Student ID:
Signature

NWEN241: Systems Programming
 Mid-term Test

19 April 2024

Instructions

- Time allowed: $\mathbf{5 0}$ minutes
- Attempt all the questions. There are $\mathbf{4 5}$ marks in total.
- Write your answers in this test paper and hand in all sheets.
- If you think a question is unclear, ask for clarification.
- This test contributes $\mathbf{1 5 \%}$ of your final grade.
- You may write notes and working on this paper, but make sure your answers are clear.
- Only silent non-programmable calculators or silent programmable calculators with their memories cleared are permitted in this examination.
- No electronic dictionaries are allowed.
- Paper foreign to English language dictionaries are allowed.

Sections

1. True or False
2. Multiple Choice Questions
3. Short Answer Questions

Marks

TOTAL:

SECTION A True (T) or False(F)

Write the letter of the correct answer in the box provided. Each correct answer will earn 1 mark.

1. During the preprocessing stage, the preprocessor converts C source code into an assembly file containing an assembly language program.
[1 mark]
\square
2. my_auto_var_2 is a valid identfier in C.
\square
3. The rule: sizeof (int) >= sizeof (short) is always guarenteed in different implementations of C.
\square
4. ' A ' is a valid string literal.

5. When executed, the following C program will complete without any issues:
```
#include <stdio.h>
void main()
{
    char *p = "NWEN241 C-Test";
    p[0] = 'n';
    p[1] = 'w';
    printf("%s", p);
}
```


6. In C, memory leaks are automatically managed through garbage collection, freeing up leaked memory.
\square
7. $9.022 \mathrm{e}-4$ is a valid floating point literal.
[1 mark]
\square
8. Consider the following code snippet. Assuming the allocation is successful, the size (in bytes) of the memory block pointed to by cp will be 40 bytes.
char *cp;
cp = (char)*malloc(20*sizeof(char));

9. In the following declaration:

```
register int i;
```

The value of variable i is guaranteed to be stored in a CPU register.

10. Consider the following code snippet.
char *ptr = (char *)malloc(8*sizeof(char));
realloc(ptr, 12*sizeof(char));
After the call to realloc () on the second line, ptr still points to the previously allocated memory on the the first line.
\square

SECTION B Multiple Choice Questions

Write the letter corresponding to your answer in the box provided. Each question is accompanied by its respective mark allocation.
11. A C program contains the following declarations:

```
int i, j;
```

long ix ;
short s;
float x ;
char c;

What is the resulting data type of the following expression?
3 * i + (long) (ix / s) - x * c / j
a) int
b) double
c) long
d) float
\square
12. With every use of a memory allocation function, what function should be used to release allocated memory which is no longer needed?
[1 mark]
a) dealloc()
b) release()
c) free()
d) unalloc()

13. What will be the data type returned for the following C function?

```
int func()
{
    return (float)(char)5.0;
}
```

a) int
b) float
c) char
d) No output, the program will generate a compile time error
\square
14. Consider the following structure definition.

```
struct node {
    int i;
    float j;
};
```

What does the following C statement declare?

```
struct node *s[10];
```

a) An array of size 10 , each element of which is pointer to a structure of type node
b) A structure of 2 fields, each field being a pointer to an array of 10 elements
c) An array of size 10, each element of which is a structure of type node
d) None of these
15. Which of the following data type will throw an error on modulus operation(\%)?
a) int
b) short
c) long
d) float
\square
16. What will be the output of the following C code?
\#include<stdio.h>
enum random $\{\mathrm{a}, \mathrm{b}=99, \mathrm{c}, \mathrm{d}=-1\}$;
main()
\{
printf("\%d \%d \%d \%d\n",a,b,c,d);
\}
a) $199100-1$
b) $099100-1$
c) 1234
d) $0991-1$
\qquad
17. What will be the output of the following C program?

```
void count(int n)
{
    static int d = 1;
    printf("%d", n);
    printf("%d", d);
    d++;
    if(n>1)
        count(n-1);
    printf("\n");
}
void main()
{
    count(3);
}
```

a) 312213
b) 312111
c) 312213
d) 312111

18. What will be the output of the following C program?
\#include<stdio.h>
int main()
\{
char c[] = "STRINGS!!!";
char *p = c;
printf("\%s\n", p + p[1] - p[4]);
\}
a) STRINGS!!!
b) $\mathrm{S}!!!$
c) TRINGS
d) !!!
19. What will be the output of the following C program?
\#include<stdio.h>

```
void f(int *p, int *q)
{
    p = q;
    *p = 2;
}
int i = 0, j = 1;
int main()
{
        f(&i, &j);
        printf("%d %d \n", i, j);
        return 0;
}
```

a) 22
b) 21
c) 01
d) 02
20. What will be the output of the following C program?
[2 marks]

```
#include<stdio.h>
#include<string.h>
void main()
{
    char p [20];
    char *s = "string";
    int length = strlen(s);
    int i;
    for (i = 0; i < length; i++)
    p[i] = s[length - i];
    printf("%s",p);
}
```

a) gnirts
b) gnirt
c) string
d) no output is printed
\square
21. What will be the output of the following C code segment?

```
void f1(int a, int b)
{
    int c;
    c = a;
    a = b;
    b = c;
}
void f2(int *a, int *b)
{
    int c;
    c = *a;
    *a = *b;
    *b = c;
}
int main(){
    int a = 7, b = 4, c = 9;
        f1(a,b);
        f2(&b, &c);
        printf(\%d\n",c-a-b);
}
```

a) -6
b) -2
c) -12
d) 2
\square
22. Consider the following C declaration.

```
struct {
    short s[5];
    union {
        float y;
        long z;
    }u;
}t;
```

Assume that objects of the type short, float and long occupy 2 bytes, 4 bytes and 8 bytes, respectively. The memory requirement for variable t is:
a) 22
b) 18
c) 10
d) 14
23. What will be the output of the following C code?
\#include <stdio.h>
\#define foo(x, y) $\mathrm{x} / \mathrm{y}+\mathrm{x}$
int main()
\{
int i = -6, j = 3;
printf("\%d\n",foo(i + j, 3));
return 0;
\}
a) -4
b) -8
c) 2
d) 4

SECTION C Short answer questions

Write your answer in the space provided. Each question is accompanied by its respective mark allocation.
24. Describe the difference between char s1[]="cat"; and char s2[]=\{'c','a','t'\}; [2 marks]
\square
25. Consider the following C function. Rewrite it as a function like macro named PRODUCT. [2 marks]

```
int product(int a, int b)
{
    return a*b;
}
```

26. Using only one C statement, declare an array which can hold 10 integers with initial values 1 , 2,3 and 4 for the first four elements, and 0 for the remaining elements. Name this array iarray. [2 marks]
27. What will be the output of the following code?
```
#include <stdio.h>
int main()
{
    int ary[4] = {1, 2, 3, 4};
    int *p = ary + 2;
    printf("%d %d\n", p[-2], ary[*p]);
}
```

\qquad
28. What will be the output of the following code segment?

```
#include <stdio.h>
struct point{
    int x;
    int y;
    int z;
};
void foo(struct point*);
int main()
{
    struct point p1[] = {1, 2, 3, 4, 5, 6};
    foo(p1);
}
void foo(struct point p[])
{
    printf("%d\n", p->y++);
}
```

29. Consider the following C program.
```
#include <stdio.h>
int a;
int main()
{
    int b;
    {
        int c;
    }
}
```

(a) [1 mark] What will be the sequence of allocation and deletion of variables in the above code?
\qquad
(b) [1 mark] What is storage class of variable c?
\square
(c) [1 mark] What is lifetime of variable a?
30. Given the following variable declarations:

```
int a[] = {2,4,6,8,10};
int *ip = a;
int **pp = &ip;
```

Suppose that an int occupies 4 bytes in memory. The array a is at memory address 100, while ip is at memory address 200 and pp is at address 300(all addresses are in decimal).
(a) [1 mark] What is the numeric value of the expression *pp+1?
\square
(b) [1 mark] What is the numeric value of the expression **pp+1?

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

