
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2011

END-OF-YEAR

SWEN 102
Introduction to Software

Modelling

Time Allowed: 3 Hours

Instructions: There are 180 possible marks on the exam.
Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.
Some example Alloy code is provided on the last page.
Non-electronic foreign language dictionaries are allowed.
Calculators ARE NOT ALLOWED.
No other reference material is allowed.

Question Topic Marks

1. Use Case Descriptions 30

2. Object and Class Diagrams I 30

3. Object and Class Diagrams II 30

4. Writing Invariants 30

5. Using Alloy 30

6. State Machines 30

Total 180

SWEN 102 continued...

Student ID:

Question 1. Use Case Descriptions [30 marks]

(a) [3 marks] Perform a textual analysis on the following description, to find candidate use
cases. You should carefully and neatly underline key verb phrases in the text.

The IntraNet of the University of MiddleEarth contains a Computer

Science website that enables students to write reviews of its Courses

and Lecturers. Computer Science has 22 courses in Network

Engineering, 18 courses in Software Engineering, 12 courses in

Hardware Design including 4 in Electronic Testing Techniques, 5

related courses on Research Design and 3 courses in Project Man-

agement and Professional Practice.

Any student at the University can register to login to this website

and, after authorization, they can search for a course and read

reviews. Only students registered for a Computer Science course

can write reviews of their courses and lecturers. New reviews are

checked by Course Administrators before being posted on the site.

When new courses are made the Course Administrator adds them

to the website. They must include a description of the content and

assessment details. The Computer Science website is managed by

the IT Administrators who delete old information, amend false in-

formation and organize the technical issues of registration and login.

(Question 1 continued on next page)
SWEN 102 2 continued...

Student ID:

(Question 1 continued)

(b) [9 marks] Draw a use case diagram showing at least 3 actors and at least 6 use cases
that you would produce to model of this system.

(Question 1 continued on next page)
SWEN 102 3 continued...

Student ID:

(Question 1 continued)

(c) [12 marks] Provide use case descriptions for the main success sequence of the following
three use cases.

Create Course

Write Review

Amend Information

(Question 1 continued on next page)
SWEN 102 4 continued...

Student ID:

(Question 1 continued)

(d) [6 marks] Give characteristics for two actors in the system [6 marks]

Actor Name:

Domain Knowledge:

System Knowledge:

Actor Name:

Domain Knowledge:

System Knowledge:

SWEN 102 5 continued...

Student ID:

Question 2. Object and Class Diagrams I [30 marks]

(a) [15 marks] Based on the description from Question 1 on Page 2, draw a well-designed
class diagram to model the Course and Lecturer Review system. This should contain at
most 6 classes and 10 attributes and use inheritance and associations where appropriate.

SWEN 102 6 continued...

Student ID:

(b) [5 marks] In the box below, draw an object diagram consistent with your class diagram
which captures the following scenario:

“The course administrator created an entry for the new course SWEN103. Mel
submitted a review, which was placed in a queue to be checked by the course
administrator.”

(c) [5 marks] Briefly, discuss what functional requirements are. You should include at least
one example of a functional requirement for the Course and Lecturer Review system.

SWEN 102 7 continued...

Student ID:

(d) [5 marks] Briefly, discuss what non-functional requirements are. You should include at
least one example of a non-functional requirement for the Course and Lecturer Review
system.

SWEN 102 8 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 9 continued...

Student ID:

Question 3. Object and Class Diagrams II [30 marks]

Consider the following description for a stationary shop:

A shop in the main street sells books, magazines and stationary items. Station-
ary items include pens, pencils, writing pads, staplers and movies on DVDs.

Books are sold in different parts of the shop depending on their subject. The
subject categories include gardening, history, travel, childrens stories and adult
fiction. Every book has an author, publisher, date of publication and category.

DVDs are recorded with the movie title, the actors in the movie, a cover image
and the length of playing time.

Each CD has a title, an artist, a cover image and the number of tracks each with
its own title and running time.

Magazines have a title, issue number, month of publication, publisher, dis-
tributer name and address and phone number.

You are given the following class diagram describing the various items sold in the shop:

(Question 3 continued on next page)
SWEN 102 10 continued...

Student ID:

(Question 3 continued)

(a) [15 marks] Circle and number five distinct problems in the class diagram on the previ-
ous page. Describe why each problem is a problem and how you would solve it.

1)

2)

3)

4)

5)

(Question 3 continued on next page)
SWEN 102 11 continued...

Student ID:

(Question 3 continued)

(b) [15 marks] Consider the object diagram below and draw a corresponding class diagram
on the facing page.

(Question 3 continued on next page)
SWEN 102 12 continued...

Student ID:

(Question 3 continued)

SPARE PAGE FOR EXTRA ANSWERS

SWEN 102 13 continued...

Student ID:

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 14 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 15 continued...

Student ID:

Question 4. Alloy I [30 marks]

Consider the following (incomplete) description of the tic-tac-toe game:

“A tic-tac-toe game requires two players and a board with 9 squares (which
are initially empty). During the game, each player takes it turn to place one of
their pieces (either a circle or a cross). The player who starts always uses circles,
whilst the other player always uses crosses.”

Consider the following Alloy model of the above description, and corresponding object
diagram:

1 abstract sig Piece {}
2 one sig Blank extends Piece {}
3 one sig Cross extends Piece {}
4 one sig Circle extends Piece {}
5

6 sig Turn { circle: Int, cross: Int }
7 { circle >= 0 && circle < 9 && cross >= 0 && cross < 9 }
8

9 sig Board { pieces : seq Piece, turns : seq Turn }
10 {
11 #pieces = 9
12 all t : turns.elems | pieces[t.circle] in Circle
13 all t : turns.elems | pieces[t.cross] in Cross
14 all disj i1, i2 : turns.inds | turns[i1].cross != turns[i2].cross
15 all disj i1, i2 : turns.inds | turns[i1].circle != turns[i2].circle
16 all i : pieces.inds | pieces[i] in Circle implies some t : turns.elems | t.circle = i
17 all i : pieces.inds | pieces[i] in Cross implies some t : turns.elems | t.cross = i
18 }

The object diagram was generated from the given alloy model using an appropriate run

command.

(Question 4 continued on next page)
SWEN 102 16 continued...

Student ID:

(Question 4 continued)

(a) [5 marks] By adding circles and crosses to the following tic-tac-toe boards, illustrate
the game shown in the object diagram given on the previous page. You should follow the
mapping of indices to squares indicated in the diagrams.

0 1 2

3 4 5

6 7 8

(After Turn 1)

0 1 2

3 4 5

6 7 8

(After Turn 2)

(b) [5 marks] Evaluate each of the following Alloy expressions on the object diagram given
on the previous page:

Board.pieces[2]

#(Board.pieces.Circle)

Board.turns

Circle.∼(Board.pieces)

some t : Board.turns.elems | t.circle > t.cross

(Question 4 continued on next page)
SWEN 102 17 continued...

Student ID:

(Question 4 continued)

(c) [8 marks] For each of the following statements from the Alloy model, describe (in En-
glish) what it achieves:

circle >= 0 && circle < 9 && cross >= 0 && cross < 9

all t : turns.elems | pieces[t.circle] in Circle

all disj i1, i2 : turns.inds | turns[i1].cross != turns[i2].cross

all i : pieces.inds | pieces[i] in Circle implies some t : turns.elems | t.circle = i

(Question 4 continued on next page)
SWEN 102 18 continued...

Student ID:

(Question 4 continued)

(d) Consider the following additional requirement for a tic-tac-toe game:

“The board is full when a piece has been placed on every square. There will
always be more circles than crosses on a full board.”

(i) [3 marks] Briefly, discuss why this must be true.

(ii) [4 marks] The Alloy model given on page 16 does not permit instances corresponding
to a full board. Briefly, discuss what the problem is with the model.

(iii) [5 marks] Briefly, outline how you would modify the Alloy model to permit instances
corresponding to a full board.

SWEN 102 19 continued...

Student ID:

Question 5. Alloy II [30 marks]

A linked list is a chain of zero or more links that begins with a special header link. Links
cannot be shared between lists. Consider the following simple model for linked lists:

1 sig Link {
2 next : lone Link,
3 data : Int
4 }
5

6 sig Header extends Link { length : Int }

(a) [12 marks] Translate each of the following statements into an Alloy fact.

1) Every data item in a Link is a positive integer.

2) Every chain of Links begins with an instance of Header.

3) Every instance of Header begins a chain of Links.

4) Field length counts the number of Links reachable from the Header (including itself).

5) Every Link is reachable from exactly one Header (i.e. no sharing).

6) No Link is reachable from itself (i.e. no cycles).

(Question 5 continued on next page)
SWEN 102 20 continued...

Student ID:

(Question 5 continued)

Consider the following class diagram for an account system, and the additional rules given
below.

• The amount on a transaction must be a positive integer.

• A transaction for a customer must occur on one of his/her accounts.

• A transaction cannot occur on an account before it is open.

• Every transaction has a different number.

• A transfer cannot be made from / to the same account.

SWEN 102 21 continued...

Student ID:

(b) [18 marks] In the box below, provide an Alloy model for the account system. You
should use Ints to represent times, and you may assume unlimited bit-width.

SWEN 102 22 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 23 continued...

Student ID:

Question 6. State Machines

Consider the following description of a simple alarm system with timers:

“The alarm system protects houses against break-ins. The system has two sen-
sors which detect movement in the home. The owner can arm one or both of the
sensors. When no-one is home, both sensors should be armed. At night, the
downstairs sensor should be armed so the owner can move around upstairs.
When one or more sensors is armed, the system begins an exit timer. Whilst the
exit timer is active, the siren will not sound. Once exiting is complete, the sys-
tem is fully armed. When an armed sensor detects movement, an alarm timer
begins. This gives time for the owner to deactivate the system when returning
home. However, if the alarm is not deactivated before time runs out, the siren
will sound and continue until the system is deactivated.”

A state machine diagram for the alarm system has been provided:

(Question 6 continued on next page)
SWEN 102 24 continued...

Student ID:

(Question 6 continued)

(a) For each of the following statements, indicate whether it is a true or false statement
based on the state machine diagram.

(i) [2 marks] Sensor 2 may be armed whilst sensor 1 is not.

(ii) [2 marks] The siren may sound when the exit timer is active.

(iii) [2 marks] When the siren is deactivated, the system remains armed.

(iv) [2 marks] A timeout does not always result in the siren being activated.

(b) Provide a suitable execution trace for the following scenarios. Your execution trace may
start from whichever state you chose.

(i) [2 marks]
“Before going to bed, John arms the downstairs sensor. Later, a sensor is activated and
the siren sounds. Luckily, it was John’s cat and he quickly deactivates the system.”

(ii) [2 marks]
“Sue arms both sensors and leaves the house. But, she forgot her bag. She goes back into
the house and immediately deactivates the system before the alarm sounds.”

(Question 6 continued on next page)
SWEN 102 25 continued...

Student ID:

(Question 6 continued)

(c) Consider the following incomplete Alloy model of the alarm system:

1 enum Bool {True, False}
2 enum Sensor {None, Both}
3

4 sig AlarmState {
5 armed : Sensor, siren : Bool, exiting : Bool, timer : Bool
6 }
7

8 pred init(s : AlarmState) {
9 s.armed = None and s.siren = False and s.exiting = False and s.timer = False

10 }
11

12 pred armSystem(s,s’ : AlarmState) {
13 s.armed = None
14 s’.armed = Both and s’.siren = False and s’.timer = False and s’.exiting = True
15 }
16

17 pred sensorActivated(s,s’ : AlarmState) {
18 s.armed = Both and s.siren = False and s.timer = False and s.exiting = False
19 s’.armed = Both and s’.siren = False and s’.timer = True and s’.exiting = False
20 }
21

22 pred finished(s,s’ : AlarmState) {
23 s.exiting = True
24 s’.armed = Both and s’.siren = False and s’.timer = False and s’.exiting = False
25 }
26

27 pred timeOut(s,s’ : AlarmState) {
28 s.timer = True
29 s’.armed = s.armed and s’.siren = True and s’.timer = False and s’.exiting = False
30 }
31

32 pred deactivated(s,s’ : AlarmState) {
33 s.armed = Both
34 s’.armed = None and s’.siren = False and s’.timer = False and s’.exiting = False
35 }
36

37 pred transition(s1, s2: AlarmState) {
38 armSystem[s1,s2] or finished[s1,s2] or sensorActivated[s1,s2] or timeOut[s1,s2] or deactivated[s1,s2]
39 }
40

41 sig ExecutionTrace { states: seq AlarmState }{
42 init[states[0]] and all i: states.inds | i > 0 implies transition[states[i−1], states[i]]
43 }

(Question 6 continued on next page)
SWEN 102 26 continued...

Student ID:

(Question 6 continued)

(i) [2 marks] Give an instance of AlarmState which corresponds to state eight from the dia-
gram on page 24.

(ii) [2 marks] Give an instance of ExecutionTrace which corresponds to the execution trace
“5→ 6→ 7” from the diagram on page 24.

(iii) [2 marks] What key functionality is provided in the state machine diagram but not by
the Alloy model?

(iv) [2 marks] What transition in the state machine diagram does the predicate finished

correspond to?

(Question 6 continued on next page)
SWEN 102 27 continued...

Student ID:

(Question 6 continued)

(v) [2 marks] Can the system described by the Alloy model be deactivated whilst exiting is
in progress?

(vi) [2 marks] How many different instances of ExecutionTrace are possible with exactly three
states?

(vii) [2 marks] How many different instances of ExecutionTrace are possible with exactly four
states?

(viii) [4 marks] Suppose we add “exiting = True implies armed = Both” as an invariant on
AlarmState. Briefly, discuss whether or not this changes the number of valid instances of the
model.

.

SWEN 102 28

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 29 continued...

Student ID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 30 continued...

Student ID:

(This page may be detached)

Appendix

Example Alloy code for the Monopoly board is given here for reference.

sig Name, Colour {}

abstract sig Building {}{

some buildings.this

}

sig House extends Building {}

sig Hotel extends Building {}

fact {

// There can be no more than 32 houses and 12 hotels at one time

// For simplicity, we lower these values since they’re too big for Alloy!

#House <= 7

#Hotel <= 2

}

sig Player {}

sig Property {

name: Name,

owner: lone Player,

buildings: set Building,

colourGroup : one ColourGroup,

}{

// Up to four houses or one hotel in buildings

#buildings <= 4

some h : Hotel | h in buildings

all h : Hotel | h in buildings implies #buildings = 1

// built properties must have an owner

some buildings implies one owner

}

sig Mortgaged in Property {}{ no buildings }

sig ColourGroup {

colour: Colour,

}{

// Every ColourGroup has a unique colour

all cg : ColourGroup | cg.@colour = colour implies cg = this

SWEN 102 31 continued...

Student ID:

// ColourGroup Arity

#~colourGroup >= 2 && #~colourGroup <= 3

// You must own a whole ColourGroup in order to build

all p : this.~colourGroup | (some p.buildings) implies

(all p’ : this.~colourGroup | p.owner = p’.owner)

// buildings must be equally distributed

all disj p, p’ : this.~colourGroup, h: Hotel |

(h in p.buildings) implies ((some h’ : Hotel | h’ in p’.buildings) ||

#p’.buildings = 4)

all disj p, p’ : this.~colourGroup |

(no h : Hotel | h in p.buildings) implies (

#p.buildings = #p’.buildings ||

#p.buildings = #p’.buildings + 1 ||

#p.buildings = #p’.buildings - 1 ||

(#p.buildings = 4 && some h : Hotel | h in p’.buildings))

}

run {} for 4 but 2 ColourGroup, 8 Building, 6 int, exactly 1 Hotel

SWEN 102 32 continued...

