
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUW V I C T O R I A
UNIVERSITY OF WELLINGTON

EXAMINATIONS — 2010

END OF YEAR

SWEN425

DESIGN PATTERNS

Time Allowed: 3 Hours

Instructions:

• This examination will be marked out of 180 marks.

• Read each question carefully before attempting it.

• Answer all six questions. Each question has the same value, and
should take approximately 30 minutes to answer.

• You may answer the questions in any order. Make sure you clearly
identify the question you are answering.

• Many of the questions require you to discuss an issue, or to express
and justify an opinion. For such questions, the assessment will take
into account the evidence you present and any insight you demon-
strate.

• Some of the questions ask for examples from object-oriented lan-
guages or of design patterns. Your answers need only refer to object-
oriented languages or patterns discussed in the course, but you may
refer to other programming languages and patterns if you wish.

• You may write code samples and/or draw diagrams to illustrate
your answers to any of the questions.

• This exam is open book. Non-electronic reference books and hand-
written notes are permitted.

SWEN425 continued...

Question 1. Creational Patterns [30 marks]

An Abstract Factory can create products using either the Factory Method pattern or the
Prototype pattern.

(a) [5 marks] Sketch a brief code example in your favourite Object-Oriented language of
an Abstract Factory using a Factory Method, and explain, briefly, how it works.

(b) [5 marks] Sketch another brief example of an Abstract Factory using Prototypes, and
explain, briefly, how it works.

(c) [5 marks] Can the Client of an Abstract Factory tell how its products are created? —
that is, can the Client determine whether the Abstract Factory uses Prototype or Factory
Method? Why or why not?

(d) [5 marks] Would it make sense for a single Concrete Factory subclass to be implemented
using both Prototype and Factory Method? Why or why not?

(e) [5 marks] In the Singleton pattern, access to the singleton instance is provided by a
Factory Method typically called something like “getInstance()”. Can Singleton be imple-
mented using the Prototype pattern instead? If so, explain how, and sketch a brief code
example. If not, explain why not.

(f) [5 marks] Would it make sense to use the Factory Method, Prototype, or Abstract Fac-
tory patterns to help to implement a Builder? If so, explain how and why. If not, explain
why not.

SWEN425 2 continued...

Question 2. Structural Patterns [30 marks]

(a) You overhear three of your development team members arguing over the design of a
TextFile class and its associated WindowsFileWrapper class:

class TextFile {

TextFile(String filename); // open filename

void writeLine(String text); // write text

String readLine(); // read text

}

class WindowsFileWrapper implements WindowsFile {

WindowsFileWrapper(TextFile tf); // wrap a TextFile

void writeLine(String text); // write text

String readLine(); // read text

void writeString(String text); // write text

String readString(); // read text

void flush(); // ensure any cached data is

} // written to the underlying TextFile

Diane argues that the WindowsFileWrapper is a Decorator, because it adds a responsibilty
to the underlying TextFile: the WindowFileWrapper caches the aruments of writeLine

and WriteString methods, and only writes them to the underlying TextFile when the
flush method is called. Alice argues that the WindowsFileWrapper is an Adaptor, be-
cause it lets a TextFile be used wherever a WindowsFile is expected. Peter argues that
the WindowsFileWrapper is a Proxy, because it provies a surrogate for a TextFile.

(i) [8 marks] Who do you think is correct (Diane, Alice, or Peter) or are they all wrong?
Explain why.

(ii) [7 marks] Alice, Diane, and Peter then ask you if you think the WindowsFileWrapper

class is a good design as it is, or if you think the design should be changed. If you think
WindowsFileWrapper should stay as it is, explain why. If you think it should be changed,
describe your changes and explain why the team should accept them.

(b) The Bridge pattern is rarely used in practice.

(i) [5 marks] Explain how the Bridge pattern and the Abstract Factory pattern can often
be used to solve similar problems. What are the advantages of a Bridge, and why isn’t the
Bridge pattern used more often?

(ii) [5 marks] Explain the difference between a design using the Strategy pattern, and a
simlar design using a Bridge. Can you distinguish between these two patterns using only
the structure of the program implementing them, or do you need to know about the intent
of the program’s design?

(iii) [5 marks] Could you use a Facade to help build a Bridge? Explain why or why not.

SWEN425 3 continued...

Question 3. Behavioural Patterns [30 marks]

The Observer pattern is one of the most useful design patterns, but its use in practice can
cause as many design problems as it solves. For this reason, many other patterns are often
used alongside Observers. Three of these patterns are:

(a) [10 marks] Mediator

(b) [10 marks] Template Method

(c) [10 marks] Iterator

For each of the above three patterns:

1. Describe a problem caused by Observer that this pattern can solve.

2. Describe how you would combine this pattern with the Observer pattern.

3. Explain how this pattern resolves the problem caused by Observer.

SWEN425 4 continued...

Question 4. Patterns in System Design [30 marks]

This diagram shows the core of “RectDraw”, a drawing editor framework. The code below
it shows part of RectDraw’s Rectangle class, implemented in a Java-like dynamic language:

class Rectangle {

Rectangle parent; // parent Rectangle

List<Rectangle> children; // child Rectangles

Point topLeft; // top left corner

Point botRight; // bottom right corner

// draw this rectangle and all children on Graphic g

void drawOn(Graphics g) {

g.drawRectangle(topLeft,botRight);

foreach (r : children) {r.drawOn(g);}

// handle mouseEvent() and keyEvent() mesages

// methodMissing is called if any method is not implemented by this object

// here we try to send the method up to its parent Rectangle

Object methodMissing(String name, List<Object> args) {

return parent.invokeMethod(name,args); }

}

This design includes variants of two design patterns — 1) Composite, and 2) Chain of
Responsibility. For these two patterns:

(a) [3 marks] List each of the Participants of the pattern, and name the corresponding
concrete class(es) in the design.

(b) [6 marks] Describe the design problem in drawing editor framework that the pattern
solves, and explain why the pattern solves that problem.

(c) [6 marks] Describe how the variant of the pattern embodied in this design differs from
the primary variant presented in Design Patterns. Explain the advantages and disadvan-
tages of this variant of the pattern. Do you think the drawing editor framework is better
served by this variant of the pattern, or the Design Patterns variant?

SWEN425 5 continued...

Question 5. Interactive Interpretation [30 marks]

(a) The Command and Memento patterns can both be used to implement undo and redo.

(i) [5 marks] Describe how the Command pattern can support undo and redo.

(ii) [5 marks] Describe how the Memento pattern can support undo and redo.

(iii) [5 marks] Describe how you could choose between Command and Memento to im-
plement undo and redo in an interactive music editor.

(b) [15 marks] Describe how you could combine the Composite, Interpreter, and Visitor
patterns to design a simple domain specific language to implement the business rules logic
of a share trading application. Your design needs to be able to execute these rules; format
them for printing (to be audited by regulators); and to translate them into Java code source
code for quicker execution. Here’s an example business rule for the system:

RULE "Telecom"

IF Price(TEL.NZ) < 100

THEN Buy(TEL.NZ, 5000)

IF Price (TEL.NZ) > 1000

THEN Sell(TEL.NZ, ALL)

SWEN425 6 continued...

Question 6. Patterns vs Designs [30 marks]

Once we have built the gate,
we can pass through it
to the practice of the timeless way.

The Timeless Way of Building, Christopher Alexander

“Do nothing because it is righteous or praiseworthy or noble to do so; do
nothing because it seems good to do so; do only that which you must do and
which you cannot do in any other way.”

The Farthest Shore, Ursula K. Le Guin.

Only ever add a pattern when you cannot avoid it.

Attributed to Thomas J. “Tad” Peckish by Brian Foote.

Design patterns are targets for refactorings.

Design Patterns, Gamma, Helm, Johnson, Vlissides (p.353)

Christopher Alexander argues that patterns (the “gate”) are not things to be aimed for in
designs, but that once we know the patterns we can use them to design (the “timeless
way”). Thomas J. “Tad” Peckish (perhaps inspired by Ursula K. LeGuin) argues that we
should only use patterns as a last resort. Gamma et al claim that patterns can be targets for
refactorings — that is, not for initial designs, but for program redesigns.

(a) [15 marks] Choose three patterns and discuss how those patterns can (or cannot) be
used in initial program designs, and can (or cannot) be used in refactoring. You should
give short illustrative code samples to illustrate your arguments.

(b) [15 marks] Discuss whether patterns are always good things for programs. Can intro-
ducing patterns lead to unnecessary complexity or otherwise “bad” designs? Do you think
all patterns should only be introduced by refactoring? In general, do you think patterns
should be incorporated into designs from the beginning, or left to be introduced later in
the development lifecycle?

SWEN425 7

