
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUWVICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2018

TRIMESTER 1

SWEN 326

SAFETY-CRITICAL SYSTEMS

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Instructions: Answer all questions

Question Topic Marks
1. Risk, Hazards and Failure 30

2. Design Validation 30

3. Software Testing 30

4. Static Analysis 30

Total 120

SWEN 326 Page 1 of 21

Student ID: .

1. Risk, Hazards and Failure (30 marks)

(a) Consider the following description of a system for controlling lift doors.

“The lift doors are operating by a software controller. After the doors have been
open a certain amount of time, they automatically close. If a sensor detects an
obstruction as the doors are closing, they reopen. Under no circumstance should
the doors close on an obstruction.”

i. (2 marks) Following the terminology of IEC61508, identify the Equipment Under
Control for the door system.

ii. (2 marks) Identify an important hazard for the door system.

iii. (4 marks) Briefly, discuss how the risk of the above hazard occurring might be esti-
mated.

iv. (2 marks) Briefly, discuss how the above hazard is mitigated in the system.

SWEN 326 Page 2 of 21

Student ID: .

v. (4 marks) Under IEC61508 there can never be zero risk. Briefly, discuss what this
means with respect to the door system.

vi. (2 marks) When calculating risk, one will often consider only a single component
failure. Briefly, discuss why this approach is sensible in many cases.

vii. (2 marks) Briefly, outline one simple approach for mitigating against a single compo-
nent failure.

viii. (4 marks) Briefly, discuss why it is difficult to estimate the likelihood of a software
sytem failing.

SWEN 326 Page 3 of 21

Student ID: .

(b) The “Power-of-Ten” rules provide a simple set of coding guidelines for developing safety-
critical software.

i. (4 marks) Rule 4 states that “No function should be longer than what can be printed
on a single sheet of paper”. Briefly, discuss the motivation behind this rule.

ii. (4 marks) Rule 10 states that “all compiler warnings must be enabled”. Briefly, discuss
the advantages and disadvantages of this rule.

SWEN 326 Page 4 of 21

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 326 Page 5 of 21

Student ID: .

2. Design Validation (30 marks)

Consider the following description of a simple alarm system with timers:

“The alarm system protects houses against break-ins. The system has two sensors
which detect movement in the home. The owner can arm one or both of the sensors.
When no-one is home, both sensors should be armed. At night, the downstairs sensor
should be armed so the owner can move around upstairs. When one or more sensors
is armed, the system begins an exit timer. Whilst the exit timer is active, the siren will
not sound. Once exiting is complete, the system is fully armed. When an armed sensor
detects movement, an alarm timer begins. This gives time for the owner to deactivate
the system when returning home. However, if the alarm is not deactivated before time
runs out, the siren will sound and continue until the system is deactivated.”

A state machine diagram for the alarm system has been provided:

(Question 2 continued on next page)

SWEN 326 Page 6 of 21

Student ID: .

(Question 2 continued)

(a) For each of the following statements, indicate whether it is a true or false statement based on
the state machine diagram.

i. (2 marks) Sensor 2 may be armed whilst sensor 1 is not.

ii. (2 marks) The siren may sound when the exit timer is active.

iii. (2 marks) When the siren is deactivated, the system remains armed.

iv. (2 marks) A timeout does not always result in the siren being activated.

(Question 2 continued on next page)

SWEN 326 Page 7 of 21

Student ID: .

(Question 2 continued)

(b) Consider the following incomplete Alloy model of the alarm system:

1 enum Bool {True, False}
2 enum Sensor {None, Both}
3

4 sig AlarmState {
5 armed : Sensor, siren : Bool, exiting : Bool, timer : Bool
6 }
7

8 pred init(s : AlarmState) {
9 s.armed = None and s.siren = False and s.exiting = False and s.timer = False

10 }
11

12 pred armSystem(s,s’ : AlarmState) {
13 s.armed = None
14 s’.armed = Both and s’.siren = False and s’.timer = False and s’.exiting = True
15 }
16

17 pred finished(s,s’ : AlarmState) {
18 s.exiting = True
19 s’.armed = Both and s’.siren = False and s’.timer = False and s’.exiting = False
20 }
21

22 pred sensorActivated(s,s’ : AlarmState) {
23 s.armed = Both and s.siren = False and s.timer = False and s.exiting = False
24 s’.armed = Both and s’.siren = False and s’.timer = True and s’.exiting = False
25 }
26

27 pred timeOut(s,s’ : AlarmState) {
28 s.timer = True
29 s’.armed = s.armed and s’.siren = True and s’.timer = False and s’.exiting = False
30 }
31

32 pred deactivated(s,s’ : AlarmState) {
33 s.armed = Both
34 s’.armed = None and s’.siren = False and s’.timer = False and s’.exiting = False
35 }
36

37 pred transition(s1, s2: AlarmState) {
38 armSystem[s1,s2] or finished[s1,s2] or sensorActivated[s1,s2]
39 or timeOut[s1,s2] or deactivated[s1,s2]
40 }
41

42 sig ExecutionTrace { states: seq AlarmState }{
43 init[states[0]] and all i: states.inds | i > 0 implies transition[states[i−1], states[i]]
44 }

(Question 2 continued on next page)

SWEN 326 Page 8 of 21

Student ID: .

(Question 2 continued)

i. (2 marks) Give an instance of AlarmState which corresponds to state eight from
the diagram on page 6.

ii. (2 marks) Give an instance of ExecutionTrace which corresponds to the execution
trace “5→ 6→ 7” from the diagram on page 6.

iii. (2 marks) What key functionality is provided in the state machine diagram but not by
the Alloy model?

(Question 2 continued on next page)

SWEN 326 Page 9 of 21

Student ID: .

(Question 2 continued)

iv. (2 marks) Can the system described by the Alloy model be deactivated whilst exiting
is in progress?

v. (2 marks) How many different instances of ExecutionTrace are possible with
exactly three states?

vi. (2 marks) How many different instances of ExecutionTrace are possible with
exactly four states?

vii. (4 marks) Suppose we add “exiting = True implies armed = Both” as
an invariant on AlarmState. Briefly, discuss whether or not this changes the number
of valid instances of the model.

SWEN 326 Page 10 of 21

Student ID: .

(c) Consider the following implementation for the Whiley function zeroOut():

1 function zeroOut(int[] items, int start) -> (int [] r)
2 ensures |r| == |items|
3 ensures all { k in start..|r| | r[k] == 0 }
4 ensures all { k in 0..start | r[k] == items[k] }:
5 //
6 int i = start
7 int[] oitems = items
8 //
9 while i < |items|:

10 items[i] = 0
11 i = i + 1
12 //
13 return items

i. (2 marks) Provide a precondition for zeroOut() which will allow it to verify:

ii. (4 marks) Provide a loop invariant for zeroOut() which will allow it to verify.

SWEN 326 Page 11 of 21

Student ID: .

3. Software Testing (30 marks)

(a) (5 marks) Briefly, discuss the advantages and disadvantages of testing as a mechanism for
ensuring correctness of safety-critical software.

(b) Consider the following Java class which compiles without error:

1 public class Util {
2 /∗∗
3 ∗ Return the maximum element of an array.
4 ∗/
5 public static int max(int[] items) {
6 //
7 int m = items[0];
8 //
9 for(int i=1;i!=items.length;i=i+1) {

10 if(m < items[i]) {
11 m = items[i];
12 }
13 }
14 //
15 return m;
16 }
17 }

i. (2 marks) Briefly, discuss why “new int[0]” should not be considered a valid test
input.

SWEN 326 Page 12 of 21

Student ID: .

ii. (6 marks) Draw the control-flow graph for the max(int[]) method.

iii. (3 marks) Give test inputs which achieve 100% branch coverage of max(int[]).

iv. (3 marks) Briefly, discuss why the Modified Condition/Decision Coverage (MC/DC)
criteria does not improve upon branch coverage in this case.

SWEN 326 Page 13 of 21

Student ID: .

v. (3 marks) Give test inputs which achieve 100% prime path coverage of max(int[]).

vi. (3 marks) The max(int[])method does not contain any unreaslisable paths. Briefly,
discuss what this means.

(c) (5 marks) Fuzz testing uses random input data to automatically generate test cases. Briefly,
discuss why fuzz testing of methods in Java is challenging.

SWEN 326 Page 14 of 21

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 326 Page 15 of 21

Student ID: .

4. Static Analysis (30 marks)

(a) This question is concerned with static analysis.

i. (3 marks) Briefly, discuss what is meant by the term static analysis.

ii. (3 marks) Briefly, discuss how the use of static analysis can help to find errors in
software.

iii. (3 marks) Briefly, discuss what conservatism means in the context of static analysis.

SWEN 326 Page 16 of 21

Student ID: .

(b) This question is concerned with non-null analysis.

i. (2 marks) Briefly, discuss what the @NonNull annotation means.

ii. (2 marks) Briefly, discuss whether or not @NonNull is a subtype of @Nullable.

iii. (6 marks) For each parameter, return and field in the following program, insert
@NonNull or @Nullable annotations (where appropriate) by writing in the box.

1 public class Property {
2

3 private String name; // Every property has a name
4

5 private Player owner; // Some properties have owners
6

7 private boolean mortgaged; // Some properties are mortgaged
8

9 public Property(String name) {
10 this.name = name;
11 }
12

13 public String getName() { return name; }
14

15 public Player getOwner() { return owner; }
16

17 public void setOwner(Player p) { owner = p; }
18

19 public boolean isMortgaged() { return mortgaged; }
20

21 public void setMortgated(boolean m) {
22 mortgaged = m;
23 }
24 }

SWEN 326 Page 17 of 21

Student ID: .

(c) This question is concerned with Java’s definite assignment analysis.

i. (2 marks) Briefly, state the purpose of checking definite assignment.

Consider the following Java program.

1 int max(int x, int y) {
2 int r;
3 //
4 if(x >= y) { r = x; }
5 if(x < y) { r = y; }
6 //
7 return r;
8 }

ii. (5 marks) This program fails definite assignment. Briefly, discuss why this happens.
Your answer should illustrate the program’s control-flow graph.

iii. (4 marks) The above program is a false positive with respect to definite assignment
analysis. Briefly, discuss what this means.

SWEN 326 Page 18 of 21

Student ID: .

* * * * * * * * * * * * * * *

SWEN 326 Page 19 of 21

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 326 Page 20 of 21

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 326 Page 21 of 21

