Name:	• • •		• •	• •	• •	 	•	 •	 •	•	 •	•	 •	•	•
ID Nui	mbe	r:						 	 				 		

COMP203: Mid-Term Test

20 August, 2003

Instructions

- Maximum time: 90 minutes.
- Answer all the questions.
- There are 90 marks in total.
- Write your answers in the boxes in this test paper and hand in all sheets.
- Non-programmable calculators are allowed.
- Every box with a heavy outline requires an answer.
- Page 11 shows some commonly used MIPS instruction names and registers.

Questions	Marks
1. Basic Concepts	[10]
2. Registers, Memory and Big Constants	[10]
3. Decision Making	[10]
4. Addressing Modes and Instruction Formats	[10]
5. Number Conversion	[10]
6. Boolean Expression and Logic Gates	[10]
7. Multiplication	[10]
8. Overflow Detection and manipulation	[10]
9. Procedures/Functions	[10]
Total Marks	[90]

2	
Question 1. Basic Concepts	[10 marks]
Briefly define each of the following terms:	
(a) [3 marks] Assembler:	
(b) [2 montes] Committee	
(b) [3 marks] Compiler:	
(c) [2 marks] Operating system:	
(d) [2 marks] Sequential logic blocks:	

	_				~
Ouaction	2	Registers.	Momory	and Ria	Constants
()ucsuvii	4.	IVERINIEI 9"	MICHIGIA	allu Dig	Constants

[10 marks]

(a) [6 marks] Consider the following C statement:

$$A[10] = A[5] + h;$$

Assume that register \$s0 holds variable h and that register \$s1 holds the base address of the integer array A. Write a sequence of MIPS instructions that directly corresponds to this statement. Use temporary registers if necessary.

(b) [4 marks] Consider the following sequence of MIPS instructions:

```
lui $t1, 0x0123
ori $t2, $t1, 0xa021
addi $t3, $t1, 0xa021
```

What values will be stored in registers \$t1, \$t2, \$t3 after the above instructions are executed?

Question 3. Decision Making

[10 marks]

Consider the following C code segment:

Assume that the registers \$\$0, \$\$1, \$\$2 hold the variables x, m, n, respectively.

Write a sequence of MIPS instructions that directly corresponds to this C code segment. Use temporary registers if necessary.

[10	marks]
-----	--------

(a) [5 marks]	In MIPS assembly language, there are five addressing modes: (1) immediate/constant
addressing, (2)	register addressing, (3) base addressing, (4) PC-relative addressing, and (5) pseudodirect
addressing. Th	nere are three instruction formats: <i>R</i> – <i>type</i> , <i>I</i> – <i>type</i> and <i>J</i> – <i>type</i> .

Give one example instruction for each of the five addressing modes and state the instruction format of each given instruction.

(b) [5 marks] Given the following MIPS instructions:

```
slt $t0, $s1, $s0
bne $t0, $zero, Else
sub $s1, $s1, $s0
j Exit
Else:addi $s1, $s1, 1
Exit:add $s1, $s1, $s2
```

Calculate the value of the branch relative address Else(the offset) in the second instruction bne \$t0, \$zero, Else. **Present the final result only**.

Question 5. Number Conversion

[10 marks]

This question concerns different formats of numbers. Write only the final answer into the boxes.
(a) [2 marks] Convert the decimal number -1025 into a 16-bit two's complement binary number.
(b) [2 marks] Convert the 16-bit two's complement binary number 1111 1111 1100 0000 into a decimal number.
(c) $[3 \text{ marks}]$ Show the IEEE 754 binary representation of the decimal floating point number -3.625 in single precision.
-3.625 in single precision.
-3.625 in single precision. (d) [3 marks] Convert the following IEEE 754 single precision binary number
-3.625 in single precision. (d) [3 marks] Convert the following IEEE 754 single precision binary number
-3.625 in single precision. (d) [3 marks] Convert the following IEEE 754 single precision binary number

Question 6. Boolean Expression and Logic Gates

[10 marks]

Given the following truth table for a PLA (Programmable Logic Array):

]	Input	Output			
Α	В	C	D	Е	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

a) [4 marks] Give a boolean expression for each of D and E based on the truth table.
b) [6 marks] Design a PLA (Programmable Logic Array) to implement the truth table based on tooolean expressions you gave in part (a).

Ω_{110}	ction	7	1/11	ltinl	ication
Que	SUON	١/.	IVIU	lubi	icauon

F 1 0	1 7
	marks]
1 1 L /	THALKSI

Calculate the following multiplication using the Booth's algorithm:		
0011 × 1111		
Assume that the multiplicand and the multiplier are 4-bit 2's complement integers (consider the sign). Show your work in a table and identify your final result.		

Question 8. Overflow Detection and Manipulation

[10 marks]

Assume that A is a negative integer, that B is a positive integer, and that variables A, B, and C are placed in registers \$s1, \$s2 and \$s3, respectively. Write **at most 10** MIPS instructions in total to perform the following tasks:

- C = A B;
- If there is no overflow, then add decimal constant 100 to C (\$s3) and place the result in register \$s4;
- Otherwise, set the most significant bit of C (\$s3) to 1.

Use temporary registers if necessary.		

Question 9. Procedures/Functions

[10 marks]

Given the following C procedure/function:

```
int test(int x, int y)
{
   int z;

   z = x + y - 1;

  return z;
}
```

Assume that register \$s0 holds the variable z. Write a sequence of MIPS instructions that directly corresponds to this function. Use temporary registers if necessary.

A Commonly Used MIPS Instructions

add	sub
lw	SW
addi	lui
and	or
andi	ori
sll	srl
jal	jr
j	
beq	bne
slt	slti
mult	div
mul	
lb	sb

B MIPS Registers — Numbers and Names

Name	Number	Usage
\$zero	0	constant value 0
\$at	1	reserved for assembler
\$v0-\$v1	2–3	values for results and expression evaluation
\$a0 – \$a3	4-7	arguments, for functions/procedures
\$t0-\$t7	8-15	temporaries
\$s0-\$s7	16-23	saved. Fast locations for data
\$t8-\$t9	24-25	more temporaries
\$k0-\$k1	26-27	reserved for the OS
\$gp	28	global pointer
\$sp	29	stack pointer
\$fp	30	frame pointer
\$ra	31	return address, for functions/procedures
