
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON Student ID: .

EXAMINATIONS — 2013

Trimester 1

SWEN221

Software Development

Time Allowed: THREE HOURS

Instructions: Closed Book.
There are 180 possible marks on the exam.

Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.

No calculators permitted.
Non-electronic Foreign language dictionaries are allowed.

No reference material is allowed.

Question Topic Marks

1. Debugging and Code Comprehension 30

2. Inheritance and Exception Handling 30

3. Testing 30

4. Java Generics 30

5. Threading and Garbage Collection 30

6. Inheritance and Polymorphism 30

Total 180

SWEN221 continued...

Student ID: .

Question 1. Debugging and Code Comprehension [30 marks]

Consider the following classes and interfaces, which compile without error:

1 public interface SimpleSet {
2

3 /**
4 * Add a new item into this SimpleSet. If item is already

5 * stored in this SimpleSet, then this method does nothing.

6 * Otherwise, it stores item in this SimpleSet.

7 */

8 public void add(Object item);
9

10 /**
11 * Check whether an object is currently stored in this SimpleSet

12 * which equals() the given item.

13 */

14 public boolean contains(Object item);
15 }
16

17 public class Point {
18 private int x;
19 private int y;
20

21 public Point(int x, int y) {
22 this.x = x;
23 this.y = y;
24 }
25 }

SWEN221 2 continued...

Student ID: .

(a) (i) [2 marks] Based on the documentation provided for SimpleSet, state the output you would
expect from the following code snippet:

1 SimpleSet s = ...;
2 Point p = new Point(1,1);
3 s.add(p);
4 if(s.contains(new Point(1,1))) {
5 System.out.println("MATCH");
6 } else {
7 System.out.println("NO MATCH");
8 }

(ii) [5 marks] In the box below, provide an appropriate equals(Object) method for class
Point.

(iii) [2 marks] In the box below, provide an appropriate hashCode() method for class Point.

SWEN221 3 continued...

Student ID: .

Consider the following implementation of an ArraySet, which compiles without error:

1 public class ArraySet implements SimpleSet {
2 private Object[] items;
3 private int count; // counts number of elements currently used.

4

5 public ArraySet() {
6 this.items = new Object[2];
7 this.count = 0;
8 }
9

10 public void add(Object item) {
11 if(item == null) {
12 throw new IllegalArgumentException("Cannot add null!");
13 }
14 items[count] = item;
15 count = count + 1;
16 }
17

18 public boolean contains(Object o) {
19 for(int i=0;i!=items.length;++i) {
20 if(items[i].equals(o)) {
21 return true;
22 }
23 }
24 return false;
25 }
26 }

(b) There is a bug in method ArraySet.contains(Object).

(i) [3 marks] Give example code which could have caused the following exception:

1 Exception in "main" java.lang.NullPointerException
2 at ArraySet.contains(ArraySet.java:20)
3 ...

(ii) [3 marks] Briefly, outline how you would fix this bug.

SWEN221 4 continued...

Student ID: .

(c) [3 marks] Give example code which could have caused the following exception:

1 Exception in "main" java.lang.ArrayIndexOutOfBoundsException: 2
2 at ArraySet.add(ArraySet.java:14)
3 ...

(d) [8 marks] In the box below, provide an updated version of ArraySet.add(Object) which
allows an ArraySet to hold an unlimited number of objects.

SWEN221 5 continued...

Student ID: .

(e) [4 marks] Currently, ArraySet implements SimpleSet (defined on page 2). Briefly,
discuss whether or not this seems appropriate.

SWEN221 6 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 7 continued...

Student ID: .

Question 2. Inheritance and Exception Handling [30 marks]

Consider the following classes which compile without error:

1 public class Parent {
2 protected String[] items;
3

4 public Parent(String[] items) { this.items = items; }
5

6 public String get(int index) { return items[index]; }
7 }
8

9 public class Child extends Parent {
10 public Child(String[] items) { super(items); }
11

12 public String get(int index) {
13 try { return super.get(index); }
14 catch(ArrayIndexOutOfBoundsException e) { return null; }
15 } }

(a) Briefly describe what happens when each of the following code snippets is executed:

(i) [2 marks]

1 Parent parent = new Parent(new String[0]);
2 String str = parent.get(0);

(ii) [2 marks]

1 Child child = new Child(new String[0]);
2 String str = child.get(0);

(iii) [2 marks]

1 Parent parent = new Parent(null);
2 String str = parent.get(0);

SWEN221 8 continued...

Student ID: .

(b) The method Child.get(int) overrides the method Parent.get(int).

(i) [2 marks] When does a method override another?

(ii) [2 marks] When does a method overload another?

(c) The Parent.items field is declared as protected.

(i) [2 marks] Briefly, state what protected means in this case.

Now, suppose items was changed to be private.

(ii) [2 marks] How would this affect class Child?

(iii) [2 marks] How would this affect external classes which use Parent or Child?

SWEN221 9 continued...

Student ID: .

(d) Consider the following classes which also compile without error:

1 public class AltParent {
2 protected String[] items;
3

4 public AltParent(String[] items) { this.items = items; }
5

6 public String get(int index) throws BadIndexException {
7 try
8 {
9 if(index < 0 || index >= items.length) {

10 throw new BadIndexException("bad index");
11 }
12 return items[index];
13 } finally {
14 items = null;
15 } } }
16

17 public class BadIndexException extends Exception {
18 public BadIndexException(String msg) { super(msg); }
19 }

(e) The class BadIndexException defines a checked exception.

(i) [4 marks] Briefly, state the difference between checked and unchecked exceptions.

(ii) [2 marks] Based on this, modify the following code snippet so it now compiles:

1 public String lookup(String[] items, int index) {
2 return new AltParent(items).get(index);
3 }

SWEN221 10 continued...

Student ID: .

(f) The method AltParent.get(int) uses a finally block.

(i) [4 marks] Briefly, explain what the finally block in AltParent.get(int) does.

(ii) [4 marks] Briefly, discuss the situations in which finally blocks are commonly used.

SWEN221 11 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 12 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 13 continued...

Student ID: .

Question 3. Testing [30 marks]

(a) Consider the following classes which compile without error:

1 public class IntArray {
2 private int[] items;
3

4 public IntArray(int[] items) {
5 this.items = items;
6 }
7

8 public int find(int item) {
9 int i = 0;

10 while(i < items.length) {
11 if(items[i] == item) { return i; } // found

12 i = i + 1;
13 }
14 return -1; // not found

15 }
16 }

(i) [6 marks] Draw the control-flow graph for the IntArray.find(int) method:

SWEN221 14 continued...

Student ID: .

(ii) [2 marks] What is statement coverage?

(iii) [2 marks] What is branch coverage?

Consider the following test suite provided for IntArray:

1 public class IntArrayTests {
2 @Test void testFind_1() {
3 int[] items = {1,2,3};
4 assertTrue(new IntArray(items).find(1) == 0);
5 }
6

7 @Test void testFind_2() {
8 int[] items = {1,2,3};
9 assertTrue(new IntArray(items).find(2) == 1);

10 }
11 }

(iv) [2 marks] Give the total statement coverage of IntArray obtained with IntArrayTests.

(v) [2 marks] What problem is there with the test cases found in IntArrayTests?

(vi) [2 marks] Give one additional test case which increases the statement coverage obtained for
IntArray.

SWEN221 15 continued...

Student ID: .

(b) Consider the following class which compiles without error:

1 public class Util {
2 public static int m(int x, int y) {
3 if(x > y) { return x; }
4 else { return y; }
5 }
6 }

(i) [4 marks] Why is an exhaustive test of all inputs for Util.m(int,int) impractical?

(ii) [4 marks] What is white-box testing?

SWEN221 16 continued...

Student ID: .

(c) Consider the following class which compiles without error:

1 public class Util {
2 public static int f(int x, int y) {
3 int z = 0;
4 if(x >= y) { z = z + 1; }
5 if(x > y) { z = z + 2; }
6 return z;
7 }
8 }

(i) [2 marks] Briefly, discuss whether the value returned from method Util.f(int,int) can
ever be 2.

(ii) [2 marks] Based on your answer above, state what an infeasible path is.

(iii) [2 marks] What effect do infeasible paths have on code coverage?

SWEN221 17 continued...

Student ID: .

Question 4. Java Generics [30 marks]

(a) The Pair class, shown below, implements a generic container for holding pairs of objects.

(i) [6 marks] By writing neatly on the box below turn Pair into a generic version, Pair<T1,T2>,
where T1 and T2 specify the type of items held in the pair.

1 public class Pair {
2

3 private Object first;
4

5 private Object second;
6

7 public Pair(Object first, Object second) {
8 this.first = first; this.second = second;
9 }

10

11 public Object getFirst() { return this.first; }
12

13 public Object getSecond() { return this.second; }
14 }

(ii) [2 marks] In the box below, provide code which creates an instance of a generic Pair which
holds a String and an Integer.

SWEN221 18 continued...

Student ID: .

(b) [6 marks] The following code does not compile because List<String> is not a subtype of
List<Object>. Explain the problem.

1 List<String> strings = new ArrayList<String>();
2 List<Object> objects = strings;
3 objects.add(new Integer(1));

(c) [6 marks] The following code does not compile because List<String> is not a supertype of
List<Object>. Explain the problem.

1 List<Object> objects = new ArrayList<Object>();
2 List<String> strings = objects;
3 objects.add(new Integer(1));
4 String str = strings.get(0);

SWEN221 19 continued...

Student ID: .

(d) This question concerns Java’s wildcard types.

(i) [2 marks] Give an example of a wildcard type.

(ii) [4 marks] Briefly, explain what wildcard types are. You may use examples to illustrate.

(e) [4 marks] By writing neatly on the box below, turn select(Pair,int) into a generic func-
tion which accepts a generic pair, Pair<T1,T2>, and returns the best possible generic type T.

1

2 public Object select(Pair p, int i) {
3 if(i == 0) { return p.getFirst(); }
4 else { return p.getSecond(); }
5 }

SWEN221 20 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 21 continued...

Student ID: .

Question 5. Threading and Garbage Collection [30 marks]

(a) Java supports the notion of threads.

(i) [2 marks] Briefly, describe what a thread is.

(ii) [3 marks] Briefly, describe why threads are useful.

(b) Consider the following class which compiles without error:

1 public class Counter {
2 private int count;
3 public void inc() { count = count + 1; }
4 public int get() { return count; }
5 }

(i) [6 marks] Suppose two threads share one instance of Counter. If both call inc() exactly
once, what value can we expect for field count afterwards? Explain your answer.

SWEN221 22 continued...

Student ID: .

(ii) [3 marks] In the box below, rewrite Counter using synchronisation so that count correctly
matches the total number of calls to inc() made by both threads.

(iii) [7 marks] In the box below, provide code to start two threads that share an instance of Counter.
When each thread starts, it should call inc() ten times.

SWEN221 23 continued...

Student ID: .

(c) This question concerns garbage collection.

(i) [2 marks] Briefly, state what is meant by the term reachable.

(ii) [2 marks] Briefly, describe what garbage collection is.

(iii) [5 marks] Briefly, describe a simple garbage collection algorithm.

SWEN221 24 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 25 continued...

Student ID: .

Question 6. Inheritance and Polymorphism [30 marks]

Consider the following Java classes and interfaces (which compile without error).

1 public abstract class Tree {
2 public abstract int walk(Walker w);
3 }
4

5 public class TreeLeaf extends Tree {
6 public int walk(Walker w) { return w.walk(this); }
7 }
8

9 public class TreeNode extends Tree {
10 public final Tree left;
11 public final Tree right;
12

13 public TreeNode(Tree left, Tree right) {
14 this.left = left;
15 this.right = right;
16 }
17

18 public int walk(Walker w) { return w.walk(this); }
19 }
20

21 public interface Walker {
22 public int walk(TreeLeaf l);
23 public int walk(TreeNode n);
24 }

(a) Given the above declarations, state whether the following classes compile without error. For any
which do not compile, briefly state the problem.

(i) [2 marks]

1 public class OneWalker implements Walker {
2 public int walk(TreeNode n) { return 1; }
3 }

SWEN221 26 continued...

Student ID: .

(ii) [2 marks]

1 public abstract class AbstractWalker implements Walker {
2 public int walk(TreeLeaf l) { return 0; }
3 public abstract int walk(TreeNode n);
4 }

(iii) [2 marks]

1 public class ConcreteWalker implements Walker {
2 public int walk(TreeLeaf l) { return 0; }
3 public int walk(Tree n) { return 1; }
4 }

(b) [3 marks] The Tree class is declared abstract. Briefly, discuss what this means.

(c) [3 marks] The TreeNode.left and TreeNode.right fields are declared final. Briefly,
discuss what this means.

SWEN221 27 continued...

Student ID: .

Consider the following implementation of Walker which compiles without error.

1 public class CountWalker implements Walker {
2 public int walk(TreeLeaf l) { return 1; }
3 public int walk(TreeNode n) {
4 return n.left.walk(this) + n.right.walk(this);
5 }
6 }

(d) Give the output obtained from executing each code snippet below.

(i) [3 marks]

1 int c = new CountWalker().walk(new TreeLeaf());
2 System.out.println(c);

(ii) [3 marks]

1 int c = new TreeLeaf().walk(new CountWalker());
2 System.out.println(c);

(iii) [3 marks]

1 TreeLeaf t1 = new TreeLeaf();
2 TreeLeaf t2 = new TreeLeaf();
3 int c = new CountWalker().walk(new TreeNode(t1,t2));
4 System.out.println(c);

(e) [4 marks] In your own words, describe what the CountWalker class does.

SWEN221 28 continued...

Student ID: .

(f) [5 marks] Give a Walker implementation which determines the maximum depth of a Tree.
That is, the longest path from the tree’s root to any leaf.

SWEN221 29

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 30 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 31 continued...

