
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2010

END-OF-YEAR

SWEN 224
Formal Foundations

of Programming

WITH ANSWERS

Time Allowed: 3 Hours

Instructions: • Answer all seven questions.

• The exam will be marked out of one hundred and eighty (180).

• Calculators ARE NOT ALLOWED.

• Non-electronic Foreign language dictionaries are allowed.

• No other reference material is allowed.

SWEN 224 continued...

Question 1. Static Alloy Modelling [20 marks]

Consider the following Alloy specification, which models family relations.

abstract sig Person {

father: lone Man,

mother: lone Woman

}

sig Man extends Person {

wife: lone Woman

}

sig Woman extends Person {

husband: lone Man

}

fun parent: Person -> Person {

mother + father + father.wife + mother.husband

}

fun grandparent: Person -> Person {

parent.parent

}

pred p {

some p: Person | p in p.grandparent

}

SWEN 224 2 continued...

(a) Understanding an Instance

Consider the following instance of this model:

Man = {Adam, Bob}

Woman = {Ana, Jane}

husband =
Ana Bob
Jane Adam

wife =
Bob Ana

Adam Jane

father = Adam Bob

mother = Ana Jane

(i) [1 mark] Compute Adam.wife

Jane

(ii) [1 mark] Compute ~wife

Ana Bob
Jane Adam

(iii) [2 marks] Compute parent

Ana Adam
Ana Jane

Adam Bob
Adam Ana

(iv) [2 marks] Compute Adam.grandparent

Adam
Jane

(v) [2 marks] In your own words, describe what predicate p expresses.

There is a person who is their own grandparent.

SWEN 224 3 continued...

(vi) [2 marks] Is the predicate p true for this instance? Briefly explain why or why not.

Yes, the predicate is true since Adam is his own grandparent.

(b) Writing Alloy

(i) [1 mark] Provide a run command that shows instances with at least one woman.

run { some Woman }

(ii) [2 marks] Provide a run command that shows instances with at least one woman who
is the wife of someone.

run { some wife }

(iii) [2 marks] Write a function called spouse that takes a person as argument and returns
the spouse (that is, the wife if the person is male or the husband if the person is female) of
the given person.

fun spouse[p: Person]: lone Person { p.(husband+wife) }

(iv) [3 marks] Write a check command to check whether every person who is a spouse of
someone has a spouse. Provide a counter-example that could have been generated if your
check command was added to the above model and executed.

check { all p: Person | (some s: Person | p = spouse[s]) implies some spouse[p] }

(v) [2 marks] Add a fact to the specification to ensure that every person with a spouse is
the spouse of his or her spouse.

fact { husband = ~wife }

SWEN 224 4 continued...

Question 2. Dynamic Alloy Modelling [25 marks]

The following Alloy provides a dynamic model for the marriage relation.

abstract sig Person {}

sig Man, Woman extends Person {}

sig State {

husband: Woman -> Man,

wife: Man -> Woman

}

pred divorce(s,s’: State, m: Man, w: Woman) {

s’.husband = (Woman-w) <: s.husband

s’.wife = (Man-m) <: s.wife

}

(a) Understanding an Instance

Consider the following instance of this model:

Man = {Adam, Bob}

Woman = {Ana, Jane}

State = {S0, S1, S2}

husband =
S1 Ana Adam
S2 Ana Adam
S2 Ana Bob

wife =
S2 Adam Ana
S2 Bob Ana

(i) [3 marks] For each of the states S0, S1, and S2 explain who is husband or wife to whom.

In state 0, nobody is married. In state 1, Ana is married to Adam but Adam is not married
so this is not a valid state. In state 2, Ana is married both to Adam and Bob, which is not
valid either.

(ii) [3 marks] Compute (Man-Bob) <: S2.wife

Adam Ana

SWEN 224 5 continued...

(iii) [3 marks] Explain the role of the divorce predicate and its arguments.

(iv) [2 marks] Can the divorce predicate be satisfied in the given instance? If it can, identify
the arguments for which the divorce predicate is true.

divorce[S1,S0,Adam,Ana]

SWEN 224 6 continued...

(b) Extending the Alloy Model

(i) [4 marks] Provide a predicate called inv that takes a state as argument and is true if, for
the given state, every man has at most one wife and every woman has at most one husband.

pred inv[s: State] {

all m: Man | lone s.wife[m]

all w: Woman | lone s.husband[w]

}

(ii) [6 marks] Provide an operation marry that models a man and a woman getting married
and preserves the invariant.

pred marry[s,s’: State, m: Man, w: Woman] {

no s.husband.m + s.husband[w] + s.wife.w + s.wife[m]

s’.husband = s.husband + w->m

s’.wife = s.wife + m->w

}

(iii) [4 marks] Write an Alloy command to check whether the marry operation you pro-
vided in (ii) preserves invariant inv.

check { all s,s’: State, m: Man, w: Woman |

inv[s] and marry[s,s’,m,w] implies inv[s’]

} for 10

SWEN 224 7 continued...

Question 3. JML [25 marks]

(a) Understanding JML

Do the following methods correctly implement their specification? Give a brief explanation
why you think they do or do not.

(i) [2 marks]

//@ r e q u i r e s true ;
//@ ensures 0 <= \ r e s u l t && \ r e s u l t <= 5 0 ;
i n t magicNumber1 () { re turn 4 2 ; }

Yes, since the method always satisfies the postcondition by returning a value within the
range 0 upto 50.

(ii) [2 marks]

//@ r e q u i r e s x == 0 ;
//@ ensures \ r e s u l t == 41 | | \ r e s u l t == 4 2 ;
i n t magicNumber2 (i n t x) { re turn 4 2 ; }

Yes, since the method always satisfies the postcondition by returning a value that is equiv-
alent to 41 or 42.

(iii) [2 marks]

//@ r e q u i r e s f a l s e ;
//@ ensures f a l s e ;
i n t magicNumber3 () { re turn 4 2 ; }

Yes, since the method only needs to satisfy the postcondition if the precondition has been
satisfied by the caller but the precondition cannot be satisfied.

(iv) [2 marks]

//@ r e q u i r e s a != n u l l ;
//@ ensures 0 <= \ r e s u l t && \ r e s u l t < a . length ;
//@ ensures a [\ r e s u l t] == value ;
i n t f ind1 (i n t [] a , i n t value) {

a [0] = value ;
re turn 0 ;

}

No, since if the array a is empty, an exception will be thrown.

(v) [2 marks]

//@ r e q u i r e s a != n u l l ;
//@ ensures 0 <= \ r e s u l t && \ r e s u l t <= a . length ;
//@ ensures a [\ r e s u l t] == value ;
i n t f ind2 (i n t [] a , i n t value) {

f o r (i n t i = 0 ; i < a . length ; i ++) {

SWEN 224 8 continued...

i f (a [i] == value) re turn i ;
}
re turn a . length ;

}

No, since if the value is not in a, the second postcondition cannot be satisfied.

SWEN 224 9 continued...

(b) Writing JML

Write a JML specification for each of the following methods.

(i) [3 marks] int max(int x, int y)

Method max returns the maximum of the two given integers.

//@ ensures \result == x || \result == y;

//@ ensures \result >= x;

//@ ensures \result >= y;

(ii) [5 marks] int[] replace(int[] a, int x, int y)

Given integers x and y, and a non-null integer array a, the array returned by method replace

is the same as a with all occurrences of x replaced by y.

//@ requires a != null;

//@ ensures \result != null && \result.length == a.length;

/*@ ensures (\forall int i; 0 <= i && i<a.length;

(a[i] == x && \result[i] == y) || (a[i] != x && \result[i]==a[i])); */

(c) Class Invariants

Consider the following Java class to represent a bank account.

publ i c c l a s s Account
{

//@ i n v a r i a n t amount >= 0 ;
p r i v a t e i n t amount ;

publ i c void deposi t (i n t value) {
amount += value ;

}

publ ic void withdraw (i n t value) {
amount −= value ;

}
}

(i) [3 marks] Explain what the JML invariant clause means.

(ii) [2 marks] Does the deposit method preserve the given JML invariant? Give a brief
explanation why you think it does or does not.

No, it does not preserve the invariant since value could be negative and |amount| < |value|.
In this case, amount + value < 0.

(iii) [2 marks] The withdraw method does not preserve the given JML invariant. Provide a
JML annotation that ensures that the withdraw method preserves the given JML invariant.

SWEN 224 10 continued...

//@ requires amount - value >= 0;

SWEN 224 11 continued...

Question 4. Loop Invariants and Variants [25 marks]

Consider the following Java method:

boolean t e s t (S t r i n g s) {
i n t k = 0 ;
i n t n = s . length () / 2 ;
while (k < n && s . charAt (k) == s . charAt (n+k)) {

k = k +1;
}
re turn (k == n) ;

}

Given a string, s, of even length, this method determines whether s is the concatenation of
two copies of the same string. For example, test will return true if s is "abcabc" or "xx"
and false if s is "abba".

(a) [5 marks] Give a JML specification (precondition and postcondition) that formalises the
above description of the test method.

//@ requires s != null;

//@ requires s.length()%2 == 0;

/*@ ensures

\result <==>

(\forall int i; 0 <= i && i < s.length()/2;

s.charAt(i) == s.charAt(s.length()/2+i)); @*/

Note that == can be used in place of <==>. The postcondition can also be expressed as
\result <==> s.substring(0, s.length()/2).equals(s.substring(s.length()/2)).

(b) [12 marks] Give a loop invariant and use it to give an argument (informal proof) that
the method satisfies its specification.

//@ loop_invariant s != null;

//@ loop_invariant n == s.length()/2;

//@ loop_invariant 0 <= k && k <= n;

//@ loop_invariant (\forall int i; 0 <= i && i < k; s.charAt(i) == s.charAt(n+i));

We must show (i) that the loop invariant holds on entry to the loop, (ii) that the loop invari-
ant is preserved by the loop body when the loop test holds, and (iii) that the loop invariant
implies the postcondition when the loop exits (i.e. when the loop test fails).

(i) At the beginning of the loop, we know that s != null from the method’s precondition,
and that k == 0 and n == s.length()/2, from the effects of the assignments to k and n.

Thus, s != null and n == s.length()/2 obviously hold.

SWEN 224 12 continued...

0 <= k && k <= n holds, because k == 0 and n == s.length()/2, since s.length() >= 0

for any string s.

\forall int i; 0 <= i \&\& i < k; s.charAt(i) == s.charAt(n+i)) holds, because k

== 0, since (\forall int i; 0 <= i && i < k; C) holds for any condition C.

(ii) s != null and n == s.length()/2 are obviously preserved since s and n are not changed
in the loop.

0 <= k is preserved, since 0 <= k holds at the beginning of the loop body and k is increased
(more formally, 0 <= k implies 0 <= k+1).

k <= n is preserved, since k < n when the loop test succeeds (more formally, k < n implies
k+1 <= n).

(\forall int i; 0 <= i && i < k; s.charAt(i) == s.charAt(n+i)) is preserved since
s.charAt(k) == s.charAt(n+k) holds when the loop test succeeds (more formally, (\forall
int i; 0 <= i && i < k; s.charAt(i) == s.charAt(n+i)) and s.charAt(k) ==

s.charAt(n+k) imply (\forall int i; 0 <= i && i < k+1; s.charAt(i) == s.charAt(n+i))).

(iii) We need to show that k == n <==> (\forall int i; 0 <= i \&\& i < s.length()/2;

s.charAt(i) == s.charAt(s.length()/2+i)) holds when the loop exits, k == n is the
value returned by the method.

When the loop exits, we know that the loop invariant holds, and, because the loop test fails,
either !(k < n) or !(s.charAt(k) == s.charAt(n+k)).

If !(k < n}, we must have k == n, since the loop invariant implies k <= n. The loop invari-
ant also tells us that n == s.length()/2, which means that k == s.length()/2. Substitut-
ing this in (\forall int i; 0 <= i \&\& i < k; s.charAt(i) == s.charAt(n+i)), gives
(\forall int i; 0 <= i && i < s.length()/2; s.charAt(i) == s.charAt(s.length()/2+i)).
Thus k == n <==> (\forall int i; 0 <= i && i < s.length()/2; s.charAt(i) == s.charAt(s.length()/2+i))

holds, since both sides are true.

If !(s.charAt(k) == s.charAt(n+k)) holds, then k < nmust hold (otherwise s.charAt(k)
== s.charAt(n+k)) would not have been evaluated), and so k == n is false. Also, (\forall
int i; 0 <= i && i < s.length()/2; s.charAt(i) == s.charAt(s.length()/2+i)) must
be false, since s.charAt(k) == s.charAt(n+k). Thus, k == n <==> (\forall int i;

0 <= i \&\& i < s.length()/2; s.charAt(i) == s.charAt(s.length()/2+i)) holds, since
both sides are false.

(c) [8 marks] Give a loop variant and an argument (informal proof) to show that the method
terminates.

//@ decreasing n - k;

Since 0 <= k && k <= n and k is increased by the loop body, n-k must decrease each time
the loop body is executed, and the loop must exit when n-k because 0 (because of the
condition k < n) if not before (because of the condition s.charAt(k) == s.charAt(n+k).

SWEN 224 13 continued...

Also note that the precondition s != null ensures that s.length()%2 is well defined, and
that the conjuncts s != null, s.length()%2 == 0, n == s.length()/2 and 0 <= k && k

<= n of the loop invariant ensure that the operations s.charAt(k) and s.charAt(n+k) are
well defined, so the method does not give a run-time error or exception.

(Proper termination also relies on the fact that in Java, when evaluating the loop test, when
k < n evaluates to false, the second conjunct, s.charAt(k) == s.charAt(n+k)) is not
evaluated. Otherwise, evaluating s.charAt(n+k)) would give an error when k == n.)

Note that the reasoning shown here (for all parts of the question) is more detailed that
required as an exam answer.

SWEN 224 14 continued...

Question 5. Properties of Strings and Languages [30 marks]

(a) [4 marks] A string s is a prefix of another string t, written s � t, if t is the concatenation
of s and some other string, say u; i.e. s � t ≡ ∃u : t = s ⌢ u.

Show that if x is a prefix of y and y is a prefix of z, then x is a prefix of z (i.e. x � y and y � z
implies x � z).

If x is a prefix of y and y is a prefix of z, then there are strings, say u and v, such that
y = x ⌢ u and z = y ⌢ v. But this implies that z = x ⌢ u ⌢ v, so x is a prefix of z. That
is, we can show that there is a string, say w, such that z = x ⌢ w, by taking w = u ⌢ v.

(b) [10 marks] Give a proof for each of the following equalities, where X and Y are lan-
guages over some alphabet A, and XR is the reflection of X, i.e. XR = {αR | α ∈ X}:

(i) (X ∪ Y)R = XR ∪ YR

(X ∪ Y)R

= {αR | α ∈ X ∪ Y} Defn of XR

= {αR | α ∈ X} ∪ {αR | α ∪ Y} Defn of ∪
= XR ∪ YR Defn of XR

Alternatively, let α be a string in A∗, then:

α ∈ (X ∪ Y)R

iff αR ∈ X ∪ Y Defn of XR

iff αR ∈ X ∨ αR ∈ Y Defn of ∪
iff α ∈ XR ∨ α ∈ YR Defn of ∪
iff α ∈ XR ∪ YR Defn of XR

(ii) (X ⌢ Y)R = YR
⌢ XR

(X ⌢ Y)R

= {αR | α ∈ X ⌢ Y} Defn of XR

= {(x ⌢ y)R | x ∈ X ∧ y ∈ Y} Defn of X ⌢ Y
= {yR

⌢ xR | x ∈ X ∧ y ∈ Y} Property of αR

= {yR | y ∈ Y} ⌢ {xR | x ∈ X} Defn of X ⌢ Y
= {y | y ∈ YR} ⌢ {x | x ∈ XR} Defn of XR

= YR
⌢ XR Defn of XR

Alternatively, let α be a string in A∗, then:

α ∈ (X ⌢ Y)R

iff αR ∈ X ⌢ Y Defn of XR

iff αR = x ⌢ y for some x ∈ X and y ∈ Y Defn of X ⌢ Y
iff α = yR

⌢ xR for some y ∈ Y and x ∈ X Property of αR

iff α ∈ YR
⌢ XR Defn of ⌢

(iii) (X∗)R = (XR)∗

SWEN 224 15 continued...

(X∗)R

(
⋃

n≥0 Xn)R Defn of X∗
⋃

n≥0(X
n)R By (i)

⋃
n≥0(X

R)n By (ii)
= (XR)∗ Defn of X∗

Alternatively, let α be a string in A∗, then:

α ∈ (X∗)R

iff αR ∈ X∗ Defn of XR

iff αR ∈ Xn, for some n ≥ 0 Defn of X∗

iff αR = α1 ⌢ · · · ⌢ αn, for some n ≥ 0 and α1, · · · , αn ∈ X Defn of Xn

iff α = αR
n ⌢ · · · ⌢ αR

1 , for some n ≥ 0 and α1, · · · , αn ∈ X By (ii)
iff α ∈ (XR)n, for some n ≥ 0 ∈ (Xn)R, for some n ≥ 0 Defn of Xn

iff α ∈ (XR)∗ Defn of X∗

In these proofs, you should explain each step and state the properties of sets and strings
that they rely on, but you do not need to prove these properties.

(c) [5 marks] Explain how the results in part (b) above can be used to show that the class
of regular languages is closed under reflection.

We need to show that a language X is regular iff its reflection XR is regular. If X is regular,
it can be defined by a regular expression, x. We will show by induction that XR can also be
defined by a regular expression.

For the base cases, if x is λ, φ or a ∈ A, then xR = x, since λR = λ, φR = φ and aR = a.

For the inductive cases, assume that yR = y′ and zR = z′, for regular expressions y, y′, z and
z′. The above results show that if x = y|z, then xR = y′|z′; if x = y ⌢ z, the xR = z′ ⌢ y′;
and if x = y∗, then xR = y′∗

(d) [6 marks] Explain how the set of strings represented by a trie can be obtained by solving
a set of equations. Illustrate this result using a small example.

We determine the set of strings represented by a trie as follows. We associate a set of strings,
L(i), with each node, i, in the trie, such that L(i) is the set of strings formed by collecting
all of the symbols on the edges of a path from node i to a final node. Then L(root) is the
required set.

The values of L for adjacent nodes are related by a set of equations of the form:

L(i) = Λ(i) ∪ (
⋃

a∈A {a} ⌢ L(N(i, a)))

where: Λ(i) = {λ} if i is a final node, and ∅ otherwise.

We can solve these equations to find L(i) as follows. We first note that L(i) = {λ} for any
leaf node i (we assume that leaves are always final). Then repeatedly substitute the value
of some L(i) for which we have a value. If there are n nodes in the trie, this process will
terminate after (at most) n steps, with the value of L(root).

SWEN 224 16 continued...

For example, if the trie has edges {(1, a, 2), (1, b, 4), (2, n, 3), (4, e, 5), (4, y, 6)}, were 1 is the
root and nodes 2, 3, 5 and 6 are final, we get equations (writing Li instead of L(i) for
convenience):

L1={a} ⌢ L2 ∪ {b} ⌢ L4

L2={λ} ∪ {n} ⌢ L3

L3={λ}
L4={e} ⌢ L5 ∪ {y} ⌢ L6

L5={λ}
L6={λ}

Substituting for L3, L5 and L6 gives:

L2={λ} ∪ {n} ⌢ {λ} = {λ, n}
L4={e} ⌢ {λ} ∪ {y} ⌢ {λ} = {e, y}

Substituting for L2 and L4 gives:

L1={a} ⌢ {λ, n} ∪ {b} ⌢ {e, y} = {a, an, be, by}

(e) [5 marks] How is the result in part (d) above affected if we represent the set of strings
by an NFA rather than a trie? Illustrate your answer using a small example.

If we have an NFA, rather than a trie, we can have multiple edges out of a node with the
same label. This makes it a bit harder to give a generic description of the set of equations,
but doesn’t make them any harder to solve.

We can also have cycles, which does make the equations harder to solve, because they can
be recursive, which means we can’t just substitute them all out the way we can for a trie.
However, we can always reduce our equations to a form:

Li = X ⌢ Li ∪ Y

where X is the set of strings that ca be accepted on a path from i back to itself and Y is the
set of strings that ca be accepted on a path from i to a final node. Any such equation has
the solution:

Li = X∗ ∪ Y

Example: See lecture notes.

SWEN 224 17 continued...

Question 6. Finite Acceptors [30 marks]

(a) Consider the following NFA, M1:

b

1

2

3

4

5

a

a
b

b

a

a

c

(i) [3 marks] Show the sequence of configurations that M1 passes through in accepting the
input aaabc. Note that you should show all states that M may be in after accepting part of
the input.

States Input
1 aaabc
1, 2, 3 aabc
1, 2, 3, 5 abc
1, 2, 3, 5 bc
2, 4, 5 c
4 λ

(ii) [3 marks] Write a regular expression describing the language accepted by M.

a∗(ab∗b|aab∗c)

(iii) [8 marks] Draw a transition diagram for the DFA obtained by applying the subset
construction to M. You only need to show reachable states.

The edges are: ({1}, a, {1, 2, 3}), ({1, 2, 3}, a, {1, 2, 3, 5}),
({1, 2, 3}, b, {2, 4}), ({1, 2, 3, 5}, a, {1, 2, 3, 5}),
({1, 2, 3, 5}, b, {2, 4, 5}), ({2, 4, 5}, b, {2, 4, 5}),
({2, 4, 5}, c, {4}), ({2, 4}, b, {2, 4})

States {4}, {2, 4} and {2, 4, 5} are final.

(b) [10 marks] Given an NFA M = (Q, qI , A, N, F), show how to construct an NFA, M′ =
(Q′, q′I , A′, N′, F′), which accepts the reflection of the language accepted by M (i.e. L(M′) =
L(M)R).

Give a brief argument to show that the resulting NFA does in fact accept the required
language.

SWEN 224 18 continued...

We just need to reverse all edges, and the initial state of M the final state, and add a new
initial state with null transistions to the final states of M′.

For formally, M′ = (Q′, q′I , A′, N′, F′), where:

• Q′ = Q ∪ {qN}, where qN is a new state, not in Q.

• q′I = qN

• A′ = A

• N′ = {(q′, a, q | (q, a, q′) ∈ N} ∪ {(qN , ǫ, q) | q ∈ F}

• F′ = {qI}

If a string α = a0 · · · an is accepted on a path 〈q0, · · · , qn〉 in M, αR is accepted on a path
〈qN , qn, · · · , q1〉 in M′, and vice versa.

(c) [6 marks] Given an NFAǫ M = (Q, qI , A, N, F) (i.e. an NFA with null transitions), de-
scribe an algorithm to determine whether M accepts the empty string.

We need to determine whether there is a path from qI to a final state consisting only of
null transitions. The required algorithm is a simple graph traversal, following only null
transitions and looking for final states. We’ll use two sets called V, to record the nodes that
have been visited, and W, to record the nodes that are waiting to be visited.

W := {qi}
While W 6= ∅ do

Select a node n from W and remove it
If n is a final node, then return true
else add n to V and add to W any states in N(n, ǫ) but not in V

od
return f alse

SWEN 224 19 continued...

Question 7. Context Free Grammars [25 marks]

(a) [5 marks] Given a grammar, G = (VN , VT, S, P), explain what it means for a tree to be a
parse tree for a string w from G.

A tree T is a parse tree for w from G if:

• The root of T is labelled with S, and every other non-leaf node is labelled with a
nonterminal in VN.

• The leaf nodes are labelled with terminals in VT, and the fringe is w.

• For every non-leaf node with label N and children labelled x1, · · · xn, N → x1 · · · xn is
a rule in P.

(b) Consider the grammar GP = ({S}, {a, b}, S, {S → λ | aSa | bSb}).

(i) [2 marks] Write all of the strings of length less than or equal to 4 that can be produced
from GP.

(Note that a string s can be produced from G iff s is in the language defined by G, i.e.
s ∈ L(G).)

λ, aa, bb, aaaa, abba, baab, bbbb

(ii) [4 marks] Show that every string produced from GP is a palindrome. (A string s is a
palindrome if it is equal to its own reflection, i.e. if sR = s.)

The proof is by induction on the number rule applications required to produce s.

The base case is when one rule application is required, and s = λ. Clearly λR = λ, so λ is a
palindraome.

For the step case, assume that and string s that can be produced with n rule applications (for
n ≥ 1) is a palindrome. Then the strings that can be produced with n = 1 rule applications
are asa and bsb. But if s is a palidrome, then so are asa and bsb. Thus all strings that can be
produced with n + 1 rule applications are palindromes.

Therefore all strings that can be produced from GP are palindromes.

(iii) [6 marks] Can every palindrome over {a, b} be produced by GP? If so, prove that this
is the case. If not, modify the grammar so that it does produce all palindromes over {a, b}
and prove that the resulting grammar does indeed produce all palindromes over {a, b}.

No, the grammar only produces strings of even length (since the first rule produces λ and
the others produce a string 2 longer than another string), so cannot produce a, b, aaa, aba,
or any other odd length palindrome.

We extend the definitoin of S so that it can produce a or b as well as the other cases:

S → λ | a | b | aSa | bSb

SWEN 224 20 continued...

...

(c) [8 marks] Given two grammars, G = (VN , VT, S, P) and G′ = (V ′
N , V ′

T, S′, P′), defining
languages X and Y (i.e. X = L(G) and Y = L(G′)), show how you can construct a grammar
G′′ = (V ′′

N , V ′′
T , S′′, P′′) which defines the concatenation of X and Y (i.e. L(G′′) = VN ⌢

V ′
N = {}).

Give a brief argument to show that the resulting grammar does in fact define the required
language.

Combine the terminals, nonterminals and productions of G and G′, and add a new start
symbol Si and a rule Si → S S′; i.e. G′′ = (V ′′

N , V ′′
T , S′′, P′′) where

• S′′ /∈ VN ∪ VT ∪ V ′
N ∪ V ′

T

• V ′′
N = VN ∪ V ′

N ∪ {Si}

• V ′′
T = VT ∪ V ′

T

• P′′ = P ∪ P′ ∪ {S′′ → S S′}

If α ∈ X ⌢ Y, there are strings β ∈ X and γ ∈ Y, such that α = β ⌢ γ. Now, since β ∈ X
and γ ∈ Y, there is a parse tree, say T, for β from G and a parse tree, say T′, for γ from
G′. Thus, we can construct a parse tree for α from G′′ by applying the rule S′′ → S S′ and
taking T and T′ as its subtrees, as shown on the right. Thus, every string in X ⌢ Y is in
L(G′′).

If α ∈ L(G′′), there is a parse tree T′′ for α from G. But since S′′ → S S′ is the only rule for
S′′, T′′ must have two subtrees, say T and T′, whose roots are labelled S and S′, as shown
on the right. Let β be the fringe of T and γ be the fringe of T′, then T is a parse tree for
β from G, and T′ is a parse tree for β from G′, so β ∈ X and γ ∈ Y. Thus every string in
L(G′′) is in X ⌢ Y.

SWEN 224 21

