
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW VICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2016

TRIMESTER 2

SWEN224

Software Correctness

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.
Model Checking Documentation is in the Appendix

Instructions: Answer all questions
All questions are of equal value

Answer all questions in the boxes provided.
Every box requires an answer.
If additional space is required you may use a separate answer booklet.

Question Topic Marks

1. Static Analysis 30

2. Specification & Verification 30

3. Model Checking I 30

4. Model Checking II 30

Total 120

SWEN224 Page 1 of 33

Student ID: .

Question 1. Static Analysis [30 marks]

(a) Consider the following program written in Java, which contains an error:

1 // Return the absolute difference of two integers
2 int diff(int x, int y) {
3 int r;
4

5 if(x < y) { r = x - y; }
6 else {
7 r = y - x;
8 }
9 assert r >= 0;

10

11 return r;
12 }

(i) [2 marks] Give values for parameters x and y which would cause the assert to fail.

x=1, y=0

(ii) [2 marks] Suggest a simple fix for the above program. You can ignore the possibility of
integer overflow.

Swap condition from x < y to x > y

(iii) [5 marks] Java asserts operate at runtime. Briefly, discuss the disadvantages of this, com-
pared with techniques which operate at compile time.

• Operating at runtime means that problems can only be found for the limited number of
inputs that are tested.

• One cannot possibly check all possible inputs and, hence, problems may still exist for
untested inputs.

• Compile time techniques check for problems before the program is run, and can guarantee
the absence of certain classes of error. In effect, they check for all possible inputs.

SWEN224 Page 2 of 33

Student ID: .

(b) This question is concerned with non-null analysis.

(i) [2 marks] Briefly, discuss what the @NonNull annotation means.

This means that the annotated variable or field cannot hold the null value

(ii) [2 marks] Briefly, discuss whether or not @NonNull is a subtype of @Nullable.

Yes, @NonNull is a subtype of @Nullable. This is because the set of values represented by
@NonNull is a subset of that represented by @Nullable

(iii) [6 marks] For each parameter, return and field in the following program, insert @NonNull
or @Nullable annotations (where appropriate) by writing in the box.

1 public class Property {
2 private @NonNull String name; // Every property has a name
3

4 private @Nullable Player owner; // Some properties have owners
5

6 private boolean mortgaged; // Some properties are mortgaged
7

8 public Property(@NonNull String name) {
9 this.name = name;

10 }
11

12 public @NonNull String getName() { return name; }
13

14 public @Nullable Player getOwner() { return owner; }
15

16 public void setOwner(@Nullable Player p) { owner = p; }
17

18 public boolean isMortgaged() { return mortgaged; }
19

20 public void setMortgated(boolean m) { mortgaged = m; }
21 }

SWEN224 Page 3 of 33

Student ID: .

(c) This question is concerned with Java’s definite assignment analysis.

(i) [2 marks] Briefly, state what the purpose of checking definite assignment is.

The purpose of definite assignment checking is to ensure that every local variable is defined a
value before being used in an expression.

Consider the following program written in Java.

1 int max(int x, int y) {
2 int r;
3 //
4 if(x >= y) { r = x; }
5 if(x < y) { r = y; }
6 //
7 return r;
8 }

(ii) [5 marks] This program fails definite assignment. Briefly, discuss why this happens. Your
answer should illustrate the program’s control-flow graph.

The definite assignment checker in Java makes a de-
cision as to whether or not a variable is definitely
assigned based purely on the method’s control flow
graph. In particular, it completely ignores the con-
ditions on the if statements above. When looking at
the control-flow graph, the checker observes a path
through it where both conditions are false. It simply
assumes this path is feasible and, hence, that r may
be undefined at the return statement.

(iii) [4 marks] The above program is a false positive with respect to definite assignment analysis.
Briefly, discuss what this means.

A false positive occurs when a static analysis tool reports an error when, in fact, no such error is
actually possible. In the above example, the definite assignment checker is reporting that variable
r may be undefined a the return statement. We can see that this is impossible by considering
the four possible paths through the program (TT, TF, FT, FF) and observing that both TT and FF
are infeasible. False positives reflect the conservative nature of the definite assignment checker,
which is preferable to it permitting false negatives (i.e. failing to report errors which actually do
exist).

SWEN224 Page 4 of 33

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN224 Page 5 of 33

Student ID: .

Question 2. Specification & Verification [30 marks]

(a) For each of the following, provide one set of parameter values which meet the precondition and
one set which does not.

(i) [2 marks]

function set(int[] items, int i, int val) -> (int[] r)
requires 0 <= i && i < |items|:

// ...

Meets preconditon: u8=0

Does not meet precondition: u8=-1

(ii) [2 marks]

function indexOf(int[] items, int val) -> (int r)
requires some { i in 0..|items| | items[i] == val }:

// ...

Meets preconditon: items=[0],i=0

Does not meet precondition: items=[],i=0

(iii) [2 marks]

function reverse(int[] bs) -> (int[] r)
requires all { i in 0..|bs| | bs[i] >= 0 && bs[i] <= 255 }:

// ...

Meets preconditon: items=[0],item=0

Does not meet precondition: items=[-1],item=0

(iv) [2 marks]

function find(int[] xs, int val) -> (int r)
requires |xs| > 1 ==> all { i in 1..|xs| | xs[i-1] < xs[i] }:

// ...

Meets preconditon: xs=[0,1,3]

Does not meet precondition: xs=[3,2,1]

SWEN224 Page 6 of 33

Student ID: .

(b) Consider the following implementation for the function cmp():

1 function cmp(int[] left, int[] right, int i) -> (int r):
2 if i == |left|:
3 return 0
4 else if left[i] < right[i]:
5 return -1
6 else if left[i] > right[i]:
7 return 1
8 else:
9 return cmp(left,right,i+1)

(i) [2 marks] Briefly, describe in your own words what function cmp() does.

The cmp() function finds the first position i in which both arrays differ and indicates whether
left[i] is below right[i] at that point. If no such position exists, then it returns 0 to indicate
they are equal.

(ii) [8 marks] Provide an appropriate specification for function cmp().

1 function cmp(int[] left, int[] right, int i) -> (int r)
2 requires |left| == |right|
3

4 requires i >= 0 && i <= |left|
5

6 ensures r >= -1 && r <= 1
7

8 ensures r == 0 ==> all { j in i..|left| | left[j] == right[j] }
9

10 ensures r < 0 ==> some { j in i..|left| | left[j] < right[j]
11 && all { k in 0..j | left[k] == right[k] } }
12

13 ensures r > 0 ==> some { j in i..|left| | left[j] > right[j]
14 && all { k in 0..j | left[k] == right[k] } }:

SWEN224 Page 7 of 33

Student ID: .

(c) Consider the following implementation for the function cut():

1 function cut(int[] xs) -> (int[] rs)
2 ensures |rs| == |xs|
3 ensures all { k in 0..|xs| | xs[k] >= 0 ==> rs[k] == xs[k] }
4 ensures all { k in 0..|xs| | xs[k] < 0 ==> rs[k] == 0 }:
5 //
6 int i = 0
7 int[] ys = xs
8 //
9 while i < |xs|:

10 if xs[i] < 0:
11 ys[i] = 0
12 else:
13 ys[i] = xs[i]
14 i = i + 1
15 //
16 return ys

(i) [2 marks] Briefly, describe in your own words what function cut() does.

The cut function takes an array xs and returns an updated array where all negative elements are
replaced with 0, and all other elements are left as is.

(ii) [6 marks] Provide an appropriate loop invariant for function cut().

1 while i < |xs|
2 where i >= 0 && |xs| == |ys|
3 where all {j in 0..i | xs[j] < 0 ==> ys[j] == 0 }
4 where all {j in 0..i | xs[j] >= 0 ==> ys[j] == xs[j] }:

SWEN224 Page 8 of 33

Student ID: .

(iii) [4 marks] Briefly, state the three rules of loop invariants.

The three rules of loop invariants are:

1. Loop invariants must hold on entry. That is, they must hold before the first iteration of
the loop begins.

2. Loop invariants must be restored after each iteration. That is, they must hold at the end
of each iteration of the loop (assuming they held at the start of each iteration).

3. Loop invariants must hold on exit. This follows from rule 2 but, in addition, when the
loop condition is false, the loop invariant must still hold.

SWEN224 Page 9 of 33

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN224 Page 10 of 33

Student ID: .

Question 3. Model Checking A Lift [30 marks]

(a) The LTSA language:

(i) [6 marks] Draw the automaton of the following three processes:

automata {

LiftS = (close→move→open→LiftS).

Person= (enter→exit→STOP).

Simple = LiftS || Person.

}

SWEN224 Page 11 of 33

Student ID: .

(ii) [2 marks] Briefly explain what is meant by event interleaving.

When two processes are run in parallel and do not interact in any way then an observer can see
any interleaving of the events from the two processes. That is there is no fixed order between any
two events from different processes.

SWEN224 Page 12 of 33

Student ID: .

(iii) [6 marks] Draw the automaton of the following three processes:

automata {

LiftStop = (close→move→open→STOP).

Cat= (enter→move→meow→Cat).

SimpleCat = LiftStop || Cat.

}

SWEN224 Page 13 of 33

Student ID: .

(iv) [3 marks] Briefly explain what is meant by event synchronization.

When two processes are run in parallel an event from one processes can synchronize with an
event from the other processes, in LTSA the synchronizing events must have the same name. An
event that synchronizes with another is blocked until the other event is ready to be performed and
when the synchronizing event is performed it is performed by both processes at the same time.

SWEN224 Page 14 of 33

Student ID: .

(b) Simple door specification

A Door is initially closed and locked. It can open, and when open it can close. In addition the door
can be locked and then unlocked. Locking the door prevents it from opening but not from closing.

(i) [5 marks] Draw the automaton of the Door specified above using only the events open, close,
lock and unlock.

(ii) [3 marks] Specify the Door process using the LTSA language.

automata { Door = unlock→CU,
CU = open→ OU—lock→ Door,
OU = close→ CU — lock→ OL,
OL = close→ Door — unlock→OU .
}

SWEN224 Page 15 of 33

Student ID: .

(iii) [5 marks] Process Lift is:

Lift = closeDoor→goUp→openDoor→closeDoor→goDown→openDoor→Lift.

A process Btn may synchronise with any of the events in Lift.

Specify and draw the process Btn so that when composed in parallel with Lift they behave like
LiftAndBtn = Lift || Btn. shown below.

Btn = closeDoor→ btn→(goDown→Btn|goUp→Btn).

SWEN224 Page 16 of 33

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN224 Page 17 of 33

Student ID: .

Question 4. Model Checking General Processes [30 marks]

(a) Worker Processes:

(i) [5 marks]

A Worker process gets a task then either fails the task after which the process stops or executes
the task. After finishing the task the Worker returns to the start to wait for the next task.

Use only the events: getTask, executeTask, failTask and finishTask

Specify the automaton of the Worker process:

Worker = getTask→ (executeTask→ finishTask→ Worker | failTask→ STOP).

Draw the automaton of the Worker process:

SWEN224 Page 18 of 33

Student ID: .

(ii) [5 marks] The WorkerX process that is built from the Worker process above by hiding the
executeTask event.

Specify the WorkerX process.

W = Worker\ {executeTask}.
WorkerX = abs(W).

Draw the WorkerX process.

SWEN224 Page 19 of 33

Student ID: .

(b) Simple Purse specification

A Purse initially has N dollars and when it has the funds is able to pay either one or two dollars.
When the Purse is empty it can be refilled.

(i) [4 marks] Draw the automaton of the Purse for the special case when N = 3. Use only the
events oneDollar, twoDollar, and refill.

(ii) [5 marks] Specify the Purse process using our Process language.

Purse = P[N],
P[i:0..N] = when (i > 0) oneDollar→ P[i-1]

| when (i > 1) twodDollar→ P[i-2]
| when i == 0 empty→ STOP.

SWEN224 Page 20 of 33

Student ID: .

(c) Lift to N floors

A Lift called LiftNumber can be on any one of N floors. There are N buttons, after pushing button j
the lift moves to floor j

This figure is an example when N = 3.

(i) [5 marks] Specify the LiftNumber process using parameter N and only using the events named
in the figure.

LiftNumber = Ln[1],
Ln[i:1..N] = btn[j:1..N]→ move→ Ln[j].

SWEN224 Page 21 of 33

Student ID: .

(ii) [6 marks] Specify LiftX a Lift that is like LiftNumber above except when you push the button
for the floor that you are on then the lift will not move.

The figure is for the case when N = 2

Lift X= L[1][1],
L[i:1..N][f:1..N] = btn[j:1..N]→ L[i][j]

| when (i!=f) move→ L[f][f].

SWEN224 Page 22 of 33

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN224 Page 23 of 33

Student ID: .

Appendix

Defining Basic Processes

Processes are defined using a simple process algebra Σ = {Act,− >, |, STOP} the operational
semantics of the defined process definition will be rendered as an automata by enclosing the
definition in automata { ... } as shown in the examples below. We will frequently omit
the automata { ... } as any number of process definitions may be included with in the
brackets {...}.

A simplest process is STOP the process that dose nothing. The more interesting but very basic
processes that we discuss consist of a finite state space and transitions labeled with atomic events.

Event prefixing

A simple process that performs a single event and stops can be built by prefixing an event takeTea
to the STOP process using the -> operator by the command:

automata {
Simple = (takeTea->STOP).
}

Every process we define can be represented by a transition labeled automata. The events, like
takeTea, have an informal meaning (semantics) given by relating them to some real world
event. We can prefix a second event

Two = (teaButton->takeTea->STOP).

The informal meaning of events will in part be formalised by our definition (to be given later) of
parallel composition. Informally we need to think of our events as hand-shake events, i.e. event
that can be blocked or enabled by the context in which they execute. For example the teaButton
event of a vending machine can only occur when some agent actually pushes the button, which
can also be modelled by a teaButton event.

Event choice

A vending machine that has two buttons one for coffee the other for tea offers the user the choice
to push either button. This we formalise by intrducing the choice operator _|_.

CM = (teaButton->takeTea->STOP|coffeeButton->takeCoffee->STOP).

this automata branches at the initial node.

SWEN224 Page 24 of 33

Student ID: .

Non deterministic processes

The two processes VM and VMx both represent a vending machine that offers two drinks,
tea and coffee after a coin is inserted. The two terms are different and they are repre-
sented by different automata.

automata
{
VM = coin->((teaBtn->tea-> STOP)|(coffeeBtn->coffee->STOP)).
Vmx = (coin->teaBtn->tea-> STOP)|(coin->coffeeBtn->coffee->STOP).
}

Are VM and VMx equivalent processes? Before you can answer this you must decide
what it means for two processes to be equivalent and there is many reasonable answers
to this. If we assume either that the processes generate events or that they ae used
to recognise a sequence of events then the processes can reasonable be viewed as
equivalent as both generate (recognise) the same two event sequences:

1. coin,teaBtn,tea

2. coin,coffeeBtn,coffee

But what if you were interacting with these processes and you wanted coffee then with
the first machine you could allways insert a coin than push the coffeeBtn and you
would be able to get your coffee. In contrast with the second machine after inserting
the coin you would not be able to push the coffBtn. Hence you would be able to
distinguish the two processes.

Event hiding and process simplification

We can make event private by hiding them so they can not be seen. _\{t}\} operator
renames the t event to a tau event and the abs(_) operator abstract away the tau events.

Abstraction works by adding observable events x a−→y whenever:

1. there exists v such that x a−→v and v tau−→y or

SWEN224 Page 25 of 33

Student ID: .

2. there exists v such thatx tau−→v and v a−→y

See following example:

Basic = a->(t->b->STOP | c->STOP).

Bas = Basic\{t}.
B = abs(Bas).

Nonterminating processes

We call the set of know processes is called the Process name space. Initially the Process
name space is {STOP}.

Processes consist of a set of states, an initial state and a set of event labeled state
transitions. Given a process has a set of states and a set of transitions it is reasonable
that the process can be conceptual identified with its initial state. Each process definition
P1 = ... adds the the defined process P1 to the name space.

Clearly any state S could also be conceptual identified with the the process consisting
of the same set of states and transitions but with initial state S. This we use to define
nonterminating processes simply by allowing any valid process to be used where {STOP}
has been used:

To build events that do not terminate we can replace STOP with the name of the process
we are defining thus T = (takeTea->STOP). becomes Tt = (takeTea->Tt). and
the new process Tt endlessly performs the takeTea event.

Tt = (takeTea->Tt).
BT = (teaButton->takeTea->BT).

We allow local process or states to be defined within a process definition by separating
definitions with a comma. The local process do not appear in the Process name space.

P = (a->Q),
Q = (b->P|c->Q).

SWEN224 Page 26 of 33

Student ID: .

This allows processes to be defined without cluttering the Process name space.

Translating any finite state automata into a process term

It is often easy to sketch your understanding of a processes behaviour as an automata.
Then from any automata we can construct the process term from which represents the
automata and from which our tool will generate the automata. This can be achieved quite
mechanically as follows:

1. name all nodes (or all nodes with more than one in and one out event) with a process
name

2. define each of the processes and the choice of events leaving them

3. end each process definition with a comma except for the last process that must end
with a full stop.

For the above automata node 0 we name TrRed and node 1 we name TrGreen. Then
we define the events leaving these nodes

TrRed = (red->TrRed | turnGreen ->TrGreen),
TrGreen = (green->TrGreen|turnRed->TrRed).

The result of this construction is the definition of the first process TrRed, all other pro-
cesses, in this case just TrGreen, are local definitions.

Defining Concurrent Processes

Below we have two processes each with three events and no two event have the same
name hence the event from each process can be interleaved in any way.

P = ((a->b->c->STOP) || (x->y->z->STOP)).

SWEN224 Page 27 of 33

Student ID: .

Without synchronization two processes are independent and hence their events inter-
leave and the state space of the composition of the processes is the product of the state
space of the constituent processes.

In the Process tool events from different concurrent processes that have the same name
must synchronize and only these events synchronize. That is neither process can exe-
cute the synchronising event on its own. These synchronising events are only executed
when both processes are ready to execute them. Below only differs from the previous
process in that the second event in both processes has the same name and hence must
synchronize and the resulting m event is then hidden (renamed τ).

P = ((a->m->c->STOP) || (x->m->z->STOP))\{m}.

Event synchronization is the only mechanism for concurrent process interaction and be-
cause of event synchronisation we know:

If you can see and event you can synchronize with it and you can block it.

Hence the only way the control the order of two events from different concurrent pro-
cesses is to introduce a synchronizing event. In above the a event and the z event are
from different concurrent processes in the interleaving example either could occur first.
Whereas in the synchronization of the m events forces the a event to occur before the z.

Another effect of synchronization is to reduce the size of the reachable state space of
the automata. Note the first two events a and x can be performed in either order but only
when both a and x have been performed and both processes are ready to perform b dose
the b event actually get performed.

SWEN224 Page 28 of 33

Student ID: .

Labeling Processes

In the following example we make use of a one place buffer Buf is a process that when
empty can receive some thing in and when full can return it out.

By labelling processes one:Buf the tool labels all events in the process one.in and
one.out.

Using process labelling we can make two differently label copies of a process and com-
pose them in parallel to build the interleaving of the two copies.

B2=(one:Buf||two:Buf).

Event renaming

If two events from processes run in parallel have the same name they, and only they,
must synchronise.

Pragmatically when you compose two processes in parallel you should check the
name of events you want to synchronise and where necessary rename them to en-
force the desired synchronisation.

We force the synchronisation of the output from buffer one with the input to buffer two
by event renaming.

B3 = (one:Buf/{move/one.out}||two:Buf/{move/two.in}).

Note that the result is much simpler than the interleaving as the move event now can only
occur when both buffers are able to perform it.

SWEN224 Page 29 of 33

Student ID: .

Event hiding and process simplification

We can go further and hide the move event by applying _\{move} The move event
becomes a tau event that can neither be synchronized with nor blocked.

B4 = B3\{move}. B5 = abs(B3\{move}).

The tau events can be removed by abstraction, (the application of abs(_)) otherwise
known as building the observational semantics. With a little effort nodes, 1 and 2 in B5
can be seen to be essentially the same. They are actually bisimular but we will not be
going into details here. These nodes can be identified to produce a simpler but equivalent
automata by the application of simp(_).

B6 = simp(abs(B3\{move})).

Event hiding is commonly, but not exclusively, used to model private communication.

Indexed Process definitions

Basic process definitions you have seen so far a fixed bounded set of states. This suits
some situations very well and allows easy and complete push button model checking.
When what you are modelling has infinite state you could use symbolic model checking
but this frequently requires input from a domain expert and is very time consuming.

The small world assumption

Most program bugs can be found while restricting variables to range over a small domain.
Using this assumption we model processes with variables by indexing the processes and
restricting the indexes to range over a small domain. Having done this the variables in the
state can be removed by instantiating the varaibles with values from the small domain.

Indexing introduces the ability to define a process parameterised by one or more index.
Once the indexes are fixed you are back to a basic process with a fixed set of states.
Processes can be indexed in different ways to achieve conceptually different things. The
first we consider is how to build a process of parameterised size, the second is to model
events that input or output data and finally how to model a parameterised number of
concurrent processes.

SWEN224 Page 30 of 33

Student ID: .

State indexing

We can define a process consisting of an an unknown number of states. To do this we
must index the local states (or local processes).

The first thing we do is define a constant to be used for the size of the automata to be
constructed:

const N = 4

Next the definition C[i:1..N] = defines the N processes C[1],C[2],C[3] and C[4]

automata {
Money = C[1],
C[i:1..N] = (when(i<N) coin->C[i+1]

|when(i==N) coin->C[1]).
}

On the right hand side of the indexed definition we define guarded events, that is when(i<N) coin->C[i+1]
will only add event coin that ends at node C[i+1] when the index is less that the con-
stant when(i<N). Note a guard only applies to one event. Each time you add a choice
you need to add any required guard.

Event indexing

An indexed event can be used to model events with data I/O.

You can also index events and choice. Consider a Lock that has to be set to a value
between 1 and N and once set the door only opens if the same value is entered by user.
If the wrong value is entered the lock needs to be reset. To help make sense of this
design you can think of the setlock event as needing admin privileges (not modeled).

SWEN224 Page 31 of 33

Student ID: .

This is defined by:

Lock = ([i:1..N].setlock -> L[i]),
L[j:1..N] = ([i:1..N].enter ->

(when (i==j)open ->close->L[j]
|when(i!=j) error->Lock)).

Not the value input in the [i:1..N].setlock event is stored in the state of the process
L[i] for subsequent comparison with the value input in the [i:1..N].enter event.

Indexing concurrent processes.

If you want N Worker processes, each labeled with [1],[2],...[N]

Worker = (getTask -> doTask -> Worker).
Workers = (forall [i:1..N] ([i]:Worker)).

We can add a Farmer process to hand out the Tasks to the Workers in order. Then
build a Farm composed of the Farmer and the Workers.

SWEN224 Page 32 of 33

Student ID: .

Farmer = F[1],
F[i:1..N] = (when (i < N) [i].getTask -> F[i+1]

| when (i>= N) [i].getTask -> F[1]).

Farm = (Farmer || Workers).

The Farmer process is far from ideal in some regards.

Syntax

There are always many ways to define any interesting automata but some simple exam-
ples should help.

atomic indexed
Prefixing A = act->P if (i<N) then (act[i]->P[i+1]) else P[0]

Money = C[1],
C[i:1..N] = (when(i<N) coin->C[i+1]

|when(i==N) coin->C[1]).
Choice A = a->P|b->Q Fmr = F[0],

F[w:0..W] = when (w< W) [w].wtask -> F[w+1]|
when (w == W) ([w].wtask ->Fmr).

Labeling lab:P see Buff example above
Parallel A = (P||Q) Workers = (forall [i:0..N] ([i]:Worker)).

Relabeling P/{new/old} P/{new[i:0..N]/old[i]}
Hiding P\{act} P\{act[i:0..N]}

For processing automata:

abstraction abs(P) the removal of τ events
simplification simp(P) for the simplification of automata

equality ∼ compute if two automata are bisimular
fair divergence remove all τ loops

not fair divergence replace τ loops with deadlock

* * * * * * * * * * * * * * *

SWEN224 Page 33 of 33

