
Surname: . First Name: . Student ID: .

EXAMINATIONS – 2022

TRIMESTER 2

SWEN 225

SOFTWARE DESIGN

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Instructions: Answer all questions

You may answer the questions in any order. Make sure you clearly identify
the question you are answering.

Question Topic Marks Examiners Use Only

1. UML and Git 30

2. The composite pattern 30

3. Code comprehension and Mocking 30

4. Contracts and invariants 30

Total 120

SWEN 225 Page 1 of 23

Student ID: .

1. UML and Git (30 marks)

(a) Git (15 Marks)

i. (3 marks) What is the difference between Git, GitLab, GitHub, and Github Desktop?

SWEN 225 Page 2 of 23

Student ID: .

ii. (3 marks) What Git command is used when you want to download an existing git repository
to your local computer? Write an example Git command.

iii. (3 marks) What Git command is used for displaying the current status of your working
directory? What Git command is used for switching current working directory to a specified
branch? Write example Git commands.

iv. (3 marks) What does the Git push command do and what is the purpose of the command?
Write an example Git command.

v. (3 marks) What Git command is used to join a specified branch into your current branch (the
one you are on currently)? Write an example Git command.

SWEN 225 Page 3 of 23

Student ID: .

(b) UML (15 Marks)

i. (15 marks)

Uber is ride-sharing service. Uber has Drivers, Riders, Rides, and Vehicles. A driver can drive
only one vehicle at a time. A vehicle can take up to four riders at a time. A ride can be classified
as different kinds (e.g. UberX, Comfort). A rider takes rides in a vehicle and can take only one
ride at a time. Riders can provide rating feedback on drivers on their service. Riders can make
payments for rides via credit card only. Drivers can receive payments and also rate feedback on
riders too.

Draw a UML class diagram using classes, associations, multiplicities, and inheritance that mod-
els the above Uber system. Make sure to use appropriate names for classes, association labels,
and attribute names. Include attributes and operations where appropriate. For labelling associa-
tions use either labels for the whole association or role names at the association ends.

SWEN 225 Page 4 of 23

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 225 Page 5 of 23

Student ID: .

2. The composite pattern (30 marks)

Follow closely the instruction below to implement a composite pattern for a sub set of html nodes. The
nodes will offer the operation ‘depth’ in the way operations are implemented following the composite.

Note:
To get maximum marks you should avoid if/for/whiles and use streams when possible, but a correct
answer using a traditional ’for’ can still get most marks. To get maximum marks your code should be
able to compile without warnings, but of course you can still get most marks if you miss minor details,
like a ’;’. However, mistakes about exceptions and generics are not minor details.

If you can not remember the name of a specific method, just make up a name and add a note describing
the expected behaviour. You will not get full marks but you may get most marks.

(a) (5 marks) Node
Declare an interface ‘Node’ with the operation ‘depth’ returning an ‘int’. Note: We will later
add a static method to ‘Node’, but for now just declare the interface and the method ‘depth’

interface Node{ int depth(); }

(b) (5 marks) Paragraph
Declare a record ‘P’ subtype of ‘Node’ so that the operation ‘depth’ returns ‘1’. The record will
have a single field of type ‘String’.

record P(String text)implements Node{
public int depth(){ return 1; } }

(c) (5 marks) List item
Declare a record ‘Li’ subtype of ‘Node’ and containing exactly one other ‘Node’ as a child. The
operation ‘depth’ returns ‘1’ + the depth of the child.

SWEN 225 Page 6 of 23

Student ID: .

record Li(Node node)implements Node{
public int depth(){ return 1+node.depth(); } }

SWEN 225 Page 7 of 23

Student ID: .

(d) (5 marks) Unordered list
Declare a record ‘Ul’ subtype of ‘Node’ so that:

• the operation ‘depth’ returns ‘1’ + the maximum depth of all the children.
• The record will have a single field to store a list of list items of type ‘Li’; that is, only nodes

of type ‘Li’ can be stored as children of an ‘Ul’ node.

record Ul(Listlis)implements Node{
public int depth(){ return ns.stream()
.mapToInt(n->n.depth())
.max().orElse(0);

}
}

SWEN 225 Page 8 of 23

Student ID: .

(e) (10 marks) Unordered list, Ordered list and Div
Consider now the cases for ‘Ol’ and ‘Div’. The children of an ‘Ol’ can only be nodes of type
‘Li’, while the children of a ‘Div’ can be any kind of node. That is, both ‘Ol’ and ‘Div’ have a
single field, but the type will be different.

A naive implementation may repeat the code logic for computing the maximum depth three times:
One in ‘Ol’, one in ‘Ul’ and one in ‘Div’. Instead, we will edit the code of ‘Node’ to add a static
method doing this task, and just call this functionality 3 times. Write the new complete code for
‘Node’, ‘Ol’, ‘Ul’ and ‘Div’.

interface Node{
int depth();
static int maxDepth(List<? extends Node> ns){
return ns.stream()
.mapToInt(n->n.depth()).max().orElse(0);

}
}

record Div(List<Node>ns)implements Node{
public int depth(){ return 1+Node.maxDepth(ns); }

}
record Ul(Listlis)implements Node{
public int depth(){ return 1+Node.maxDepth(lis); }

}
record Ol(Listlis)implements Node{
public int depth(){ return 1+Node.maxDepth(lis); }

}

SWEN 225 Page 9 of 23

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 225 Page 10 of 23

Student ID: .

3. Code comprehension and Mocking (30 marks)

Consider the following incomplete code, where the omitted method bodies of ‘ConcreteDB’ are cor-
rectly accessing a real Data base. Note: to answer this question no former knowledge of Data bases is
required.

(a) (10 marks) Complete the code
Similarly as in the WAT questions, on the next page, write the missing part ([???]) of the code so
that it can compile and run without errors.

1 class ConcreteDB implements DBAccess{
2 public void beginTransaction() {/*..*/}
3 public void commitTransaction() {/*..*/}
4 public void rollbackTransaction() {/*..*/}
5 public void doQuery(String query) {/*..*/}
6 }
7 class TransactionManager{
8 private final DBAccess db;
9 private final Query q;

10 public TransactionManager(DBAccess db){
11 this.db = db;
12 this.q = str->db.doQuery(str);
13 }
14 public void makeTransaction(DoQueries qs){
15 db.beginTransaction();
16 try{ qs.of(q); }
17 catch(Error|RuntimeException err){
18 db.rollbackTransaction();
19 throw err;
20 }
21 db.commitTransaction();
22 }
23 }
24 [???]
25 class User{
26 public static void main(String[]arg){
27 var t = new TransactionManager(new ConcreteDB());
28 runProgram(t);
29 }
30 static void runProgram(TransactionManager t){
31 t.makeTransaction(q->{
32 q.query("DROP TABLE Marks;");
33 q.query("DROP TABLE Students;");
34 });
35 }
36 }

SWEN 225 Page 11 of 23

Student ID: .

interface DBAccess{
void beginTransaction();
void commitTransaction();
void rollbackTransaction();
void doQuery(String query);

}
interface Query{ void query(String str); }
interface DoQueries{ void of(Query q); }

(b) (3 marks) The code of the class ‘User’ is divided into two methods. Explain why this is good
and how this makes the code of ‘User’ more testable.

Testing a main method directly is very challenging. By splitting the method in 2 we can make the
‘runProgram’ method take input that can be used to allow for testing.

SWEN 225 Page 12 of 23

Student ID: .

(c) (4 marks) Discuss the specific details of the implementation of ‘makeTransaction’. How is
it interacting with user code? How can user code interact with it?

MakeTransaction starts by beginning a transactions. MakeTransaction then interacts with user
code by calling the lambda qs in a try catch. If anything has gone wrong, the code rolls back the
transaction and propagate the error. Otherwise, the transaction is committed.
User code can interact with it by providing a lambda that will receive in input a Query object, that
can be used to query the database during the transaction.

(d) (3 marks) Discuss the role of the two fields of ‘TransactionManager’.

The field db stores an object able to access the database. This field is private and it is not accessible
to the user of the class.
The field q is initialized with a lambda, and it is used to allow the user code to query the database
without even releasing the db object to the user.

(e) (10 marks) Similarly as in the WAT questions, write the missing part ([???]) of the code so that
if this was a JUnit test suits, it could compile and run without errors. Complete the following code
using a mock object instead of an instance of ‘ConcreteDB.

1 class UserTest {
2 [???]
3 @Test void test1() {
4 log.clear();
5 User.runProgram(t);
6 assertEquals(log,List.of(
7 "beginTransaction",
8 "doQuery DROP TABLE Marks;",
9 "doQuery DROP TABLE Students;",

10 "commitTransaction"

11));
12 }
13 }

SWEN 225 Page 13 of 23

Student ID: .

record MockAccess(List<String> log) implements DBAccess{
public void beginTransaction(){ log.add("beginTransaction"); }
public void commitTransaction(){ log.add("commitTransaction"); }
public void rollbackTransaction(){ log.add("rollBackTransaction"); }
public void doQuery(String query){ log.add("doQuery "+query); }
}

List<String> log = new ArrayList<>();
TransactionManager t = new TransactionManager(new MockAccess(log));

SWEN 225 Page 14 of 23

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 225 Page 15 of 23

Student ID: .

4. Testing and Code contracts (30 marks)

Note:
To get maximum marks you should avoid if/for/whiles and use streams when possible, but a correct
answer using a traditional ’for’ can still get most marks. To get maximum marks your code should be
able to compile without warnings, but of course you can still get most marks if you miss minor details,
like a ’;’. However, mistakes about exceptions and generics are not minor details.

If you can not remember the name of a specific method, just make up a name and add a note describing
the expected behaviour. You will not get full marks but you may get most marks.

(a) (6 marks) Consider manual testing, automatic testing, unit testing and property based testing/fuzz
testing. For each of those 4 kinds of testing, include at least one sentence defining what that kind of
testing this is.

Manual testing:

Manual testing is manually running the program to check if it behaves as expected.

Automatic testing:

Automatic testing is writing (and running) a program to run the program and to automatically
check if it behaves as expected.

Unit testing:

Unit Testing is to (automatically) test individual units of behaviour independendently.

Fuzz testing:

Fuzz testing is to write a program that generates a large amolunt of potential input and then runs
unit tests using those inputs.

SWEN 225 Page 16 of 23

Student ID: .

(b) (2 marks) As discussed in class, for a program with about 1000 lines of code encoding the desired
behaviour, what is the minimum amount of lines of code that we should expect to see in the well
designed tests for such program?

1000 lines

(c) (2 marks) As discussed in class, in a program with about 1000 lines of code encoding the desired
behaviour, how many lines of code we should expect inside well designed asserts/contracts and
functions called only inside asserts/contracts?

1000 lines

SWEN 225 Page 17 of 23

Student ID: .

(d) (8 marks) Make a record Person with a String name and an int age. We need to ensure
that all instances of Person have non null and non empty names and that their age is not a negative
number. State what is the kind of contract that can enforce that, and write the full code for this
Person record.

record Person(String name, int age){
Person{
assert name!=null && !name.isEmpty();
assert age>=0;

}
}

SWEN 225 Page 18 of 23

Student ID: .

(e) (12 marks) Consider the code below:

1 record Person(String name, int age, List<String> qualifications){
2 Person doInterview(List<Person> candidates){
3 var alsoCs = candidates.stream()
4 .filter(c->c.qualifications().contains("C#")).findFirst();
5 if(alsoCs.isPresent()){ return alsoCs.get(); }
6 return candidates.get(0);
7 }
8 }

The code above has the following contract:

Preconditions: The method doInterview assumes that the age of all the candidates is 18 or
over, and that their qualifications contains ”Java”. This method also assume many other conditions
implicitly, and you have to discover them.

Postcondition: This method ensures that either the resulting candidate knows C#, or that none of
the provided candidates knows C#.

On the following page rewrite the method doInterview to check at run time for the pre and
post conditions using the pattern shown in the course. When rewriting such method, do not use the
keyword var but show the type explicitly.

SWEN 225 Page 19 of 23

Student ID: .

Person doInterview(List<Person> candidates){
assert candidates!=null;
assert !candidates.isEmpty();
assert candidates.stream().allMatch(c->c!=null && c.age()>=18);
assert candidates.stream()
.allMatch(c->c.qualifications().contains("Java"));

Person result;
try{
Optional<Person> alsoCs = candidates.stream()
.filter(c->c.qualifications().contains("C#")).findFirst();

if(alsoCs.isPresent()){ return result=alsoCs.get(); }
return result=candidates.get(0);

}
finally{
assert result.qualifications().contains("C#") ||
candidates.stream().noneMatch(c->c.qualifications().contains("C#"));

}
}

* * * * * * * * * * * * * * *

SWEN 225 Page 20 of 23

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 225 Page 21 of 23

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 225 Page 22 of 23

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 225 Page 23 of 23

