
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON Student ID: .

EXAMINATIONS — 2014

TRIMESTER 1

SWEN221

Software Development

Time Allowed: THREE HOURS

Instructions: Closed Book.
There are 180 possible marks on the exam.

Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.

No calculators permitted.
Non-electronic Foreign language dictionaries are allowed.

No reference material is allowed.

Question Topic Marks

1. Debugging and Code Comprehension 30

2. Java Masterclass 30

3. Interfaces & Cloning 30

4. Exceptions 30

5. Testing 30

6. Generics 30

Total 180

SWEN221 continued...

Student ID: .

Question 1. Debugging and Code Comprehension [30 marks]

Consider the following classes, which compile without error:

1 // A square on the board

2 abstract class Square {
3 public abstract void attack();
4 }
5

6 // A blank square on the board

7 public class Blank extends Square {
8 public void attack() {}
9 }

10

11 // A monster on the board

12 public class Monster extends Square {
13 private int hitPoints;
14

15 public Monster(int hitPoints) { this.hitPoints = hitPoints; }
16

17 public void attack() { hitPoints --; }
18

19 public boolean isDestroyed() { return hitPoints == 0; }
20 }
21

22 // The board

23 public class Board {
24

25 // A width * height grid of squares. Each square

26 private Square[][] squares;
27

28 public Board(int width, int height) {
29 squares = new Square[width][height];
30 }
31

32 public void place(Monster m, int x, int y, int width) {
33 for(int i=x;i!=width;++i) {
34 squares[i][y] = m;
35 }
36 }
37

38 public void attack(int x, int y) { squares[x][y].attack(); }
39 }

SWEN221 2 continued...

Student ID: .

(a) Based on the code given on page 2, state the output you would expect for each of the following
code snippets:

(i) [2 marks]

1 Board board = new Board(10,10);
2 Monster m = new Monster(5);
3 board.place(m,0,0,3);
4 board.attack(0,0);
5 System.out.println(m.isDestroyed());

false

(ii) [2 marks]

1 Board board = new Board(10,10);
2 Monster m = new Monster(2);
3 board.place(m,0,0,3);
4 board.attack(1,0);
5 board.attack(2,0);
6 System.out.println(m.isDestroyed());

true

(iii) [2 marks]

1 Board board = new Board(10,10);
2 Monster m = new Monster(2);
3 board.place(m,0,0,3);
4 board.place(m,0,5,3);
5 board.attack(1,0);
6 board.attack(2,5);
7 System.out.println(m.isDestroyed());

true

(iv) [2 marks]

1 Board board = new Board(10,10);
2 Monster m = new Monster(5);
3 board.place(m,0,0,3);
4 board.attack(1,5);
5 System.out.println(m.isDestroyed());

Exception in thread "main" java.lang.NullPointerException

SWEN221 3 continued...

Student ID: .

(b) [5 marks] Rewrite the Board constructor so that it initialises every square in squares to a
Blank square.

public Board(int width, int height) {
squares = new Square[width][height];
for(int x = 0; x < width; ++x) {

for(int y = 0; y < height; ++y) {
squares[x][y] = new Blank();

} } }

(c) [3 marks] Consider the method Monster.attack(). Does this overload or override the
method Square.attack()? Justify your answer.

Monster.attack() overrides Square.attack() because it is defined in a subclass, and has
the same name a signature (i.e. the same name and parameter types).

(d) [3 marks] The class Square is declared as abstract. Briefly, discuss what this means.

This means that the class itself cannot be instantiated. Instead, only subclasses which implement its
abstract method attack() can be instantiated. Furthermore, all concrete subclasses must imple-
ment this method.

SWEN221 4 continued...

Student ID: .

(e) Two squares on the board may refer to the same Monster.

(i) [2 marks] Briefly, explain the meaning of this in terms of objects and references.

This means that two elements in the array Board.squares may reference the same instance of
Monster (i.e. the same object).

(ii) [5 marks] Briefly, discuss what effect this has on how the program works.

This means that a Monster object can span multiple squares of the board. Furthermore, attacking
any one of these squares will affect the same Monster object. Note also that it means a single
Monster object can occupy squares which are not adjacent to each other. This can be achieved
by calling the place() method multiple times with the same reference, and may not have been an
intended behaviour.

(f) [4 marks] Two squares on the board may refer to the same Blank square. Briefly, discuss why
this does not affect how the program works.

This does not affect how the program works because Blank objects have no state (they are im-
mutable). Therefore, it makes no difference whether two squares refer to the same Blank object or
not.

SWEN221 5 continued...

Student ID: .

Question 2. Java Masterclass [30 marks]

As for the self assessment tool, for each of the following questions, provide in the answer box the
code that should replace [???].

(a) [4 marks]

1 //The answer must have balanced parentesis
2 public class Exercise{
3 public static void main(String [] arg){
4 int foo=10;
5 assert (10==[???]);
6 assert (11==[???]);
7 assert (12==[???]);
8 assert (13==[???]);
9 }

10 }

foo++

(b) [4 marks]

1 //The answer must have balanced parenthesis,
2 class Avatar{
3 Avatar(String name){this.name=name;}
4 String name;
5 }
6 class NintendoAvatar extends Avatar{[???]}
7

8 public class Exercise{
9 public static void main(String [] arg){

10 assert (new NintendoAvatar().name.equals("Mario"));
11 assert (new NintendoAvatar("Luigi").name.equals("Luigi"));
12 } }

NintendoAvatar() { super("Mario"); }
NintendoAvatar(String name) { super(name); }

SWEN221 6 continued...

Student ID: .

(c) [4 marks]

1 //The answer must have balanced parenthesis
2 class Base1{ int m(){return 1;}}
3 class Base2{ int m(){return 2;}}
4 class C1 extends Base1{ int m(){[???]}}
5 class C2 extends Base2{ int m(){[???]}}
6 public class Exercise{
7 public static void main(String [] arg){
8 assert new C1().m()==10;
9 assert new C2().m()==20;

10 } }

return super.m()*10;

(d) [4 marks]

1 //The answer must have balanced parentesis
2 import java.util.HashSet;
3 class Elem { [???] }
4 public class Exercise{
5 public static void main(String [] arg){
6 HashSet<Elem> es=new HashSet<Elem>();
7 es.add(new Elem());
8 es.add(new Elem());
9 es.add(new Elem());

10 assert es.size()==1;
11 } }

public int hashCode() { return 1;}
public boolean equals(Object obj) { return true; }

SWEN221 7 continued...

Student ID: .

(e) [4 marks]

1 //The answer must have balanced parenthesis
2 class A{
3 int m(){return 1;}
4 }
5 public class Exercise{
6 public static void main(String [] arg){
7 A a=[???];
8 assert a.m()==2;
9 }

10 }

new A(){int m(){return 2;}}

(f) [10 marks]

1 //The answer must have balanced parenthesis
2 import java.util.ArrayList;
3 interface A{int m();}
4 public class Test {
5 public static void main(String[] arg){
6 ArrayList<A> a=new ArrayList<A>();
7 for(int i=0;i<10;i++){add(a);}
8 assert a.get(0).m()==0;
9 assert a.get(1).m()==1;

10 assert a.get(7).m()==7;
11 assert a.get(9).m()==9;
12 }
13 [???]
14 }

Hint: since add() is called from main() but is not declared, you may want to declare it.

static class AA implements A{
int f; AA(int f){this.f=f;}
public int m(){return f;}

}
static void add(ArrayList<A> a){a.add(new AA(a.size())); }

SWEN221 8 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 9 continued...

Student ID: .

Question 3. Interfaces & Cloning [30 marks]

(a) Consider the following classes and interfaces:

1 interface Shape {
2 boolean contains(int x, int y);
3 Shape clone();
4 }
5

6 public class Rectangle implements Shape {
7 private int x1;
8 private int y1;
9 private int x2;

10 private int y2;
11

12 public Rectangle(int x1, int y1, int x2, int y2) {
13 this.x1 = x1; this.y1 = y1;
14 this.x2 = x2; this.y2 = y2;
15 }
16 public bool contains(int x, int y) {
17 // Check x,y is contained within this rectangle

18 return x >= Math.min(x1,x2) &&
19 x <= Math.max(x1,x2) &&
20 y >= Math.min(y1,y2) &&
21 y <= Math.max(y1,y2);
22 }
23 public Shape clone() { [???] }
24 }

(i) [3 marks] Give an appropriate implementation of clone() for the Rectangle class.

return new Rectangle(x1,y1,x2,y2);

(ii) [5 marks] Briefly, discuss why there is no difference between a deep clone and a shallow clone
for the Rectangle class.

• A shallow clone copies all data in a given object, but does not clone objects which it references

• A deep clone copies all data in a given object, and recursively clones objects which are refer-
enced

• Rectangle contains only fields of primitive (i.e. none of reference type). Primitives are
immutable values and cannot be cloned per se.

SWEN221 10 continued...

Student ID: .

(b) Consider the following implementation of shape:

1 class ShapeUnion implements Shape {
2 private Shape[] shapes;
3

4 public ShapeUnion(Shape[] ss) {
5 this.shapes = ss;
6 }
7

8 public boolean contains(int x, int y) {
9 for(Shape s : shapes) {

10 if(s.contains(x,y)) { return true; }
11 }
12 return false;
13 }
14

15 public Shape clone() { [???] }
16 }

(i) [7 marks] Give an implementation of clone() for the ShapeUnion class which implements
a deep clone. You may assume that a Shape cannot contain itself.

Shape[] nShapes = new Shape[shapes.length];
for(int i=0;i!=shapes.length;++i) {

nShapes[i] = shapes[i].clone();
}
return new ShapeUnion(nShapes);

(ii) [5 marks] Suppose that a Shape was permitted to contain itself. Briefly, discuss how you would
alter your clone() method to handle this.

The essential problem here is that cloning a Shape which contains itself will lead to an infinite loop
and, eventually, a StackOverflowException. Dealing with this is surprisingly difficult, and
require a way to record which instances of Shape have been previously visited. The algorithm is
similar (in some ways) to how a depth-first search works. One approach to recording which objects
have been visited is to use an IdentityHashMap.

SWEN221 11 continued...

Student ID: .

(c) [5 marks] Consider again the constructor for ShapeUnion:

1 public ShapeUnion(Shape[] ss) {
2 this.shapes = ss;
3 }

This constructor assigns the ss parameter directly to the shapes field. Briefly, discuss whether
you think this is a good or bad idea and what (if anything) you would do differently.

There are several problems with this constructor:

• Firstly, the constructor does not check the ss variable against null. Since this is eventually
used within the contains()method without any check, we can assume is should not null.

• Secondly, the constructor assigns the array reference held in ss directly to the shapes field.
This can cause problems if the calling object retains a reference to this array, as it could
subsequently modify it and this would affect the ShapeUnion object.

(d) [5 marks] An InverseShape contains a Shape and includes all those points not in the
contained Shape. Give an implementation for InverseShape.

class InverseShape implements Shape {
private Shape shape;
public InverseShape(Shape shape) {

this.shape = shape;
}
public boolean contains(int x, int y) {

return !shape.contains(x,y);
}
public Shape clone() {

return new InverseShape(shape.clone());
}

}

SWEN221 12 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 13 continued...

Student ID: .

Question 4. Exceptions [30 marks]

A New Zealand supermarket chain has a data management system which is able to recover employers
data. This is their getData() method

1 public Employer getData(int id){
2 Employer result=null;
3 DBConnection db=new DBConnection("...");
4 Result r=db.query("select ..."+id+"...");
5 // if a result comes back, just return it

6 if(r.size()==1){result=new Employer(r);}
7 // otherwise, must have been an invalid id.

8 return result;
9 }

(a) [2 marks] How does the current implementation handle the case of an invalid employer ID?

The current implementation returns null

(b) [5 marks] How would you modify this method in order to provide a better behaviour in the case
of an invalid employer ID? Write down the new code for method getData().

... if(r.size()==1){result=new Employer(r);}
else throw new InvalidEmployerId(id);

SWEN221 14 continued...

Student ID: .

(c) [4 marks] Write down the complete source code of any exception class that you would define for
your answer to (b).

class InvalidEmployerId extends RuntimeException{
int id;
InvalidEmployerId(int id){this.id=id;}}

(d) [5 marks] Class DBConnection offers a method close(). The current implementation
does not close the database connection. How would you modify this method in order to ensure the
database connection is closed?

DBConnection db=null;
try{
db=new DBConnection("...");
Result r=db.query("select ..."+id+"...");
if(r.size()==1){result=new Employer(r);}
else throw new InvalidEmployerId(id);
}finally{if(db!=null)db.close();}

SWEN221 15 continued...

Student ID: .

(e) Throwable is the common supertype for all Java exceptions.

(i) [2 marks] Is Throwable checked or unchecked?

Must be checked, as Throwable :> Exception :> RuntimeException

(ii) [6 marks] Explain why it must be checked / unchecked and why it could not be otherwise. You
are encouraged to use a code example.

if throwable was unchecked, then it could be possible to trick the Java type system,
as in the following:
throw (Throwable)new MyCheckedException();

(iii) [6 marks] The Exception class has the following constructor:
Exception(String message, Throwable cause)

Describe the meaning of both parameters. In particular, when is the second parameter useful?

The first parameter should encode a human readable description of the error, while the second (op-
tional) parameter should contain an other exception, that have conceptually caused the new one.
This is used in many cases where there is a concept of delegation of responsibility. We can see
it in the Java reflection, where if the invoked method generate an exception, the corresponding
InvocationTargetException receive such exception as its cause.

SWEN221 16 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 17 continued...

Student ID: .

Question 5. Testing [30 marks]

(a) Consider the following classes which compile without error:

1 public class Rectangle {
2 private int x1;
3 private int y1;
4 private int x2;
5 private int y2;
6 public Rectangle(int x1, int y1, int x2, int y2) {
7 this.x1 = x1; this.y1 = y1;
8 this.x2 = x2; this.y2 = y2;
9 }

10 public boolean contains(int x, int y) {
11 int minX;
12 int maxX;
13 int minY;
14 int maxY;
15 // Determine minimum and maximum bounds

16 if(x1 < x2) { minX = x1; maxX = x2; }
17 else {
18 minX = x2; maxX = x1;
19 }
20 if(y1 < y2) { minY = y1; maxY = y2; }
21 else {
22 minY = y2; maxY = y1;
23 }
24 // Check whether point x,y is contained

25 if(minX > x) { return false; }
26 if(maxX < x) { return false; }
27 if(minY > y) { return false; }
28 if(maxY < y) { return false; }
29 return true;
30 } }
31 public class RectangleTests {
32 @Test void testContains_1() {
33 assertTrue(new Rectangle(0,0,5,5).contains(1,1));
34 }
35 @Test void testContains_2() {
36 assertTrue(new Rectangle(5,5,0,0).contains(1,1));
37 }
38 @Test void testContains_3() {
39 assertFalse(new Rectangle(0,0,5,5).contains(-1,1));
40 }
41 @Test void testContains_4() {
42 assertFalse(new Rectangle(0,0,5,5).contains(6,1));
43 } }

SWEN221 18 continued...

Student ID: .

(i) [8 marks] Draw the control-flow graph for the Rectangle.contains(int,int) method:

SWEN221 19 continued...

Student ID: .

(ii) [2 marks] What is statement coverage?

The proportion of statements covered by the tests

(iii) [2 marks] Give the total statement coverage of class Rectangle obtained from the tests in
RectangleTests.

21 statements are covered out of 23, which is 91%

(iv) [2 marks] What is branch coverage?

The proportion of branching statements where both sides of the branch are tested

(v) [2 marks] Give the total branch coverage of class Rectangle obtained from the tests in
RectangleTests.

4 branches are covered out of 6, which is 67%

(b) The path coverage criterion counts the proportion of all possible execution paths which are
tested.

(i) [3 marks] Give the total number of possible execution paths through the method Rectangle.contains().

There are 2 ∗ 2 ∗ 5 = 20 possible execution paths.

SWEN221 20 continued...

Student ID: .

(ii) [2 marks] Give the total path coverage of class Rectangle obtained from the tests in RectangleTests.

There are only 4 out of 20 execution paths tested, which is 20%

(iii) [4 marks] Give two additional test cases which increase the path coverage obtained for Rectangle.

@Test void testContains_5() {
assertTrue(new Rectangle(5,0,0,5).contains(1,1));

}
@Test void testContains_6() {

assertTrue(new Rectangle(0,5,5,0).contains(1,1));
}

(iv) [2 marks] Briefly, describe what an infeasible path is.

An infeasible path is an execution path through a function which cannot, in fact, be taken. This is
because the logic of the function prevents this particular path from being possible.

(v) [3 marks] Why is path coverage impossible to measure in general?

Because, in the presence of loops and polymorphism, there are potentially an infinite number of
possible execution paths.

SWEN221 21 continued...

Student ID: .

Question 6. Generics [30 marks]

Consider the following code

1 import java.util.ArrayList;
2

3 class Point{
4 int x; int y;
5 Point(int x, int y){ this.x=x; this.y=y; }
6 }
7 class ColoredPoint extends Point{
8 int color;
9 ColoredPoint(int x, int y,int color) {

10 super(x, y); this.color=color;
11 }
12 }

(a) [5 marks] There are many possible representations for colours. The class ColoredPoint
uses an int. Write instead a generic class GenericPoint<T> that uses any kind of type as a
representation of a colour.

class GenericPoint<T> extends Point{
T color;
GenericPoint(int x, int y,T color) {
super(x, y); this.color=color;
}
}

SWEN221 22 continued...

Student ID: .

(b) Consider the following code

1 public class GenericTest {
2 static void m(ArrayList<Point> p){
3 [???]//you will be asked to fill the hole here
4 }
5

6 public static void main(String[] args){
7 ArrayList<ColoredPoint> cps=new ArrayList<ColoredPoint>();
8 try{
9 m((ArrayList<Point>)(Object)cps);

10 }
11 catch(Throwable t){}
12 for(ColoredPoint p:cps){
13 System.out.println(p.color);
14 }
15 }
16 }

Initially, Bob the programmer tried to pass variable cps directly to the method m(), but this caused
a compilation error; he could not understand the reason for such an error, thus he decided to trick the
type system and cast the error away (line 9).

(i) [5 marks] Explain the effect of the two casts in line 9, i.e. what happens when
m((ArrayList<Point>)(Object)cps); is executed.

First cps is casted to Object, and then the result is casted to ArrayList. Casts are just controls,
they do not modify the state of the program. In addition, all the generic informations are ignored.
In this particular case the generic information is Point on the cast and ColoredPoint on cps.
The system control that the object referred by cps is indeed a valid ArrayList, ignoring the
different generic annotations.
That is, there is no control at all on the generic type, but only on the raw one.

(ii) [7 marks] Inserting such casts is unsafe! Provide an example implementation of the method
m(), (replacing the [???] sign) that forces the method main() to throw an exception.

The expected solution was p.add(new Point(1, 2));
However, also p.add(null); do the job.

SWEN221 23 continued...

Student ID: .

(iii) [8 marks] In your own words, explain why an exception was thrown above.

Thanks to generic type erasure and casts is possible to force Java to put values of incorrect types
inside collections. Such value is than casted to the expected type when leaving the collection, so is
possible to get a ClassCastException whenever a value is extracted by a collection.

(iv) [5 marks] What Bob really wanted, was to allow the method m() to take both
ArrayList<ColoredPoint> and ArrayList<Point>. Write down a suitable generic method
signature for method m(), so that both the following calls would be accepted:

1 m(new ArrayList<ColoredPoint>());
2 m(new ArrayList<Point>());

but the following would be rejected

1 m(new ArrayList<String>());

static void m(ArrayList<? extends Point> p)

SWEN221 24

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 25 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN221 26 continued...

