Name:

ID Number:

COMP203: Mid-Term Test

04 April, 2007

Instructions

- Maximum time: **90 minutes**.
- Answer all the questions.
- There are 90 marks in total.
- Write your answers in the boxes in this test paper and hand in all sheets.
- Paper translation dictionaries are allowed.
- Non-programmable calculators are allowed.
- Every box with a heavy outline requires an answer.
- Page 11 provides some commonly used MIPS instructions and registers for your reference.

Questions	Marks
1. Basic Concepts	[10]
2. Registers, Memory, and Big Constants	[10]
3. Decision Making	[10]
4. Addressing Modes and Instruction Formats	[10]
5. Number Conversion	[10]
6. Boolean Expression and Logic Gates	[10]
7. Multiplication	[10]
8. Overflow Detection and Manipulation	[10]
9. Procedures/Functions	[10]

Question 1. Basic Concepts

(a) [2 marks] Briefly define the term *CPU* in the context of computer organisation.

(b) [2 marks] Briefly define the term *Memory* in the context of computer organisation.

(c) [2 marks] Briefly define the term *Assembler* in the context of computer organisation.

(d) [4 marks] Is a *ROM* a combinational logic block or a sequential logic block? Justify your answer.

Question 2. Registers, Memory and Big Constants

(a) [6 marks] Consider the following C statement:

A[25] = A[10] + j;

Assume that register \$51 holds integer variable j and that register \$50 holds the base address of the integer array A. Write a sequence of MIPS instructions that directly corresponds to this statement. Use temporary registers if necessary.

(b) [4 marks] Consider the following sequence of MIPS instructions:

lui \$t1, 0x0231
ori \$t2, \$t1, 0xa2c4
addi \$t3, \$t1, 0xa2c4

What values will be stored in registers \$t1, \$t2, \$t3 after the above instructions are executed?

Question 3. Decision Making

Consider the following C code segment:

```
if (x < 10)
    x = x + m;
else
    x = x - m;
x++;</pre>
```

Assume that the registers \$s0 and \$s1 hold the integer variables x and m, respectively.

Write a sequence of MIPS instructions that directly corresponds to this C code segment. Use temporary registers if necessary.

[10 marks]

Question 4. Addressing Modes and Instruction Formats

[10 marks]

Use the following sequence of MIPS instructions labelled as 1 to 9 to answer questions (a) and (b).

```
1
           slt $t0, $s1, $s0
2
           beq $t0, $zero, Else
3
           sub $s1, $s1, $s0
4
           add $s1, $s1, $s1
5
           addi $s1, $s1, 1
6
           j Exit
7
    Else: lw $t0, 4($s4)
8
           add $s1, $s1, $t0
9
     Exit: or $s1, $s1, $t0
```

(a) [7 marks] For each of the above instructions labelled as 1, 2, 3, 5, 6, 7, and 9, state its addressing mode and instruction format.

(**b**) [3 marks]

Calculate the value of the branch relative address (*the offset in machine code*) of Else in Instruction 2 "beg \$t0, \$zero, Else". **Present the final result only** in the box below.

Question 5. Number Conversion

This question concerns different formats of numbers. Write only the final answer into the boxes. (a) [3 marks] Convert the decimal number -1023 into a 16-bit two's complement binary number.

(**b**) [3 marks] Convert the 16-bit two's complement binary number 1111 1000 0000 0000 into a decimal number.

(c) [4 marks] Show the IEEE 754 binary representation of the the decimal floating point number -7.875 in single precision format.

Question 6. Boolean Expression and Logic Gates

Given the following truth table for a PLA (Programmable Logic Array), answer questions (a), (b) and (c):

Input		Output		
Α	В	С	D	Е
0	0	0	1	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	0

(a) [3 marks] Give a boolean expression for each of D and E based on the truth table.

(**b**) [5 marks] Design a PLA (Programmable Logic Array) to implement the truth table based on the boolean expressions you gave in part (a).

(c) [2 marks] Calculate the size of the PLA.

Question 7. Multiplication

Calculate the following multiplication using the Booth's algorithm:

0110 × 1110

Assume that the multiplicand and the multiplier are 4-bit 2's complement integers (consider the sign). Show your work in a table and identify your final result.

Question 8. Overflow Detection and Manipulation

Assume that A and B are positive integers stored in registers \$\$1 and \$\$2, respectively. Write a sequence of **at most 12** MIPS instructions to process all the following tasks:

- C = A + B; (Store C in register \$\$3)
- If there is no overflow, then subtract decimal constant 30 from C and place the result in register \$\$4;
- Otherwise, set the least significant bit of C to 1 and set the most significant bit of C to 0.

Use temporary registers if necessary.

Question 9. Procedures/Functions

Given the following C procedure/function:

```
int test(int x, int y, int z)
{
    int w;
    w = (x + y) - (z - 2);
    return w;
}
```

Assume that the registers a0, a1, and a2 hold the parameters x, y and z, respectively, that register s1 holds the local variable w, and that both the caller and the callee need to use s1. Write a sequence of MIPS instructions that directly corresponds to this function. Use temporary registers if necessary.

A Commonly Used MIPS Instructions

add	sub
lw	SW
addi	lui
and	or
andi	ori
sll	srl
jal	jr
j	
beq	bne
slt	slti
mult	div
mul	
lb	sb

B MIPS Registers — Numbers and Names

Name	Number	Usage
\$zero	0	constant value 0
\$at	1	reserved for assembler
\$v0-\$v1	2–3	values for results and expression evaluation
\$a0–\$a3	4-7	arguments, for functions/procedures
\$t0-\$t7	8-15	temporaries
\$s0-\$s7	16-23	saved. Fast locations for data
\$t8-\$t9	24-25	more temporaries
\$k0-\$k1	26-27	reserved for the OS
\$gp	28	global pointer
\$sp	29	stack pointer
\$fp	30	frame pointer
\$ra	31	return address, for functions/procedures
