
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2010

END-OF-YEAR

SWEN 102
Introduction to Software

Modelling

Time Allowed: 3 Hours

Instructions: There are 180 possible marks on the exam.
Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.
Some example Alloy code is provided on the last page.
Non-electronic foreign language dictionaries are allowed.
Calculators ARE NOT ALLOWED.
No other reference material is allowed.

Question Topic Marks

1. Use Case Diagrams 30

2. Object and Class Diagrams I 30

3. Object and Class Diagrams II 30

4. Alloy I 30

5. Alloy II 30

6. State Machines 30

Total 180

SWEN 102 continued...

Student ID:

Question 1. Use Case Diagrams [30 marks]

(a) [3 marks] Perform a textual analysis on the following description, to find candidate use
cases. You should carefully and neatly underline key verb phrases in the text.

The Open University uses an online system to manage and run its courses.

Lecturers create courses and assignments, whilst students upload solutions.

Tutors are employed to mark assignments, and can submit marks and comments

using the system.

To create a new course, the course co-ordinator selects the course code from a list

of valid courses. He/she then provides a description of the course, and the login

of each tutor. The logins are checked to ensure they exist, and are not enrolled in

the course.

To create an assignment for a course, the co-ordinator

provides a course name, the start and end dates, and any restrictions on file

types that may be submitted. The end date cannot be before the start date, whilst

the name cannot already have been used.

Students log in and submit solutions to assignments. If theend date has past, or

incorrect file types are used, the submission is rejected.

Tutors log in and mark assignments. Each tutor can only see the courses they

are involved in. A tutor does not have to submit marks for every question at

once. Instead, they may return at a later time and complete their marks. When all

marks are entered, the lecturer is notified by email.

(Question 1 continued on next page)
SWEN 102 2 continued...

Student ID:

(Question 1 continued)

(b) [12 marks] Provide use case descriptions for the main success sequence of the follow-
ing three use cases.

Create Course

Create Course (Course Co-ordinator)
Requires: Logged In

Display Course List
Select Course
Enter Description and Logins

Check Logins
Create Course Record

Create Assignment

Create Assignment (Course Co-ordinator)
Requires: Logged In

Display Course List
Select Course
Enter Name

Check name not already used
Enter start/end dates

Check start date before end date
Enter Restrictions

Create Assignment Record

Submit Solutions

Submit Solutions (Student)
Requires: Logged In

Display Course List
Select Course
Submit File

Check end date
Check file type
Record Submission

(Question 1 continued on next page)
SWEN 102 3 continued...

Student ID:

(Question 1 continued)

(c) [9 marks] Draw a use case diagram showing at least 3 actors and at least 6 use cases for
the University system. You may include the use cases given on Page 3.

Tutor

Create Course

Create Assignment

Submit Solution

Log In

Submit Marks

Mark Submission

<<requires>>

<<requires>>

<<requires>>
<<requires>>

<<requires>>

Course
Coordinator

Student

(Question 1 continued on next page)
SWEN 102 4 continued...

Student ID:

(Question 1 continued)

(d) [6 marks] The description text is incomplete. Give two questions you would ask users
or clients to clarify these requirements.

How are course coordinators distinguished from lecturers?

How are login accounts created in the system?

SWEN 102 5 continued...

Student ID:

Question 2. Object and Class Diagrams II [30 marks]

(a) Consider the following (incomplete) class diagram which models the game of chess,
and answer the following questions.

<<overlapping>>

Piece

colour

Pawn

Board

on

Rook Queen

King Knight

Position

x

y

h
as

1

Player

colour

*
1

4

(i) [14 marks] For each question, state whether or not it is correct with respect to the above
diagram. If it is not correct, briefly state why.

1.
Each board may have one or more pieces on it

Incorrect. Each board must have exactly one piece on it.

2.
Every board has two players

Incorrect. Every board has four players.

(Question 2 continued on next page)
SWEN 102 6 continued...

Student ID:

(Question 2 continued)

3
Pawns and Kings are pieces

Correct.

4

A piece cannot be both a Pawn and a King

Incorrect. Subclasses of piece are listed as overlapping and, hence, a piece can
be both a Pawn and a King.

5
Every piece is on a board

Incorrect. A piece is on zero or more boards.

6
Every piece on a board is at a given x and y position

Correct.

7
No two pieces on the same board can be at the same position

Incorrect. There is no contraint which expresses this.

(Question 2 continued on next page)
SWEN 102 7 continued...

Student ID:

(Question 2 continued)

(b) [16 marks] Consider the object diagram below and draw a corresponding class diagram
on the facing page.

banned

c3 : Comment

date: 02/08/10

time: 1pm

text: "This is wrong"

c2 : Comment

date: 23/09/10

time: 3pm

text: "No! It’s good"

c1 : Comment

date: 23/09/10

time: 12pm

text: "I disagree"

on

on

p1 : Post

date: 23/09/10

text: "..."

title: "Java is Great"

p2 : Page

date: 03/09/10

text: "..."

title: "Java FAQ"

modified: 10/09/10

comments: false

p3 : Page

date: 01/08/10

text: "..."

title: "How to Program"

modified: 19/08/10

comments: true

on

g1 : Guest

IP: 192.168.0.1

name: "John"

u1 : User

login: JN

password: ******

name: "James Night"

m1 : Moderator

login: dp

password: *****

name: "David Pearce"

submitted

submitted

submitted

submitted

(Question 2 continued on next page)
SWEN 102 8 continued...

Student ID:

(Question 2 continued)

submitted
Item <<abstract>>

title

Post

Page

Name

Actor <<abstract>>

Login

Password

User

IP

Guest

Moderator

1

0..1

date

text

time

Comment
on* 1

*

*

banned

SWEN 102 9 continued...

Student ID:

Question 3. Object and Class Diagrams I [30 marks]

(a) [15 marks] Based on the description from Page 2, draw a well-designed class diagram to
model the University system. This should contain at most 6 classes and 10 attributes and
use inheritance and associations where appropriate.

*

Course

Code

Description

Tutors

Start

Restrictions

Assignment

End

Solution

Files
Login

Password

User

Coordinator Student

Tutor

has *1

1

*

for

coordinates
*

1

submitted

*

1

Marks
marked1 *

for

1

0..1

Grade

*

*

enrolled

tutors *

SWEN 102 10 continued...

Student ID:

(b) [6 marks] In the box below, draw an object diagram consistent with your class diagram
which captures the following scenario:

“Dave created Assignment 1 for course SWEN102. Mel submitted her solution,
and it was marked by Duncan. Mel got an A for that assignment.”

enrolled

Login: djp

Password: *****

dave: Coordinator

Start: 1/10/10

Restrictions: none

a1: Assignment

End: 1/11/10

s1: Solution

Files: "a2−sol.pdf"

m1: Marks

Grade: A
Login: dunc

Password: ****

Duncan: Tutor

Login: mk	

Password: ****

mel: Student

swen102: Course

Code: SWEN102

Description: "blah blah"

has

coordinates

submitted

marked

for

for

tutors

(c) [5 marks] An important requirement of the University system is that it is secure. Briefly,
discuss why it is difficult to capture this requirement in a class diagram.

Security is not a concern that can be expressed easily in a class diagram. This is because se-
curity primarily revolves around restricting what users are allowed to do. A class diagram
does not capture what users can do in a system — use cases capture this. Class diagrams
capture only information about the structure of data, not how it is accessed or manipulated.

SWEN 102 11 continued...

Student ID:

(d) [4 marks] Another important requirement of the University system is that it is reliable.
Briefly, discuss what this means in the context of the university system.

The university system is an online system. Therefore, one would expect to be able to access
the system at any time or day. For example, lectures and/or students may wish to access
the system in another time zone. Therefore, it is important that the system should have
high availability — that is, it should not suffer from significant downtime (i.e. time when
the system is unavailble for use).

SWEN 102 12 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 13 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 14 continued...

Student ID:

Question 4. Alloy I [30 marks]

Consider the following description of an on-line flower ordering system, which is made up of
some text and a class diagram:

The on-line flower ordering system records orders for flowers and other small
presents. When an order is made, the date the order is received is recorded. The
customer has to specify delivery date and payment method. However, payment
date must be before the delivery date. Supported payment options are: Paypal
and Cheque.

Customers can register as a member, so that the system can store their name,
address, and order history. All members are associated with a positive number
that uniquely identifies them. Members who have ordered at least 10 times
might get the option to place an order for free. For such an order, no payment is
required.

Member
name: String

address: String
id: Integer

Payment
date: Date

amount: Integer

Order
received: Date
delivery: Date

Paypal Payment Cheque Payment

0..1 *

1

0..1

by

for

(Question 4 continued on next page)
SWEN 102 15 continued...

Student ID:

(Question 4 continued)

(a) [10 marks] By considering the given text and class diagram, identify (in English) five
candidate invariants:

1) Payment date must be before delivery date.

2) No two customers may have the same id.

3) For every order with no payment, there exists a member who made the payment and
has made at least 10 other payments.

4) Received date must be before delivery date.

5) Payment amount must be positive.

(Question 4 continued on next page)
SWEN 102 16 continued...

Student ID:

(Question 4 continued)

(b) [10 marks] For each candidate invariant, provide a counter-example—an object diagram
that is consistent with the class diagram but inconsistent with your invariant.

1)

date: 1/11/08

amount: 309

o : Order

p : ChequePayment

received: 1/11/09

delivery: 1/12/09

for

2)

name: "Dave"

address: "Kelburn"

Member

id: 1

name: "Dave"

address: "Kelburn"

Member

id: 1

3)

date: 1/11/09

amount: 10

o : Order

p : ChequePayment

received: 1/11/09

delivery: 1/12/08

for

(Question 4 continued on next page)
SWEN 102 17 continued...

Student ID:

(Question 4 continued)

4)

Order

received: 1/7/2011

delivery: 1/7/2010

5)

date: 1/11/09

amount: −10

o : Order

p : ChequePayment

received: 1/11/09

delivery: 1/12/09

for

(Question 4 continued on next page)
SWEN 102 18 continued...

Student ID:

(Question 4 continued)

(c) [10 marks] Translate the class diagram on Page 15 into Alloy code. You do not need to
translate your candidate invariants. Example Alloy code is provided on page 32.

sig string {}

sig Member {
name : string,

address : string,

id: Int

}

sig Order {
received: Int,

delibery: Int,

by : lone Member

}{
lone this.˜@forOrder

}

abstract sig Payment {
date: Int,

amount: Int,

forOrder : one Order

}

sig PaypalPayment extends Payment {}
sig ChequePayment extends Payment {}

SWEN 102 19 continued...

Student ID:

Question 5. Alloy II [30 marks]

Consider the following description of a registry office system:

“A Registry Office records births, deaths, and marriages. For each registered
person, the system stores a unique ID, gender, (biological) parents, the current
spouse, and whether the person has died. The system enforces some consis-
tency rules to ensure the data is correct: A person cannot be the child of several
mothers or several fathers, but a person’s parents might be unknown. Further-
more, a person cannot be a descendant (child or child of a child or child of a
child of a child, etc.) or spouse of itself. Same sex marriages are allowed but
a person cannot have several spouses at once. The spouse of a married person
must be married (i.e. must have a spouse) but not to somebody else.”

An incorrect model of the registry office in Alloy and an object diagram of that model is given
below:

sig ID {}

abstract sig Person {
id: ID,
children: set Person,
spouse: lone Person
}

sig Dead extends Person {}
sig Man, Woman extends Person {}

The above object diagram was generated using the command “run {} for 6” from the
Alloy model.

(Question 5 continued on next page)
SWEN 102 20 continued...

Student ID:

(Question 5 continued)

(a) [5 marks] Evaluate each of the following Alloy expressions on the object diagram given
on the previous page:

Man$0.spouse

{Woman$0}

Woman$1.∼children

{Man$0, Man$1}

spouse.spouse

{Man$0→ Woman$3, Woman$0→ Woman$0, Woman$3→ Woman$3, Man$1→ Man$1}

(Question 5 continued on next page)
SWEN 102 21 continued...

Student ID:

(Question 5 continued)

(b) [10 marks] Circle and number five distinct ways in which the object diagram given on
the previous page is inconsistent with the description of the registry office. For each, write
a brief (i.e. one line) description of the problem in the corresponding box below.

1)

Two people have the same ID.

2)

Woman$1 has two fathers.

3)

Man$1 is a spouse of himself.

4)

Man$0 is a spouse of Woman$0 but not vice-versa.

5)

Man$0 is a descendant of himself.

(Question 5 continued on next page)
SWEN 102 22 continued...

Student ID:

(Question 5 continued)

(c) [15 marks] For each problem identified in (b), indicate what changes you would make
to the Alloy model to fix it and give Alloy code to illustrate.

1)

Add: fact { all disj p1, p2 : Person | p1.id != p2.id}

2) Add Person constraints:

no disj p1,p2 : spouse | p1 in Man and p2 in Man

no disj p1,p2 : spouse | p1 in Woman and p2 in Woman

3) Add Person constraint:

this not in spouse

4) Add Person constraint:

all p : spouse | this in p.@spouse

5) Add Person constraint:

this not in ^children

SWEN 102 23 continued...

Student ID:

Question 6. State Machines [30 marks]

Consider the following description of a simple ventilation system with timers:

“The ventilation system can be set to start and/or stop after predefined times.
Our simple model does not support changing the time lengths, and has only two
buttons: On/Off and Timer. The ventilation system can be switched on and off
using the On/Off button. If the ventilation system is switched off, pressing the
Timer button selects when the fan should switch on. If the ventilation system is
switched on, pressing the Timer button selects when the fan should switch off.”

A state machine diagram for the ventilation system has been provided:

1
Fan off

Vent system off
Timer 1 unset
Timer 2 unset

2
Fan on

Vent system on
Timer 1 unset
Timer 2 unset

3
Fan on

Vent system on
Timer 1 unset

Timer 2 running

6
Fan off

Vent system on
Timer 1 running

Timer 2 set

5
Fan off

Vent system on
Timer 1 running
Timer 2 unset

4
Fan off

Vent system off
Timer 1 set

Timer 2 unset

Timeout
On/Off button

On/Off
button

On/Off
button

On/Off
button

Timer
button

Timer
button

Timer
button

Timer
button

Timer
button

Timer
button

TimeoutTimeout

On/Off
button

On/Off
button

(Question 6 continued on next page)
SWEN 102 24 continued...

Student ID:

(Question 6 continued)

(a) For each of the following statements, indicate whether it is a true or false statement
based on the state machine diagram.

(i) [2 marks] The fan is on whenever the ventilation system is switched on.

False

(ii) [2 marks] When the fan is on, the ventilation system is switched on.

True

(iii) [2 marks] If the fan is running, it can always be switched off by pressing the On/Off
button once.

True

(iv) [2 marks] A Timeout either switches the fan on or off.

True

(v) [2 marks] Once the ventilation system is switched on, the Timer button only influences
timer 2.

True

(Question 6 continued on next page)
SWEN 102 25 continued...

Student ID:

(Question 6 continued)

(b) Provide a suitable execution trace for the following scenarios. Your execution trace may
start from whichever state you chose.

(i) [2 marks]

“John notices the fan working. He presses the Timer button once. Later on, the ventila-
tion system switches the fan off automatically.”

2→ 3→ 1

(ii) [2 marks]

“Jane programs the system in the morning so that it switches automatically on and off
during the day.”

1→ 4→ 5→ 6→ 3→ 1

(iii) [2 marks]

“Sue notices that the fan is off. She presses the On/Off button once but the fan doesn’t
switch on. Later on, she notices that the fan is on.”

4→ 5→ 2

(Question 6 continued on next page)
SWEN 102 26 continued...

Student ID:

(Question 6 continued)

(c) Consider the following incomplete Alloy model of the ventilation system:

enum OnOff { On, Off }

sig MachineState {
fan: OnOff,
ventSystem: OnOff,
onTimer: Int,
offTimer: Int
}{

fan = On iff (ventSystem = On and onTimer = 0)
0 <= onTimer && onTimer <= 7
0 <= offTimer && offTimer <= 7
}

pred init(s: MachineState) {
s.ventSystem = Off
s.onTimer = 0
s.offTimer = 0
}

pred onOffButton(s1, s2: MachineState) {
s1.ventSystem = On iff s2.ventSystem = Off
s2.ventSystem = Off implies (s2.onTimer = 0 and s2.offTimer = 0)
s2.ventSystem = On implies (s1.onTimer = s2.onTimer and s1.offTimer = s2.offTimer)
}

pred nextTimerState(s1, s2: Int) {
(s1 < 7 and s2 = s1 + 1) or (s1 = 7 and s2 = 0)
}

pred timerButton(s1, s2: MachineState) {
s1.ventSystem = s2.ventSystem
s1.fan = s2.fan
nextTimerState[s1.onTimer, s2.onTimer] or nextTimerState[s1.offTimer, s2.offTimer]
s1.onTimer = s2.onTimer or s1.offTimer = s2.offTimer
s1.ventSystem = Off iff s1.offTimer = s2.offTimer
}

pred transition(s1, s2: MachineState) {
onOffButton[s1,s2] or timerButton[s1,s2]
}

sig ExecutionTrace { states: seq MachineState }{
init[states[0]] and all i: states.inds | i > 0 implies transition[states[i−1], states[i]]
}

(Question 6 continued on next page)
SWEN 102 27 continued...

Student ID:

(Question 6 continued)

(i) [2 marks] Give an instance of MachineState which corresponds to state two (2) from the
diagram on page 24.

fan: On

ventSystem: On

onTimer: 0

offTimer: 0

(ii) [2 marks] What do you know about the fan in the first state of an ExecutionTrace?.

It is Off.

(iii) [2 marks] Give an instance of ExecutionTrace which corresponds to the execution trace
“1→ 4→ 5” from the diagram on page 24.

fan: Off

ventSystem: Off

onTimer: 0

offTimer: 0

→

fan: Off

ventSystem: Off

onTimer: 1

offTimer: 0

→

fan: Off

ventSystem: On

onTimer: 1

offTimer: 0

(iv) [2 marks] What functionality is provided by the Alloy model but was not in the state
machine diagram?

The Alloy model indicates that the timer runs for a specific number of steps before reseting

(Question 6 continued on next page)
SWEN 102 28 continued...

Student ID:

(Question 6 continued)

(v) [4 marks] Complete the following predicate to model the “Timeout” transition from the
diagram on page 24.

// s1 is before state, s2 is after state
pred Timeout(s1, s2 : MachineState) {

(s1.onTimer > 0 && s2.onTimer = 0 && s1.ventSystem = s2.ventSystem && s2.fan = On)
or (s1.onTimer = 0 && s1.offTimer > 0 && s2.offTimer = 0 && s2.fan = Off && s2.ventSystem = Off)

}

(vi) [2 marks] Give an Alloy constraint that ensures every MachineState is always part of an
ExecutionTrace.

fact { all s : MachineState | one e : ExecutionTrace | s in e.states.elems}

SWEN 102 29

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 30 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 31 continued...

Student ID:

(This page may be detached)

Appendix

Example Alloy code for the Monopoly board is given here for reference.

sig Name, Colour {}

abstract sig Building {}{

some buildings.this

}

sig House extends Building {}

sig Hotel extends Building {}

fact {

// There can be no more than 32 houses and 12 hotels at one time

// For simplicity, we lower these values since they’re too big for Alloy!

#House <= 7

#Hotel <= 2

}

sig Player {}

sig Property {

name: Name,

owner: lone Player,

buildings: set Building,

colourGroup : one ColourGroup,

}{

// Up to four houses or one hotel in buildings

#buildings <= 4

some h : Hotel | h in buildings

all h : Hotel | h in buildings implies #buildings = 1

// built properties must have an owner

some buildings implies one owner

}

sig Mortgaged in Property {}{ no buildings }

sig ColourGroup {

colour: Colour,

}{

// Every ColourGroup has a unique colour

all cg : ColourGroup | cg.@colour = colour implies cg = this

SWEN 102 32 continued...

Student ID:

// ColourGroup Arity

#~colourGroup >= 2 && #~colourGroup <= 3

// You must own a whole ColourGroup in order to build

all p : this.~colourGroup | (some p.buildings) implies

(all p’ : this.~colourGroup | p.owner = p’.owner)

// buildings must be equally distributed

all disj p, p’ : this.~colourGroup, h: Hotel |

(h in p.buildings) implies ((some h’ : Hotel | h’ in p’.buildings) ||

#p’.buildings = 4)

all disj p, p’ : this.~colourGroup |

(no h : Hotel | h in p.buildings) implies (

#p.buildings = #p’.buildings ||

#p.buildings = #p’.buildings + 1 ||

#p.buildings = #p’.buildings - 1 ||

(#p.buildings = 4 && some h : Hotel | h in p’.buildings))

}

run {} for 4 but 2 ColourGroup, 8 Building, 6 int, exactly 1 Hotel

SWEN 102 33 continued...

