
TE WHARE WĀNANGA O TE Ū POKO O TE IKA A MĀU I

VUW VICTORIA
UNIVERSITY OF WELLINGTON

EXAMINATIONS� 2008

FINAL EXAM

SWEN 201/COMP 206

PROGRAM AND
DATA STRUCTURES

Time Allowed: 3 hours

Instructions:

� Attempt all questions.

� Write your student ID number at the top of each sheet.

� There are 180 possible marks on the exam.

� Make sure your answers are clear and to the point.

� Non-programmable calculators without full alphabetic keys are permitted.

� Non-electronic foreign language dictionaries are permitted.

� Refer to the Appendix.

� No other reference material is allowed.

� Answer in the appropriate heavily outlined boxes or follow the instructions
given in the questions.

Question Mark

1

2

3

4

5

6

7

8

Total

SWEN 201/COMP 206 continued...

Student ID:

SWEN 201/COMP 206 2 continued...

Student ID:

Question 1. C Basics [14 marks]

(a) [2 marks] In the box below state the output of the following program.

The program uses strcpy, a function de�ned in string.h.

strcpy(dst, src) copies the string src to dst (including the terminating `\0' character).

#include <stdio.h>

#include <string.h>

#define SIZE 6

int main() {

int i;

char m[SIZE];

strcpy(m,"ABC12");

for(i=0 ; i<SIZE-1; i++) {

printf("%d=%c\n", i, m[i]+2);

}

return 0;

}

0=C 1=D 2=E 3=3 4=4

(Question 1 continued on next page)

SWEN 201/COMP 206 3 continued...

Student ID:

(Question 1 continued)

(b) [12 marks] The C program below is supposed to read two integers from the terminal and print
the list of integers from the lower to the higher.

#include <stdio.h>

int swap(int* x, int *y);

int main() {

int i, x, y;

printf("Value A?");

scanf("%s", x);

printf("Value B?");

scanf("%s", y);

if(x>y)swap(x, y);

for(i=x, i<y, i++){

printf("%d ", i)

}

printf("\n", i);

}

/* swaps the values of the two arguments */

int swap(int* x, int *y){

int tmp;

tmp=*y;

*x=*y;

*y=tmp;

}

It should behave like this:

%./a.out

Value A? 4

Value B? 9

4 5 6 7 8 9

%./a.out

Value A? 8

Value B? 5

5 6 7 8

(Question 1 continued on next page)

SWEN 201/COMP 206 4 continued...

Student ID:

(Question 1 continued)

Unfortunately this code contains several errors. In the box below identify the errors and provide
corrections:

scanf("%d", &x);

scanf("%d", &y);

swap(&x, &y);

for(i=x, i<=y, i++)

tmp=*x;

SWEN 201/COMP 206 5 continued...

Student ID:

Question 2. Dynamic Data Structures [22 marks]

You have been employed as a C programmer on a corpus linguistics research project. Corpus lin-
guists investigate language by studying the properties of a large body (a corpus) of text, almost
always using a computer.

One statistic in which you are interested is how frequently each word in a text occurs. You decide to
write a C program which will read words from a text �le and will record how frequently each word
occurs. You decide to use a binary search tree to record the data, where each node records a word
and its frequency. You need functions to:

� print out a tree (showing the words in alphabetical order),

� insert a single word into a tree,

� read a �le and insert all the words it contains into a tree, and

� open a �le.

The method to insert a word to the tree can be described as follows:

� if the current node is NULL then add a new node containg the word with frequency 1;

� if the word is the same as the one at the current node, increment the frequency;

� if the word is less than the one at the current node, insert the data in the left subtree;

� if the word is more than the one at the current node, insert the data in the right subtree;

If the input �le contains:

the cat ate the white mouse

then the following tree will be created:

the, 2
@
@
@

�
�

�
cat, 1
@
@
@

�
�

�

white, 1

mouse, 1ate, 1

(Question 2 continued on next page)

SWEN 201/COMP 206 6 continued...

Student ID:

(Question 2 continued)

The header �le for your program looks like this:

#define WORDSIZE 20

#define node_size sizeof(node)

struct treeitem {

char word[WORDSIZE];

int freq;

struct treeitem* left;

struct treeitem* right;

};

typedef struct treeitem node;

node* insert(node* tree, char* w);

void printtree(node* tree);

node* read_from_file(FILE* fp, node* tree);

FILE* openfile(FILE* fp, char* fname);

The main function looks like this:

int main(int argc, char* argv[])

{

FILE *fp1;

node* the_tree;

fp1 = openfile(fp1, argv[1]); /* Open the file. */

the_tree=read_from_file(fp1, NULL); /* Build the tree. */

printf("%s %s\n", "Frequency", "word");

printtree(the_tree); /* Print the tree. */

return fclose(fp1);

}

(Question 2 continued on next page)

SWEN 201/COMP 206 7 continued...

Student ID:

(Question 2 continued)

(a) [8 marks] In the box below implement the printtree function, which will print the words out
in alphabetical order. Given the tree above, this function will produce:

1 ate

1 cat

1 mouse

2 the

1 white

void printtree(node* tree){

if(tree) {

printtree(tree->left);

printf("%9d %s\n", tree->freq, tree->word);

printtree(tree->right);

}

}

(Question 2 continued on next page)

SWEN 201/COMP 206 8 continued...

Student ID:

(Question 2 continued)

(b) [14 marks] In the box below, write a function node* insert(node* tree, char* w)which will
add data about an occurence of a word to a tree, returning the updated tree. You may want to use
strcmp and strcpy.

strcmp is a function de�ned in string.h. A call to strcmp(s1, s2) returns an integer greater than,
equal to, or less than 0, according to whether the string s1 is greater than, equal to, or less than the
string s2.

strcpy is a function de�ned in string.h. A call to strcpy(dst, src) copies the string src to dst

(including the terminating `\0' character).

node* insert(node* tree, char* w){

int cond;

if (!tree){

if (!(tree = (node*)malloc(node_size))){

printf("Cannot allocate memory. Last word was %s\n", w);

exit(1);}

strcpy(tree->word, w);

tree->freq=1;

tree->left=tree->right=NULL;

} else if ((cond = strcmp(w, tree->word)) == 0)

tree->freq++;

else if (cond < 0)

tree->left=insert(tree->left, w);

else

tree->right=insert(tree->right, w);

return tree;

}

SWEN 201/COMP 206 9 continued...

Student ID:

Question 3. C and C++ [18 marks]

(a) [6 marks] In the box below state the syntax of C's struct and union constructs and describe a
situation when a structwould be used and a situation when a unionwould be used.

(Question 3 continued on next page)

SWEN 201/COMP 206 10 continued...

Student ID:

(Question 3 continued)

(b) [6 marks] In the box below explain the two parameter passing mechanisms provided by C++.

(Question 3 continued on next page)

SWEN 201/COMP 206 11 continued...

Student ID:

(Question 3 continued)

(c) [3 marks] C provides malloc and free for memory management. Explain what these functions
do.

(d) [3 marks] C++ provides additional constructs for memory management. State what these are
and what advantages they have over the constructs offered by C.

SWEN 201/COMP 206 12 continued...

Student ID:

SWEN 201/COMP 206 13 continued...

Student ID:

Question 4. C++ programming [30 marks]

You have been hired as a C++ programmer by a company which operates multi-storey car parks.
They are not making as much pro�t as they would like, and they want to run some simulations to
help them understand their business better.

You are just beginning to design the simulation, so you adopt a very simple model of a parking
building. The information you need to record for a parking building are:

� its capacity;

� the number of cars it contains (never greater than its capacity);

� the income which the building has earned (it costs $1.00 to park a car in a building).

No vehicle can enter a building which is full, and, of course, no vehicles can leave an empty build-
ing.

You decide to use a C++ class, Parking, to represent a parking building. You realise that you can
model the arrival a car at the building using the ++ operator and the exit of a car using the --

operator.

You also decide to implement >> and << operators for parking buildings. The >> operator will
prompt the user for a capacity for the parking building, the << operator will report the current state
of the building.

For example, given the following main function:

int main(){

int i;

Parking p1;

cin >> p1; /* Get a capacity for p1 */

Parking p2 = p1; /* p2 is just like p1 */

for(i=0; i<200; i++){p1++;} /* 200 attempted arrivals at p1 */

for(i=0; i<100; i++){p2++;} /* 100 attempted arrivals at p2 */

cout << "Building p1 -- " << p1 << endl;

cout << "Building p2 -- " << p2 << endl;

for(i=0; i<100; i++){p1--;} /* 100 attempted exits from p1 */

for(i=0; i<200; i++){p2--;} /* 200 attempted exits from p2 */

cout << "Building p1 -- " << p1 << endl;

cout << "Building p2 -- " << p2 << endl;

}

(Question 4 continued on next page)

SWEN 201/COMP 206 14 continued...

Student ID:

(Question 4 continued)

you should get the following behaviour:

Capacity? 150

Building p1 -- Current = 150 Capacity = 150 Income = $150

Building p2 -- Current = 100 Capacity = 150 Income = $100

Building p1 -- Current = 50 Capacity = 150 Income = $150

Building p2 -- Current = 0 Capacity = 150 Income = $100

(a) [5 marks] In the box below de�ne a suitable C++ class Parking:

class Parking {

friend ostream& operator<< (ostream&, const Parking&);

friend istream& operator>> (istream&, Parking&);

public:

Parking(int c=0): capacity(c), current(0), income(0.00) {};

Parking& operator= (const Parking&);

Parking operator++(int);

Parking operator--(int);

private:

int current;

int capacity;

double income;

};

(Question 4 continued on next page)

SWEN 201/COMP 206 15 continued...

Student ID:

(Question 4 continued)

(b) [5 marks] In the box give C++ code (including comments) for the assignment operator for
Parking:

Parking& Parking::operator= (const Parking& p){

capacity = p.capacity;

current = p.current;

income = p.income;

return *this;

};

(c) [5 marks] In the box give C++ code (including comments) for the post-increment operator for
Parking:

Parking Parking::operator++(int){

Parking temp = *this;

if(current<capacity){

current++;

income+=1.00;}

return temp;

}

(Question 4 continued on next page)

SWEN 201/COMP 206 16 continued...

Student ID:

(Question 4 continued)

(d) [5 marks] In the box give C++ code (including comments) for the post-decrement operator for
Parking:

Parking Parking::operator--(int){

Parking temp = *this;

if(current>0) current--;

return temp;

}

(e) [5 marks] In the box give C++ code (including comments) for the << operator for Parking:

ostream& operator<<(ostream& ostr, const Parking& p){

return ostr << "Current = " << p.current

<< " Capacity = " << p.capacity

<< " Income = $" << p.income;

}

(Question 4 continued on next page)

SWEN 201/COMP 206 17 continued...

Student ID:

(Question 4 continued)

(f) [5 marks] In the box give C++ code (including comments) for the >> operator for Parking:

istream& operator>> (istream& istr, Parking& p){

cout << "Capacity? ";

istr >> p.capacity;

return istr;

}

SWEN 201/COMP 206 18 continued...

Question 5. [18 marks]

C++ provides support for polymorphism in several ways. In the box below:

� state what forms of polymorphism C++ supports,

� explain how they are supported, and

� explain what advantages polymorphism gives to the programmer.

SWEN 201/COMP 206 19

SWEN 201/COMP 206 20 continued...

