
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2011

MID-TRIMESTER TEST

SWEN 102

Introduction to Software

Modelling

Time Allowed: 50 minutes

Instructions: There are 50 possible marks on the exam.
Answer all questions in the boxes provided.
Every box requires an answer.
Some example Alloy code is provided on the last page.
Non-electronic foreign language dictionaries are allowed.
Calculators ARE NOT ALLOWED.
No other reference material is allowed.

Question Topic Marks

1. Alloy I 25

2. Alloy II 25

Total 50

SWEN 102 continued...



Student ID: . . . . . . . . . . . . . .

Question 1. Alloy I [25 marks]

Consider the following description of blocks:

“Blocks are 3-dimensional objects which can be stacked on top of each other.
There are two kinds of block: pillars and cones. A block can be stacked on at
most one block, and can be under at most one block. No block can be stacked
upon a cone and no block can be stacked upon itself.”

An incorrect Alloy model of the blocks system and an object diagram of that model are given
below:

sig Block {
stackedOn : lone Block

}

sig Pillar extends Block {}
sig Cone extends Block {}

run {} for 7 but exactly 5 Block, 1 Cone

The above object diagram was generated using the given run command.

(Question 1 continued on next page)

SWEN 102 2 continued...



Student ID: . . . . . . . . . . . . . .

(Question 1 continued)

(a) [5 marks] Evaluate each of the following Alloy expressions on the object diagram given
on the previous page:

Pillar$1.stackedOn ={Pillar$0}

Pillar$0.∼stackedOn ={Pillar$1}

Pillar$1.stackedOn + Pillar$0.stackedOn ={Pillar$0,Cone}

Pillar$1.*stackedOn ={Pillar$1,Pillar$0,Cone}

(b) [8 marks] Identify four distinct ways in which the Alloy model given is inconsistent
with the description given for blocks.

1)A block should be either a Pillar or Cone. However, the model includes blocks (such as
Block$1) which are neither.

2)A block cannot be stacked upon a cone. However, the model includes blocks (such as
Pillar$0) which are stacked on a cone.

3)A block cannot be under more than one block. However, the model includes a block (i.e.
Cone) which is under two other blocks (i.e. Pillar$0 and Block$0).

4)A block cannot be stacked upon itself. However, the model includes a block which is
stacked upon itself (i.e. Cone).

(Question 1 continued on next page)

SWEN 102 3 continued...



Student ID: . . . . . . . . . . . . . .

(Question 1 continued)

(c) [12 marks] For each problem identified in (b), indicate what changes you would make
to the Alloy model to fix it and give Alloy code to illustrate.

1)The declaration of Block should be made abstract, as follows:

abstract sig Block { ... }

This would prevent a block from existing which is neither a Pillar nor Cone.

2)The declaration of Cone should be modified to prevent blocks from being stacked upon
it, as follows:

sig Cone extends Block {}{ no this.∼stackedOn }

This ensures that no blocks can be stacked on any Cone.

3)The declaration of Block should be modified to restrict the number of blocks that can be
stacked upon it, as follows:

abstract sig Block { stackedOn: lone Block}{ lone this.∼stackedOn }

This ensures that at most zero or one blocks can be stacked on any Block.

4) The declaration of Block should be modified to prevent itself from being in the set of
blocks reachable via the stackedOn relation, as follows:

abstract sig Block { stackedOn: lone Block}{
lone this.∼stackedOn

this not in this.^stackedOn

}

This ensures that no block can be in its own transitive closure.

SWEN 102 4 continued...



Student ID: . . . . . . . . . . . . . .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 5 continued...



Student ID: . . . . . . . . . . . . . .

Question 2. Alloy II [25 marks]

Consider the following simple model for a library system:

sig string {}
enum Bool { No, Yes }

sig Borrower {
books : some Book,

limit : Int

}
sig Book {
title : string,

closedReserve : Bool

}

(a) [10 marks] Translate each of the following statements into an Alloy fact.

1) A borrower’s limit is a positive integer.

fact { all b : Borrower | b.limit >= 0 }

2) A borrower cannot borrow more books than his/her limit.

fact { all b : Borrower | #b.books <= limit }

3) No two books can have the same title.

fact { all disj b1,b2 : Book | b1.title != b2.title }

4) No book can be borrowed by more than one borrower.

fact { all b : Book | lone #b.∼books }

5) No book on closed reserve can be borrowed.

fact { all b : Book | b.closedReserve = Yes implies no #b.∼books }

SWEN 102 6 continued...



Student ID: . . . . . . . . . . . . . .

Consider the following class diagram for an auction system, and the additional rules given
below.

• The amount bid on an auction cannot be negative.

• The reserve for an auction cannot be negative.

• An auction cannot end before it has begun.

• A bid must occur between an auction’s start and end time.

• A user cannot bid on one of their own auctions.

• A item cannot be in more than one auction at the same time.

SWEN 102 7 continued...



Student ID: . . . . . . . . . . . . . .

(b) [15 marks] In the box below, provide an Alloy model for the auction system. You should
use Ints to represent times, and you may assume unlimited bit-width.

sig string {}

sig User {
login: string,

auctions: set Auction,

bids : set Bid

}

sig Auction {
reserve : Int,

startsOn : Int,

endsOn : Int,

item: one Item

}{
one ∼auctions

// auction reserve cannot be negative
reserve >= 0

// auction cannot end before it has begun
startsOn < endsOn

}

sig Bid {
amount : Int,

madeOn : Int,

on : one Auction

}{
one bids

// bid amount cannot be negative
amount >= 0

// bid placed between auction start and end time
madeOn >= on.startsOn

madeOn <= on.endsOn

// a user cannot bid on their own auction
this. bids != on. auctions

}

sig Description {}

sig Item { description : Description}{
all disj a1,a2:this.∼item | a1.endsOn<a2.startsOn or a2.endsOn<a1.endsOn

}

********************************

SWEN 102 8



Student ID: . . . . . . . . . . . . . .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 102 9 continued...



Student ID: . . . . . . . . . . . . . .

(This page may be detached)

Appendix

Example Alloy code for the Monopoly board is given here for reference.

sig Name, Colour {}

abstract sig Building {}{

some buildings.this

}

sig House extends Building {}

sig Hotel extends Building {}

fact {

// There can be no more than 32 houses and 12 hotels at one time

// For simplicity, we lower these values since they’re too big for Alloy!

#House <= 7

#Hotel <= 2

}

sig Player {}

sig Property {

name: Name,

owner: lone Player,

buildings: set Building,

colourGroup : one ColourGroup,

}{

// Up to four houses or one hotel in buildings

#buildings <= 4

some h : Hotel | h in buildings

all h : Hotel | h in buildings implies #buildings = 1

// built properties must have an owner

some buildings implies one owner

}

sig Mortgaged in Property {}{ no buildings }

sig ColourGroup {

colour: Colour,

}{

// Every ColourGroup has a unique colour

all cg : ColourGroup | cg.@colour = colour implies cg = this

SWEN 102 10 continued...



Student ID: . . . . . . . . . . . . . .

// ColourGroup Arity

#~colourGroup >= 2 && #~colourGroup <= 3

// You must own a whole ColourGroup in order to build

all p : this.~colourGroup | (some p.buildings) implies

(all p’ : this.~colourGroup | p.owner = p’.owner)

// buildings must be equally distributed

all disj p, p’ : this.~colourGroup, h: Hotel |

(h in p.buildings) implies ((some h’ : Hotel | h’ in p’.buildings) ||

#p’.buildings = 4)

all disj p, p’ : this.~colourGroup |

(no h : Hotel | h in p.buildings) implies (

#p.buildings = #p’.buildings ||

#p.buildings = #p’.buildings + 1 ||

#p.buildings = #p’.buildings - 1 ||

(#p.buildings = 4 && some h : Hotel | h in p’.buildings))

}

run {} for 4 but 2 ColourGroup, 8 Building, 6 int, exactly 1 Hotel

SWEN 102 11 continued...


