\qquad

VICTORIA UNIVERSITY OF WELLINGTON

Te Whare Wananga o te Upoko o te Ika a Maui

EXAMINATIONS - 2006

END-YEAR

COMP 206

PROGRAM AND DATA STRUCTURES

Time Allowed: 3 Hours (180 minutes)
Instructions:

- Attempt all questions.
- There are 180 possible marks on the exam.
- Make sure your answers are clear and to the point.
- Non-programmable calculators without full alphabetic keys are permitted.
- Non-electronic foreign language dictionaries are permitted.
- Refer to the Appendix.
- No other reference material is allowed.
- Answer in the appropriate heavily outlined boxes or follow the instructions given in the questions.

Question Topic

Marks

PART 3
10 File Structure Fundamentals [25 marks]
11 B-tree [20 marks]
12 Index-Sequential File
[15 marks]
13 Secondary Indices
[10 marks]
14 Hash File
\qquad

Question 10. File Structure Fundamentals

a) [2 marks] Define the file record format.

ANSWER

The record format is a named sequence of fields containing (field name, data type) pairs. It is defined using struct or the private part of a class.
b) [2 marks] Define the record key.

ANSWER

The record key is a sequence of record format fields whose composite value uniquely identifies each record in a file. A key should be non redundant. Each key value has to be defined.
c) [9 marks] Describe each of the three basic file organizations using the following two criteria:

- The way file records are assigned to storage locations, and
- The relationship between a record's key value and the relative address of the location the record is stored in.

ANSWER

The heap file:
Records are stored densely in successive location according to the order of their entry and regardless to their key value.

The sequential file:
Records are stored densely in successive locations. A record with a greater key value occupies a location with a greater relative address.

The direct file:
A record is stored in the location whose relative address is a function of the record's key value. There may be non occupied locations in the file.
\qquad
d) [12 marks] Suppose the declarations of a struct and a variable given below are defined in a program.

```
typedef struct {
    int StudentId;
    char Name[16];
    char Address[31];
    } Record;
    ...
    record student;//student variable
```

Suppose there is the following command

```
FILE *sptr = fopen(student.data, w);
```

and it returnes a not null sptr value.
I. [3 marks] Suppose the student. data file contains records of a predictable length. Use the fprintf C Stream function to write a student record into the student. data file.

ANSWER

```
int retv = fprintf(sptr, "%10d %15s %30s", student.sid,
```

student. name);
II. [9 marks] Suppose the student. data file contains records with length indicators in front of each record and each field. Write a part of a C program that will compute the actual length of each field and the record itself and then use the fprintf C Stream function to write a student record into the student. data file.

```
ANSWER
char intToStr[6]; //Needed for casting int into str
short idlength = strlen(sprintf(intToStr, "%i",
student.sid));
short nlength = strlen(student.name);
short alength = strlen(student.address);
short length = strlen(buffer);
fprintf(sptr, "%d ", length); //write record length
fprintf(ptr, "%2d %d%2d %s%2d %s",
idlength, student.sid, nlength, student.name,
alength, student.address);//write record
```

\qquad

SPARE PAGE FOR EXTRA ANSWERS
Cross out the rough working that you do not want marked.
Specify the question number for work you do want marked.
\qquad

Question 11. B-tree

[20 marks]
a) [8 marks] In a B-tree of the order $p=2 m+1$ and the height h :
I. [2 marks] What is the minimum number of (key, address) pairs in a node that is not the root?

ANSWER

m
II. [2 marks] What is the maximum number of (key, address) pairs in a node?

ANSWER

$2 m$
III. [2 marks] What is the minimum number of (key, address) pairs in the root node?

ANSWER

1
IV. [2 marks] What is the number of edges between the root and a leaf node expressed in terms of the height h ?
ANSWER
$h-1$
b) [7 marks] Consider the B-tree of the order 5 in Figure below. The address components of node entries are omitted for the sake of simplicity.

Update the B-tree by inserting the key value 16. In your answer, show the Btree after inserting.
\qquad

ANSWER

c) [5 marks] The Admin Node of a B-tree file similar to one you have seen in the Assignment 3 contains the following fields:

- int num_records // number of records in the file,
- int num_of_nodes // number of actual tree nodes,
- int num_of_blocks // number of blocks allocated so far to the file,
- int ROOT // the relative address of the root node.

The variable node_size contains the length of a node. The file is implemented as a binary file.
Suppose a node splits. How does the btree. cpp program compute the relative address of the new node?
ANSWER

The relative address of the new node is
(num_of_blocks + 1)*node_size
\qquad

Question 12. Index-Sequential File

The file header of an index-sequential file with a B-tree is stored in a file allocation table in the main memory. The file header contains various information about the file like: number of blocks allocated to the file, the address of the B-tree root node, the address of the left most sequence set, and the number of records in the file. The file contains $r=65000$ records. File records have a fixed size of $L=300$ bytes. File blocks have a size of $B=4096$ bytes. Each block has a header of $d=96$ bytes.
a) [3 marks] Calculate the range of values of the number s of sequence sets.

ANSWER

Blocking factor $f=\lfloor(B-d) / L\rfloor=\lfloor 4000 / 300\rfloor=13$
$\lceil r / f\rceil \leq s \leq\lceil 2 r / f\rceil, 5000 \leq s \leq 10000$
b) [12 marks] The file is processed sequentially. The average access time to a sequence set (contained in a block on disc) is 3 ms , the time to read a block into the main memory is 2 ms , and the time to process a sequence set is 4 ms .
I. [3 marks] Suppose there is only one buffer of 4096 bytes allocated to the index-sequential file. Calculate the expected time to process the file in the worst case.

ANSWER
$t=10^{4} * 9^{*} 10^{-3}=90 \mathrm{~s}$
\qquad
II. [9 marks] Suppose there are two buffers of 4096 bytes allocated to the index-sequential file. Calculate the expected time to process the file in the worst case.
ANSWER

buffer 1	Sequence set 1			Sequence set 9999				$\xrightarrow[\text { time }]{ }$	
	3 ms	2 ms	4 ms		3 ms	2 ms	4 ms		
			Sequence set 2				Seq		
buffer 2			3 ms	2 ms	4 ms	. . .	3 ms	2 ms	4 ms
$t=9999 * 5 * 10^{-3}+9^{*} 10^{-3} \approx 50 \mathrm{~s}$									

\qquad

Question 13. Secondary Indices

Suppose:

- An Exam file contains $r=90000$ records,
- Record format is Exam(int Studentld, char Courseld, char Term, char Grade),
- The file is stored on disk and its structure consists of a data area and several indices,
- There is a secondary index on Grade containing 10 secondary key entries,
- There is a secondary index on Courseld having 200 secondary key entries,
- There is a secondary index on Term having 10 secondary key entries,
- All pointers are $p=8$ bytes long,
- The file block size is $B=8192$ bytes, and each block contains a pointer to the next level of indirection.
- All distributions are even, and
- There are several records containing Grade = "A+", or Courseld = "COMP206", or Term = "2006T2" in the file.

How many accesses to disk will it be needed to evaluate the query
Retrieve all exam records having Grade ="A+" AND Courseld = "COMP206" AND Term= "2006T2".

ANSWER

[All lines 1.5 marks]

Number of records with Grade $=$ " $A+$ " is $90000 / 10=9000$
So, the Grades index has $\lceil 9000 * 8 /(8192-8)\rceil=9$ levels of indirection
Number of records with Courseld $=$ "COMP206" is $90000 / 200=450$
So, the Courseld index has [450*8/8184] = 1 level of indirection
Number of records with Term ="2006T2" is $90000 / 10=9000$
So, the Term index has $\lceil 9000 * 8 / 8184\rceil=9$ levels of indirection
The number of records satisfying all three conditions is

$$
\lceil 90000 / 10 * 200 * 10\rceil=5
$$

The number of accesses is

$$
1+9+1+1+1+9+5=27
$$

\qquad

Question 14. Hash File
a) [2 marks] What is a hash function?

ANSWER

A hash function is a mapping from a set of record keys into a set of file relative addresses.
b) [2 marks] What are synonyms?

ANSWER

Synonyms are two records with different key values that map into the same file relative address.
c) [2 marks] What is a bucket?

ANSWER

A bucket is a storage place (usually a block) for storing a number (usually greater than 1) of synonyms.
d) [2 marks] What is the home bucket of a record?

ANSWER

The home bucket of a record is the bucket where the hash function maps the record.
e) [2 marks] What is an overflow record?

ANSWER

An overflow record is a record that can't be stored in its home bucket because it is already full.

APPENDIX

Low Level I/O System Calls:

```
int fd = open(const char file_name,
    int flags, [mode_t pmode]);
    - flags (O_RDWR | O_RDONLY | O_WRONLY, [O_CREATE],
        [O_APPEND], [O_TRUNC],...)
ssize_t retval = write(fd, source, size);
ssize_t retval = read(fd, dest, size);
off_t seekval = lseek(int fd,
    off_t offset, int reference);
    • reference - SEEK_SET | SEEK_CUR | SEEK_END
```


C Stream File I/O Commands (Text File)

```
FILE *sptr = fopen(char file_name, char file_type);
int fprintf(FILE *sptr, control_string, arg1,.., argn);
int fscanf(sptr, control_string, arg1,.., argn)
    - control string - formatting information,
    - argi (1 \leq i s n) - individual output data items
```

long seekval = fseek(FILE *spr, long offset, int ref);
- ref - 0 for SEEK SET, 1 for SEEK CUR, 2 for SEEK END

File Performance Formulae:

blocking factor $f=\lfloor(B-$ header $) / L\rfloor$
number of blocks $b=\lceil r / f\rceil$
external sort-merge $N=2 b\left(1+\left\lceil\left(\log _{n-1} b\right)-1\right\rceil\right)$
number of buffers n

B-tree (the worst case)

$h=1+\left\lfloor\log _{m+1}((r+1) / 2)\right\rfloor$
number of leaves $=2(m+1)^{h-2}$

B^{+}-tree (the worst case)

$h=2+\left\lfloor\log _{m+1}(r / 2 m)\right\rfloor$
number of leaves $=r / m$

Index-Sequential File with a B-tree

number of sequence sets s
$\lceil r / f\rceil \leq s \leq\lceil 2 r / f\rceil$

