
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2012

END-OF-YEAR

SWEN 224
Formal Foundations

of Programming

WITH ANSWERS

Time Allowed: 3 Hours

Instructions: • Answer all four questions.

• The exam will be marked out of one hundred and eighty (180).

• Calculators ARE NOT ALLOWED.

• Non-electronic foreign language dictionaries are allowed.

• No other reference material is allowed.

SWEN 224 continued...

Question 1. Assertions and Specification [45 marks]

(a) [3 marks : 1 for each part] Consider the following assertion:

(x < u ∧ y < v) ∨ (x > u ∧ y > v)

For each of the following combinations of value, say whether the assertion is true or false
for those values:

(i) x = 1, y = 5, u = 3, v = 8 true

(ii) x = 4, y = 6, u = 3, v = 3 true

(iii) x = 5, y = 3, u = 5, v = 3 false

(b) [6 marks : 2 for each part] Consider the following assertion:

(∀ i : 1. . |A | −1 • A[i] = 0 ⇒ A[i + 1] 6= 0)

where A is assumed to be an array of numbers, with indexes starting from 1.

For each of the following arrays, say whether the assertion is true or false for that array:

(i) A = (0, 2, 0) true

(ii) A = (0, 0) false

(iii) A = (0) true

(c) [20 marks : 5 for each part] For each of the following statements, write an assertion
formalising the statement. Assume that x, y and z are integers, and A is an integer array of
size N, with indexes starting from 1.

(i) x, y and z are all different.

x ≤ y ∧ y 6= z ∧ x 6= z

(ii) A contains at least one occurrence of x.

∃ i : 1 ≤ i ≤ N • A[i] = z
or | {i | 1 ≤ i ≤ N ∧ A[i] = z} | ≥ 1

Ok to use |A | instead of N; likewise in (iii) and (iv).

(iii) Some element of A occurs at least twice.

∃ i, j : 1 ≤ i, j ≤ N ∧ i 6= j • A[i] = A[j]
or ∃ i, j : 1 ≤ i < j ≤ N • A[i] 6= A[j]

SWEN 224 2 continued...

(iv) A contains exactly two occurrences of z.

∃ i, j : 1 ≤ i < j ≤ N : A[i] = z ∧ A[j] = z ∧
(∀ k : 1 ≤ k ≤ N ∧ k 6= i ∧ k 6= j : A[k] 6= z)

or | {i | 1 ≤ i ≤ N ∧ A[i] = z} | = 2

(d) [16 marks : 8 for each part] Give a formal specification (pre- and postcondition) for
each of the programs described below.

(i) A program that takes an array, A, of non-negative numbers and returns two outputs,
s and z, where s is the sum of the elements of A, and z is the number of zero elements
in A.

Pre: (∀ i : 1.. | A |• A[i] ≥ 0)

Post: s = ∑
|A|
i=1 A[i] ∧ n =| {i | 1 ≤ i ≤| A |∧ A[i] = 0} |

(ii) A program that takes two arrays, A and B, where A and B are both in ascending order
and have no elements in common, and returns an array C which is in ascending order
and contains all of the elements of A and B.

Define asc(X) = (∀ i : 1 ≤ i <| X |• X[i] < X[i + 1])
and elts(X) = {x | ∃ i : 1 ≤ i ≤| X |• x = X[i]}

Pre: asc(A) ∧ asc(B) ∧ elt(A) ∩ elts(B) = ∅

Post: asc(C) ∧ elts(C) = elts(A) ∪ elts(B)

SWEN 224 3 continued...

Question 2. Program Verification [45 marks]

(a) [18 marks : 6 for each part] For each of the following correctness assertions, write down
the verification condition(s) that must hold in order for the correctness assertion to be valid,
and give a brief explanation of why these verification conditions hold.

(i) { k = 1 } s := A[1] { s = ∑
k
i=1 A[i] }

k = 1 ⇒ A[1] = ∑
k
i=1 A[i]

This holds because ∑
1
i=1 A[i] = A[1].

(ii) { true } if x > 0then z := z + xelse z := z − x fi { z ≥ z0 }

true ∧ x > 0 ⇒ z + x ≥ z

i.e. x > 0 ⇒ x ≥ 0

true ∧ ¬ (x > 0) ⇒ z − x ≥ z

i.e. x ≤ 0 ⇒ x ≤ 0

(iii) { 0 ≤ k <|A |∧ s = ∑
k
i=1 A[i] } k := k+1; s := s+A[k] { 0 ≤ k ≤|A |∧ s = ∑

k
i=1 A[i] }

0 ≤ k <|A |∧ s = ∑
k−1
i=1 A[i] ⇒ 0 ≤ k + 1 ≤|A |∧ s + a[k + 1] = ∑

k+1
i=1 A[i]

This holds because:

• 0 ≤ k implies 0 ≤ k + 1

• k <|A | implies k + 1 <|A |

• s = ∑
k−1
i=1 A[i] implies s + a[k + 1] = ∑

k+1
i=1 A[i]

(0 ≤ k <|A | ensures that a[k + 1] is well-defined)

(b) The following correctness assertion says that the given loop sets r to n factorial, pro-
vided that n is positive, and k and r are initially both equal to one. Note that n, k and r are
assumed to be integers, and that n factorial is the product of the first n positive integers, i.e.
n! = ×n

i=1i.

{ n ≥ 1 ∧ k = 1 ∧ r = 1 }while k < n do k := k + 1; r := r × k od { r = n! }

To verify the loop, we introduce the following loop invariant, which says that whenever
execution reaches the top of the loop, k is between 1 and n (inclusive), and r is k factorial.

1 ≤ k ≤ n ∧ r = k!

(i) [18 marks: 6 for each condition and its justification] State the three verification condi-
tions that must be proved in order to show that the loop is partially correct, and give
a brief argument to show that each of them holds.

SWEN 224 4 continued...

• The precondition for the loop implies the loop invariant.

n ≥ 1 ∧ k = 1 ∧ r = 1 ⇒ 1 ≤ k ≤ n ∧ r = k!

• The loop invariant is preserved when the loop test holds.

{ 1 ≤ k ≤ n ∧ r = k! ∧ k < n } k := k + 1; r := r × k { 1 ≤ k ≤ n ∧ r = k! }

To prove this, we must prove the verification condition:

1 ≤ k ≤ n ∧ r = k! ∧ k < n ⇒ 1 ≤ k + 1 ≤ n ∧ r × (k + 1) = (k + 1)!

• The loop invariant implies the postcondition when the loop test fails.

1 ≤ k ≤ n ∧ r = k! ∧ k 6< n ⇒ r = n!

(ii) [4 marks] Give a brief argument to show that the method terminates properly. (You
may ignore the possibility of arithmetic overflow.)

The program cannot loop forever because it terminates after n iterations. We can
prove this formally using n + 1 − i as a loop variant. This value decreases on each
iteration of the loop, and cannot go negative, since the loop will exit when it becomes
zero.

(c) [5 marks] Consider the following correctness assertion, which says that the given code
sets m to the largest value in the array A, and n to the number of times that m occurs in A,
provided that A is non-empty.

{ |A |> 0 }
k := 1; m := A[1]; n := 1;
while k <|A | do

if A[k] > mthen
m := A[k]; n := 1

else if A[k] = mthen
n := n + 1

fi fi;
k := k + 1

od

{m = max
|A|
i=1 A[i] ∧ n =| {i | 1 ≤ i ≤|A |∧ m = A[i]} | }

Give a loop invariant that could be used to verify this loop.

1 ≤ k ≤|A |∧ m = maxk
i=1 A[i] ∧ n =| {i | 1 ≤ i ≤ k ∧ m = A[i]} |

SWEN 224 5 continued...

Question 3. Regular Languages [45 marks]

(a) [12 marks : 4 for each part] Write a Regular Expression to describe each of the following
languages, over the alphabet {a, b, c}:

(i) All strings consisting of one or more a’s, followed by one b, then zero or more c’s.

aa∗bc∗

(ii) All strings containing exactly two b’s.

(a | c)∗b(a | c)∗b(a | c)∗

(iii) All strings which do not contain three consecutive a’s.

(λ | a | aa)((b | c)(b | c)∗(a | aa))∗

(b) Consider the NFA M = (Q, qI, A, N, F), where:

Q = {1, 2, 3, 4, 5, 6}
qI = 1
A = {a, b}
N = {(1, a, 2), (1, a, 3), (2, b, 2), (2, b, 4), (2, b, 5), (3, a, 3),

(3, a, 6), (3, b, 5), (4, a, 1), (4, a, 5), (6, b, 1), (6, b, 5)}

F = {2, 5}

(i) [4 marks] Draw a transition diagram for M.

(ii) [5 marks] Show the sequence of configurations that M passes through in accepting
the input abbba.

Note that you should show all states that M may be in after accepting part of the input.

States Input
{1} abbba
{2, 3} bbba
{2, 4, 5} bba
{2, 4, 5} ba
{2, 4, 5} a
{1, 5} λ Accept

(iii) [8 marks] Draw a transition diagram for the DFA obtained by applying the subset
construction to M. Show the correspondence between states of the DFA and those of
the NFA. You only need to show reachable states.

SWEN 224 6 continued...

1

2 4
a

b

a

b

a

b

a,b

a,b

3 5

The state correspondence is:
DFAState NFAStates
1 {1}
2 {1, 2}
3 {1, 2, 3}
4 {1, 2, 3, 4}
5 {1, 2, 3, 4}

(c) [6 marks] Draw a transition diagram for an NFAǫ that accepts the language defined by
the regular expression a∗(b∗c∗ | c∗d∗)∗a∗.

(d) [10 marks] Given a DFA M = (Q, qI, A, N, F), show how to construct a DFA, M′ =
(Q′, q′I, A′, N′, F′), which accepts the complement of L(M), i.e. the language consisting of all
strings in A∗ which are not accepted by M.

Give a brief argument to show that the resulting DFA does in fact accept the required lan-
guage.

First, ensure that M is complete, adding an error state if necessary. Then define M′ as:

M′ = (Q, qI, A, N, Q− F)

SWEN 224 7 continued...

Question 4. Context-Free Languages [45 marks]

(a) Consider the language of simple method headers, where a method header consists of
a method name, followed by a (possibly empty) list of argument declarations, separated
by commas and enclosed in brackets. An argument declaration is an argument name fol-
lowed by a colon and a type name. Method names, argument names and type names are
identifiers. Identifiers should be treated as terminal symbols and do not need to be defined
further.

For example, the following are sentences in this language, assuming that sequences of let-
ters are identifiers:

• f()

• sum(x: int, y: int)

• draw(a: float, b: char, c: bool)

(i) [10 marks] Write a Context Free Grammar to describe this language. You are not re-
quired to give a full formal definition of this grammar — just write the list of rules.

S → id(T)
T → λ | U
U → id : id | id : id, U

(ii) [5 marks] Draw a parse tree for the following method header using your grammar:

sum(x: int, y: int)

(b) Consider the following grammar, where “!”, “$”, “#”, “(”, “)” and “@” are terminal
symbols:

S → T !
T → T $ T | T # T | (T) | @

(i) [6 marks] Demonstrate that the grammar is ambiguous by drawing two different
parse trees for “@ # @ $ @!”.

(ii) [8 marks] Write an equivalent, unambiguous grammar, treating $ as left-associative, #
as right-associative, and giving # higher precedence than $.

S → T !
T → T $ U | U
U → V # U | V
V → @ | (S)

(iii) [10 marks: 6 for the grammar, 4 for the proof] Write an LL(1) grammar which is equiv-
alent to the given grammar, and show that it is LL(1). Note that in writing this gram-
mar, you do not need to consider associativity or precedence.

SWEN 224 8 continued...

S → T !
T → @ T′ | (T)
T′ → λ | $ T | # T

In the definition of T, first(@T′) = {@} and first((T)) = {(}, which are disjoint.

In the definition of T′, first(λ) = {}, first($T) = {$}, and first(#T′) = {#}, which are
pairwise disjoint.

T′ ⇒∗
λ, so we have to show that first(T′) ∩ follow(T′) = ∅. Now, first(T′) = {$, #}

and follow(T′) = {!,)}, which are indeed disjoint.

Thus, the grammar is LL(1).

(c) [6 marks] Let G = (VN, VT, S, P) be a Context Free Grammar, and let N be a non-
terminal symbol in VN such that N 6= S and N does not occur on the left-hand side of any
rule in P.

Show that deleting N from VN and deleting from P any rule containing N does not alter the
language defined by the grammar.

If N is not S and does not appear on the left-hand side of any rule in P, then N cannot occur
in any parse tree constructed from G. Therefore, if we deleted N and any rules containing
N from the grammar, we will still be able to construct the same parse trees.

More formally, let G′ be the grammar obtained from G by deleting N from VN and deleting
from P any rule containing N; i.e. G′ = (VN − {N}, VT, S, P′), where P′ = P − {X → α ∈
P | N ∈ α} (where N ∈ α is shorthand for ∃ i ∈ 1. . | α |• αi = N). We need to show that
L(G) = L(G′).

Let w be a string in L(G), then there is a parse tree T for w from G. But since N is not S and
does not appear on the left-hand side of any rule in P, N cannot occur in T. Thus, T is also
a parse tree for w from G′, which means that w is in L(G).

Similarly, if w is a string in L(G′), there is a parse tree T for w from G′. In this case, T is
trivially also a parse tree for w from G, because every nonterminal and rule of G′ is also in
G. So w is in L(G).

SWEN 224 9

