
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2009

COMP463

DESIGN PATTERNS

Time Allowed: 3 Hours

Instructions:

• This examination will be marked out of 180 marks.

• Read each question carefully before attempting it.

• Answer all six questions. Each question has the same value, and
should take approximately 30 minutes to answer.

• You may answer the questions in any order. Make sure you clearly
identify the question you are answering.

• Many of the questions require you to discuss an issue, or to express
and justify an opinion. For such questions, the assessment will take
into account the evidence you present and any insight you demon-
strate.

• Some of the questions ask for examples from object-oriented lan-
guages or of design patterns. Your answers need only refer to object-
oriented languages or patterns discussed in the course, but you may
refer to other programming languages and patterns if you wish.

• This exam is open book. Non-electronic reference books and hand-
written notes are permitted.

COMP463 continued...

Question 1. Creational Patterns [30 marks]

The Factory Object pattern is an alternative creational pattern that is not discussed in the
Design Patterns book. In this simple pattern, a Factory object implements a Factory interface
that contains a Factory Method. The Factory Method returns an instance of a Product class.

(a) [20 marks] How is the Factory Object pattern related to the other four creational pat-
terns? (Abstract Factory, Builder, Prototype, Singleton). How is Factory Object related to
the Strategy pattern?

(b) [10 marks] Do you consider it worthwhile to treat the Factory Object pattern as a pattern
in its own right? Explain why or why not.

COMP463 2 continued...

Question 2. Structural Patterns [30 marks]

The Composite pattern is one of the most useful design patterns, but its use in practice can
cause as many design problems as it solves. For this reason, many other patterns are often
used alongside the Composite pattern. Three of these patterns are:

(a) [10 marks] Flyweight

(b) [10 marks] Bridge

(c) [10 marks] Visitor

For each of the above three patterns:

1. Describe a problem caused by Composite that this pattern can solve.

2. Describe how you would combine this pattern with the Composite pattern.

3. Explain how this pattern resolves the problem caused by Composite.

Question 3. Behavioural Patterns [30 marks]

(a) [15 marks] Design Patterns describes how some patterns (like Decorator) change the
“skin” of an object, while others (like Strategy) change an object’s “guts”. Identify two
other patterns that change an object’s skin, and two other patterns that change an object’s
guts. Explain where you could use the “skin” patterns, and where the “guts” patterns
would be more appropriate.

(b) [15 marks] The Interpreter and Observer patterns both allow dynamic behaviour to
be associated with objects in programs. Do you think these two patterns could provide
alternative solutions to similar problems? Could you combine Observers and Interpreters
to solve a more complex problem? Explain your answers.

COMP463 3 continued...

Question 4. Patterns in System Design [30 marks]

The following class diagram shows the design of an extensible drawing editor framework.

This design includes a number of design patterns.

Identify three patterns used in this design.

For each of these three patterns:

(a) [1 mark] Name the pattern.

(b) [2 marks] List each of the Participants of the pattern, and name the corresponding
concrete class(es) in the design.

(c) [7 marks] Describe the design problem in drawing editor framework that the pattern
solves, and explain why the pattern solves that problem.

COMP463 4 continued...

Question 5. Inheritance vs Composition [30 marks]

(a) [10 marks] The Adaptor pattern has two versions, class adapter (using inheritance) and
object adapter (using composition). How would you choose between these two variants of
the pattern?

(b) [10 marks] How does the class adapter relate to the “second principle of object-oriented
design”:

Favor object composition over class inheritance

Design Patterns, Gamma, Helm, Johnson, Vlissides, p.20.

(c) [10 marks] The Template Method pattern makes great use of inheritance. Do you think
similar problems can be solved via composition? More generally, do you think that any
pattern that uses inheritance could be replaced with a pattern using composition? Do you
think that patterns using composition can be replaced by patterns using inheritance? If so,
explain how? If not, explain why?

Question 6. Patterns vs Languages [30 marks]

When I see patterns in my programs, I consider it a sign of trouble.

Revenge of the Nerds, Paul Graham

Paul Graham argues that patterns are evidence of missing features in programming lan-
guages, and so that rather than design our programs using patterns, we should adopt
more powerful programming languages with language features that remove the need for
patterns. For example, consider the Facade pattern and modules or packages; the Factory
Method pattern and gBeta’s class families; or the Iterator pattern and co-routines such as
C]’s yeild return.

Choose three patterns — from these three or any other patterns — and discuss how and
why the patterns relate to specific language features (that is, how language features could
remove the “need” for the patterns). You should give short illustrative code samples with
and without the language feature.

Do you think all patterns can be replaced by programming language features? Or, can
you give examples of patterns that cannot easily be captured by language features? In
either case, explain why. In general, do you think patterns should be incorporated into
programming languages, or left to programmers?

COMP463 5

