
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2007

END-OF-YEAR

SWEN 102

Introduction to Software

Modelling

Time Allowed: 3 Hours

Instructions: There are 180 possible marks on the exam.
Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.
Some example Alloy code is provided on the last page.
Non-electronic Foreign language dictionaries are allowed.
Calculators ARE NOT ALLOWED.
No other reference material is allowed.

Question Topic Marks

1. Use Case Diagrams 30

2. Functional and Systemic Requirements 30

3. Object and Class Diagrams 30

4. Writing Invariants 30

5. Using Alloy 30

6. State Machines 30

Total 180

SWEN 102 continued...

Student ID:

Question 1. Use Case Diagrams [30 marks]

(a) [3 marks] Perform a textual analysis on the following description, to find candidate use
cases.

You should carefully and neatly underline key verb phrases in the text in the box.

The border control system checks the passport of every traveller ar-

riving at New Zealand’s airports.

The system is mainly used by customs officers. After logging in, an

officer can register an arriving traveller by entering their nationality

and passport number into the system. Officers may use a scanner to

read the passport, or may enter the details by typing on a keyboard.

Then, senior customs officers can get reports on who has arrived on

a particular day.

Frequent travellers with New Zealand passports may visit a special

office in the airport, where digital photographs are taken of their fin-

gerprints. The frequent traveller can then enter the country through

an automatic gate that scans their fingerprints.

Police officers with a warrant from a judge may request that a pass-

port is blocked by the system, to stop the passport holder leaving

the country.

Finally, system administrators must add and delete information

about the customs officers, police officers, and anyone else who is

permitted to use the system.

SWEN 102 2 continued...

Student ID:

(b) [6 marks] The description text is incomplete. Give two questions you would ask users
or clients to clarify these requirements. If necessary, also give the answer you have assumed
to this question.

SWEN 102 3 continued...

Student ID:

(c) [12 marks] Draw a use case diagram showing at least 3 actors and at least 6 use cases
that you would produce in a model of this system.

SWEN 102 4 continued...

Student ID:

(d) [9 marks]

Characterise two actors in the system in terms of the level of domain knowledge, system
knowledge and frequency of interaction, writing one short sentence for each part.

1. Actor Name

2. Domain Knowledge

3. System Knowledge

4. Frequency of Interaction

1. Actor Name

2. Domain Knowledge

3. System Knowledge

4. Frequency of Interaction

Write a short persona for a third actor in the system (not one of the actors above)

SWEN 102 5 continued...

Student ID:

Question 2. Functional and Systemic Requirements [30 marks]

The following text describes a computerised parking system:

The Computronic Park-O-Matic is an electronic parking system de-

signed to prevent citizens from abusing their city’s car parks.

A parking terminal is placed near every car park. If citizens can

find somewhere to park their cars, they can pay cash by entering the

carpark number into a machine, paying ten dollars an hour for up to

three hours parking, then printing a receipt that must be left in their

car. Alternatively, citizens can pay by SMS text messages — texting

“PAY” and the carpark number to the special number 7275 (PARK)

— the machine then issues a receipt.

Citizens who park often can purchase a season ticket by giving their

credit card number to a website. They are then sent a season ticket

by regular mail. Once they have received their season ticket, they

can park by entering the season ticket number into the parking ma-

chine. Season tickets holders can display their parking history via

a web interface — a list of where and when they have parked and

how much credit they have left.

Finally, council parking wardens can use a mobile phone to get a list

of all parking spaces in their area that are not currently paid for.

SWEN 102 6 continued...

Student ID:

(a) [20 marks] Draw essential use case cards for the following five use cases in this system.

Pay Cash for Park

Buy Season Ticket

Display Parking History

SWEN 102 7 continued...

Student ID:

Pay with Mobile Phone for Park

List Unpaid Parking Spaces in Area

SWEN 102 8 continued...

Student ID:

(b) [10 marks]

Briefly describe 5 important systemic requirements that could apply to the parking system.

1.

2.

3.

4.

5.

SWEN 102 9 continued...

Student ID:

Question 3. Object and Class Diagrams [30 marks]

(a) [15 marks]

The class diagram below is supposed to model a telephone directory system:

The Telecon SuperDirectory project hopes to store all kinds of direc-

tory information in a single place. Directory listings must have a

name and an address, but may then have one or more phone num-

bers, mobile numbers, email addresses, web addresses, instant mes-

saging (IM) usernames, images, or map locations. Work listings may

also have a mailing address, while home listings just have one ad-

dress.

SWEN 102 10 continued...

Student ID:

Circle and number seven distinct problems in the class diagram.
Describe briefly why each problem is a problem.

1.

2.

3.

4.

5.

6.

7.

SWEN 102 11 continued...

Student ID:

(b) [15 marks] Consider the object diagram below and draw a corresponding class diagram
on the facing page.

SWEN 102 12 continued...

Student ID:

SWEN 102 13 continued...

Student ID:

Question 4. Writing Invariants [30 marks]

Consider the following description for a bank account system, which is made up of some text
and a class diagram:

“The bank account system stores details of customers, accounts and transac-
tions. Every account has an account number, such that no two accounts have
the same number. The date an account was opened and the current balance are
recorded.

A transaction is either a withdrawal/deposit or a credit to the account for interest
accumulated on the balance. The date when each transaction took place, and a
unique transaction number are recorded. Furthermore, the amount of interest
credited is never negative, and the interest rate is stored as a percentage.”

(a) [10 marks] By considering the text and class diagram given for the bank account system
identify (in English) five candidate invariants:

No two accounts have the same number.

No two transactions have the same transaction number.

SWEN 102 14 continued...

Student ID:

(Question 4(a) continued)

Interest credited is never negative

Interest rate ≥ 0 and ≤ 100

Every transaction on an account must take place after the account was opened

(b) [10 marks] Translate four of your candidate invariants from (a) into the Alloy-like syn-
tax presented in lectures (there is example Alloy code provided on the last page):

all a1,a2:Account | a1.number = a2.number implies a1=a2

no disj t1,t2:Transaction | t1.number = t2.number

all i:Interest | i.amount >= 0

all i:Interest | i.rate >= 0 && i.rate <= 100

SWEN 102 15 continued...

Student ID:

The account system was extended to support transfers from one account to another, as
shown in the following class diagram and global invariants:

all t:Transfer | t.to != t.from

all a:Account, t:Transfer | t in a.transactions implies (a=t.to || a=t.from)

all a1,a2:Account,t1:Transfer | (t1 in a1.transactions &&

(a2 in t1.from+t1.to)) implies

t1 in a2.transactions

(c) [10 marks] Translate the three invariants in Alloy given above into written English:

No transfer can be from one account to the same account!

For every transfer on an account, the transfer must be either to or from that account

Every transfer must be recorded as a transaction on both accounts involved

SWEN 102 16 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 17 continued...

Student ID:

Question 5. Using Alloy [30 marks]

Consider the following description of a bookshelf:

“Books are arranged on a shelf, such that every book has one book or bookend
to its left and one to its right. Bookends always have a book or a bookend on
one side and nothing on the other side. Books have titles, but bookends don’t!”

(a) [5 marks] In the box below, draw an object diagram that is consistent with the description
of a bookshelf. The diagram should include at least two Books and one Bookend.

title = "Brave New World"

right

left

right

left

bookend0 : BookEnd
right

left

bookend1 : BookEndbook0 : Book

title = "Animal Farm"

book1 : Book

SWEN 102 18 continued...

Student ID:

An incorrect implementation of a book shelf in Alloy and an object diagram generated using
the command “run {} for 4” are given below:

sig String {}

sig ShelfItem {

left : lone ShelfItem,

right : lone ShelfItem,

title : String

}

sig Book extends ShelfItem { }

sig Bookend extends ShelfItem { }

(b) [10 marks] Circle and number five ways in which the object diagram given above is
inconsistent with the description of a bookshelf. For each, write a brief (i.e. one line) de-
scription of the problem in the corresponding box below.

1) Bookend0 has something on its left and its right!

2) Bookend0 is left of Bookend1, but Bookend1 is right of ShelfItem!

3) ShelfItem should not be allowed, since it’s an abstract concept

4) Book is right of itself!

5) Bookend0 has a title!

SWEN 102 19 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 20 continued...

Student ID:

(c) [15 marks] For each problem identified in (b), indicate what changes you would make
to the Alloy model to fix it. Wherever possible, give the Alloy code to illustrate.

Add following class invariant to Bookend: left=None || right=None

Note, this could also be written as: #(left+right)=1

Add following class invariant to ShelfItem: left = ~ right

Make ShelfItem abstract like so: abstract sig ShelfItem ...

Add following class invariant to ShelfItem: this not in this.^ left

Remove title from ShelfItem, and place it in Book instead

SWEN 102 21 continued...

Student ID:

Question 6. State Machines [30 marks]

Consider the following description of a hotel lift system:

“The hotel has two floors, designated level 1 and level 2. The
lift transports guests between floors. There is a lift request button
situated on each level; pressing this requests the lift to come to
that floor. The lift has a sensor that detects when it has arrived
on a particular floor. When it arrives, the lift doors open for a
fixed time, after which they automatically close.”

A state machine diagram for the hotel lift system has been pro-
vided:

SWEN 102 22 continued...

Student ID:

(a) [5 marks] A state machine diagram consists of states and transitions. In your own words,
describe what a state is, using the lift system as an example.

A state describes the current arrangement of things in the system at a particular moment
in time. For example, in the lift system, a state describes the current state of the lift doors,
the lift motor and the request switch.

(b) [10 marks] Each state in the state machine diagram given for the hotel system has a
unique number. Use these numbers when answering this question.

(i) In which state(s) is the lift doing nothing, other than to wait for the next request?

3,8

(ii) In which state(s) might people be getting on or off the lift?

1,2,9,10

(iii) In which state(s) is the lift moving between floors?

4,5,6,7

(iv) In which state(s) might someone be waiting for the lift to finish responding to an earlier
request?

1,4,7,10

(v) In which state(s) is the lift about to begin descending to Level 1?

1

SWEN 102 23 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 24 continued...

Student ID:

(c) [8 marks] Provide a suitable execution trace for each of the following scenarios. Your
execution trace may start from whichever state you chose.

“Jane requested the lift on Level 1 and the doors opened immediately.”

Level 1
Closed
No Req

Level 1 Button
−→

Level 1
Open

No Req

“John Requested the lift on Level 1. He could hear the lift coming down from Level 2
and it soon arrived.”

Level 2
Closed
No Req

Level 1 Button
−→

Down
Closed
No Req

Arrive Level 1
−→

Level 1
Open

No Req

“Sandy exited the lift on Level 2. When the doors closed, she heard the lift going down
to Level 1.”

Level 2
Open

Req Pending

Timeout
−→

Down
Closed
No Req

“James requested the lift on Level 1. He could hear the lift was going up to Level 2 and
knew he would have to wait.”

Up
Closed
No Req

Level 1 Button
−→

Up
Closed

Req Pending

SWEN 102 25 continued...

Student ID:

(d) [7 marks] The design given for the hotel lift system has a serious flaw.

(i) What important use case is not captured in the design?

There are no buttons inside the lift. So, somebody getting into the lift cannot request that it
go up/down a level!

(ii) Suggest a simple way in which the design could be modified to accommodate the use
case identified in (i).

We add request buttons inside the lift itself. These would work in much the same way as
the request buttons on either level

SWEN 102 26

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 27 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 28 continued...

Student ID:

(This page may be detached)

Appendix

Example Alloy code for the Monopoly board is given here for reference.

sig Player {} {}

abstract sig Boolean {}

lone sig True, False extends Boolean {}

abstract sig Building {}

sig House extends Building {}

sig Hotel extends Building {}

sig Property {

name: String, owner: lone Player, buildings: set Building,

mortgage : Boolean, colourGroup : one ColourGroup

}{

buildings in Property some -> set Building

#buildings <= 4

some h : Hotel | h in buildings

all h : Hotel | h in buildings implies no h’ : House | h’ in buildings

mortgage = True => no buildings

some buildings implies one owner

}

sig ColourGroup { colour: String

}{

all cg : ColourGroup | cg.colour = colour implies cg = this

#~colourGroup >= 2 && #~colourGroup <= 3

all p : this.~colourGroup | (some p.buildings) implies

(all p’ : this.~colourGroup | p.owner = p’.owner)

all disj p, p’ : this.~colourGroup, h: Hotel |

(h in p.buildings) implies

((some h’ : Hotel | h’ in p’.buildings) || #p’.buildings = 4)

all disj p, p’ : this.~colourGroup |

(no h : Hotel | h in p.buildings) implies (

#p.buildings = #p’.buildings ||

#p.buildings = #p’.buildings + 1 ||

#p.buildings = #p’.buildings - 1 ||

(#p.buildings = 4 && some h : Hotel | h in p’.buildings))

}

SWEN 102 29 continued...

