *(unary), &(unary) , sizeof, (type)

3 *, /, % (arithmetic binary

4 +, - (arithmetic binary)

5 <<, >>

6 <, <=, >, >=

7 ==, !=

8 &

9 ^

10 |

11 &&

12 ||

13 ?:

14 =, +=, -=, ... (assignment)

15 ,

COMP 206 15

