
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON Student ID: .

EXAMINATIONS — 2014

TRIMESTER 2

SWEN222

Software Design

Time Allowed: THREE HOURS

Instructions: Closed Book.
There are 180 possible marks on the exam.

Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.

No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

No reference material is allowed.

Question Topic Marks

1. Design patterns 1 30

2. Functional design 30

3. Design by Contract 30

4. Software Design Qualities 30

5. Design Patterns 2 30

6. Refactoring 30

Total 180

SWEN222 continued...

Student ID: .

Question 1. Design Patterns 1 [30 marks]

(a) [8 marks] Provide a class diagram which describes the COMPOSITE pattern.

Consider the following description for describing areas and regions in a geographical application:

“An area is a square section of land with dimensions measured in Kilometres (km2).
A region contains one or more areas or sub-regions. For example, a country can be
considered as a region containing counties or states, which themselves are regions. An
important concern is whether or not a given point (x, y) is contained within a region.”

(b) [4 marks] Provide a class diagram for describing regions and areas.

SWEN222 2 continued...

Student ID: .

(c) [10 marks] Provide a Java implementation for describing regions and areas.

SWEN222 3 continued...

Student ID: .

(d) Consider the following additional requirements regarding regions. For each, briefly discuss
whether or not this is true of your implementation.

(i) [4 marks] The structure of regions represents a tree.

(ii) [4 marks] A region cannot be contained in a region more than once.

SWEN222 4 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 5 continued...

Student ID: .

Question 2. Functional Design [30 marks]

Consider the following class for representing binary data.

1

2 public class BitSet {
3 private boolean[] data;
4

5 public BitSet(boolean[] data) {
6 this.data = data;
7 }
8

9 public boolean get(int index) {
10 return data[index];
11 }
12

13 public void set(int index, boolean bit) {
14 if(index >= data.length) {
15 // Make sure there is enough space

16 boolean[] nData = new boolean[data.length * 2];
17 System.arraycopy(data,0,nData,0,data.length);
18 data = nData;
19 }
20 data[index] = bit;
21 }
22 }

(a) [5 marks] An important aspect of the functional programming paradigm is that methods are
side-effect free. Briefly, state what this means.

SWEN222 6 continued...

Student ID: .

(b) For each of the following BitSet methods, briefly discuss whether or not it is side-effect free.

(i) [2 marks] BitSet.get(int)

(ii) [2 marks] BitSet.set(int, boolean)

(c) Another important aspect of the functional programming paradigm is immutability.

(i) [4 marks] Briefly, discuss whether or not the BitSet class is immutable.

(ii) [4 marks] Briefly, discuss the following statement:

“Immutable classes can only have methods which are side-effect free.”

SWEN222 7 continued...

Student ID: .

(d) [8 marks] Rewrite the BitSet class to use a functional design.

(e) [5 marks] Using the BitSet class as an example, briefly discuss why programs using a func-
tional design typically have fewer software bugs.

SWEN222 8 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 9 continued...

Student ID: .

Question 3. Design by Contract [30 marks]

Consider the following class which is used as part of an application for matrix multiplication.

1 public class Matrix {
2 private int[] items;
3 private int width;
4 private int height;
5

6 public Matrix(int width, int height) {
7 this.items = new int[width * height];
8 this.width = width;
9 this.height = height;

10 }
11 public int width() { return width; }
12 public int height() { return height; }
13

14 public int get(int x, int y) {
15 return items[x + (y * width)];
16 }
17 public void set(int x, int y, int item) {
18 items[x + (y * width)] = item;
19 } }

(a) [2 marks] Briefly, state what a pre-condition is.

(b) [2 marks] Briefly, state what a post-condition is.

(c) [2 marks] Briefly, state what a class invariant is.

SWEN222 10 continued...

Student ID: .

(d) For each of the following methods, given appropriate pre- and post-conditions.

(i) [4 marks] Matrix.Matrix(int width,int height)

(ii) [4 marks] Matrix.get(int x,int y)

(iii) [4 marks] Matrix.set(int x, int y, int item)

(e) [4 marks] Given an appropriate class invariant for the Matrix class.

SWEN222 11 continued...

Student ID: .

(f) An important problem is to ensure the pre-condition of a method is respected by its callers and,
similarly, that a method guarantees its post-condition holds. A simple solution is to use runtime
assertions.

(i) [4 marks] Briefly, discuss how you would modify the Matrix class to use runtime assertions.

(ii) [4 marks] Unfortunately, runtime assertions cannot guarantee a program meets its specification.
Briefly, discuss why not.

SWEN222 12 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 13 continued...

Student ID: .

Question 4. Software Design Qualities [30 marks]

(a) Coupling is an important concept relevant to software design.

(i) [4 marks] Define what is meant by the term coupling in software design.

(ii) [5 marks] Describe the positive implications of strongly coupled object oriented designs.

(iii) [5 marks] Describe the negative implications of strongly coupled object oriented designs.

SWEN222 14 continued...

Student ID: .

(b) Inheritance is an important concept relevant to software design.

(i) [6 marks] Describe the benefits of inheritance in Java software designs.

(ii) [10 marks] Describe two limitations of inheritance in Java software designs and suggest alter-
native design approaches that address those limitations.

1)

2)

SWEN222 15 continued...

Student ID: .

Question 5. Design Patterns 2 [30 marks]

You have been asked to design a Java GUI implementation of the popular board game Scrabble. Key
features include:

1. The game is played on a board with 15 squares on each side.

2. Players have hands of seven tiles, drawn from a pool of 100 tiles.

3. The first player places a word in the middle of the board, and subsequently every player in
turn places letters on the board such that they create words linked to the existing words.

4. All words, including those created by intersecting tiles, must be legal words listed in the
Scrabble dictionary.

5. Scores are calculated based on the letters used and the squares occupied by the letters.

6. Some of the squares modify the score calculated for letters or words placed on them, others
do not.

7. When all of the tiles in the pool have been drawn, the game is over.

8. For this simple implementation, all players use the same computer, taking turns to use the
mouse and keyboard as needed.

You are required to use the Model/View/Controller design pattern in your design:

SWEN222 16 continued...

Student ID: .

(a) [6 marks] What features of this game would be implemented in the Model, View and Controller
sub-systems?

Model:

View:

Controller:

SWEN222 17 continued...

Student ID: .

(b) View Design

(i) [2 marks] Identify a Design Pattern that could be effectively used to implement key elements of
the View’s graphical user interface design.

(ii) [4 marks] Provide a UML class diagram summarising the key features of the design pattern
identified in (b)(i).

(iii) [6 marks] Describe how using that pattern helps create a more effective design for the View.

SWEN222 18 continued...

Student ID: .

(c) Model Design

(i) [2 marks] Identify a Design Pattern that could be effectively used to implement key elements of
the Model’s design.

(ii) [4 marks] Provide a UML class diagram summarising the key features of the design pattern
identified in (c)(i).

(iii) [6 marks] Describe how using that pattern helps create a more effective design for the Model.

SWEN222 19 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 20 continued...

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 21 continued...

Student ID: .

Question 6. Refactoring [30 marks]

Consider the following classes defined as part of the design of a simple online adventure game:

1 public class GameBoard implements KeyListener {
2 public enum SquareType {EMPTY, WALL, CAVE, WATER};
3 public GameSquare squares[][];
4 private static int max_x = 50;
5

6 /** load the squares from our configuration **/

7 void setup (BufferedReader gameInfo) throws IOException {
8 String line = null;
9 int x = 0;

10 int y = 0;
11 while((line = gameInfo.readLine()) != null) {
12 squares[x][y] = new GameSquare();
13 squares[x][y].location
14 = new Point(x,y);
15 squares[x][y].occupied = false;
16 switch (line) {
17 case "Wall":
18 squares[x][y].sq = SquareType.WALL;
19 break;
20 case "Cave":
21 squares[x][y].sq = SquareType.CAVE;
22 break;
23 case "Water":
24 squares[x][y].sq = SquareType.WATER;
25 break;
26 default:
27 squares[x][y].sq = SquareType.EMPTY;
28 }
29 x++;
30 if (x > max_x){x = 0;y++;}
31 }
32 }
33

34 /** draw the board **/

35 void drawSquares() { ... }
36

37 /** handle user commands to move squares **/

38 public void keyTyped(KeyEvent e){ ... }
39 public void keyPressed(KeyEvent e){ ... }
40 public void keyReleased(KeyEvent e){ ... }
41 }

SWEN222 22 continued...

Student ID: .

1 public class GameSquare {
2 public Boolean occupied;
3 public Point location;
4 public GameBoard.SquareType sq;
5 public Monster mIS1;
6 public Monster mIS2;
7 public Monster mIS3;
8 public Treasure tIS1;
9 public Treasure tIS2;

10 public Treasure tIS3;
11 }
12

13 public class Monster {
14 public String desc;
15 public Point pos;
16 public int hp;
17 }
18

19 public class Treasure {
20 public String desc;
21 public Point pos;
22 public int val;
23 }

(a) [18 marks] Refactor this design to improve it in three significant and distinct ways. For method
bodies, you need only provide details needed to explain your refactorings. You can define new
classes but only provide outlines of the methods for those classes.

SWEN222 23 continued...

Student ID: .

SWEN222 24 continued...

Student ID: .

SWEN222 25 continued...

Student ID: .

(b) [12 marks] Identify the three significant changes you have made to this design, and for each
explain how it has improved the design.

1)

2)

3)

SWEN222 26

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 27

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN222 28

