Name:		· • • • • • • •	
ID Nur	nhon.		

COMP203: Mid-Term Test

13 April, 2005

Instructions

- Maximum time: 90 minutes.
- Answer all the questions.
- There are 90 marks in total.
- Write your answers in the boxes in this test paper and hand in all sheets.
- Paper translation dictionaries are allowed.
- Non-programmable calculators are allowed.
- Every box with a heavy outline requires an answer.
- Page 11 shows some commonly used MIPS instructions and registers.

Questions	Marks
1. Basic Concepts	[10]
2. Registers, Memory, and Big Constants	[10]
3. Decision Making	[10]
4. Addressing Modes and Instruction Formats	[10]
5. Number Conversion	[10]
6. Boolean Expression and Logic Gates	[10]
7. Multiplication	[10]
8. Overflow Detection and Manipulation	[10]
9. Procedures/Functions	[10]
Total Marks	[90]

logic blocks:

COMP 203 2 CONTINUED...

(b) [4 marks] Consider the following sequence of MIPS instructions:

lui \$t1, 0x1234
ori \$t2, \$t1, 0x8201
addi \$t3, \$t1, 0x8201

What values will be stored in registers \$t1, \$t2, \$t3 after the above instructions are executed?

Consider the following C code segment:

Assume that the registers \$\$0 and \$\$1 hold the integer variables x and m, respectively.

Write a sequence of MIPS instructions that directly corresponds to this C code segment. Use temporary registers if necessary.

Use the following sequence of MIPS instructions labelled as 1 to 8	to answer	questions	(a)	and ((b)).
--	-----------	-----------	-----	-------	-----	----

```
slt $t0, $s1, $s0
1
2
           bne $t0, $zero, Else
           sub $s1, $s1, $s0
3
4
           addi $s1, $s1, 10
5
           j Exit
6
   Else: lw $t0, 4($s4)
7
           add $s1, $s1, $t0
8
     Exit: or $s1, $s1, $t0
```

(a) [8 marks] For each of the above 8 labelled instructions, state its addressing mode and instruction format.

(b) [2 marks]

Calculate the value of the branch relative address (the offset in machine code) of Else in Instruction 2 "bne \$t0, \$zero, Else". Present the final result only in the box below.

COMP 203 5 CONTINUED...

This question of	concerns different formats of numbers. Write only the final answer into the boxes.
(a) [2 marks]	Convert the decimal number -2049 into a 16-bit two's complement binary number.
<u> </u>	
l	
]	
_	
(b) [2 marks] decimal numbe	Convert the 16-bit two's complement binary number 1111 1111 0000 0000 into a er.
	Convert the IEEE 754 single precision binary number 0000 0000 0000 0000 0000 into a decimal number.
	Show the IEEE 754 binary representation of the the decimal floating point number ngle precision format.

Given the following truth table for a PLA (Programmable Logic Array), answer questions (a) and (b):

Input			Output		
Α	В	С	D	Е	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

(a) [4 marks] Give a boolean expression for each of D, E and F based on the truth table.
(b) [6 marks] Design a PLA (Programmable Logic Array) to implement the truth table based on the boolean expressions you gave in part (a).

Calculate the following multiplication using the Booth's algorithm:							
0110 × 1111							
Assume that the multiplicand and the multiplier are 4-bit 2's complement integers (consider the sign). Show your work in a table and identify your final result.							

[10 marks]

Question 7. Multiplication

COMP 203 8 CONTINUED...

()nestion	8.	Overflow	Detection	and	М	aninı	lation
•	ucsuon	o.	Overmow	Dettethon	anu	TAT	ampu	uauvu

[10 marks]

Assume that A and B are negative integers and that variables A, B, and C are placed in registers \$s1, \$s2 and \$s3, respectively. Write **at most 10** MIPS instructions in total to perform the following tasks:

- C = A + B;
- If there is no overflow, then add decimal constant 500 to C (\$s3) and place the result in register \$s4;
- Otherwise, set the least significant bit of C (\$3) to 0.

TT.	• ,	• C
Use temporary	registers	it necessary
Osc temporary	registers	II liccossai y

COMP 203 9 CONTINUED...

Given the following C procedure/function:

```
int test(int m, int n)
{
   int k;
   k = m + n - 3;
   return k;
}
```

Assume that register \$s0 holds the variable k. Write a sequence of MIPS instructions that directly corresponds to this function. Use temporary registers if necessary.

A Commonly Used MIPS Instructions

add	sub
lw	SW
addi	lui
and	or
andi	ori
sll	srl
jal	jr
j	
beq	bne
slt	slti
mult	div
mul	
lb	sb

B MIPS Registers — Numbers and Names

Name	Number	Usage	
\$zero	0	constant value 0	
\$at	1	reserved for assembler	
\$v0-\$v1	2–3	values for results and expression evaluation	
\$a0-\$a3	4-7	arguments, for functions/procedures	
\$t0-\$t7	8-15	temporaries	
\$s0 - \$s7	16-23	saved. Fast locations for data	
\$t8-\$t9	24-25	more temporaries	
\$k0-\$k1	26-27	reserved for the OS	
\$gp	28	global pointer	
\$sp	29	stack pointer	
\$fp	30	frame pointer	
\$ra	31	return address, for functions/procedures	

COMP 203 11