TE WHARE WANANGA O TE UPOKO O TE IKA A MAUI

gEVICTORIA

UNIVERSITY OF WELLINGTON

EXAMINATIONS - 2016

TRIMESTER 1

SWEN 430

COMPILER ENGINEERING

Time Allowed: THREE HOURS
CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Instructions: Answer all questions

You may answer the questions in any order. Make sure you clearly identify
the question you are answering.

Question Topic Marks
1. Grammars and Parsing 30

2. Typing & Static Analysis 30

3. Java Bytecode 30
4. Machine Code 30
5. Register Allocation 30
6. Advanced Topics 30

Total 180

SWEN 430 Page 1 of 27

StudentID:

1. Grammars and Parsing (30 marks)

A recursive descent parser is implemented as a set of recursive methods, one for each nonterminal
in an LL(1) grammar. The method for nonterminal N attempts to parse an instance of N as a
prefix of the input, based on the rule defining N.

(a) (4 marks) Explain briefly why the LL(1) conditions are important to ensuring that a recursive
descent parser works correctly.

(b) Consider the following grammar, where nonterminals are in italics and all other symbols are
terminals, and nonterminals other than /fStmt are assumed to be defined elsewhere.
IfStmt .= if (Exp) Stmt
| if (Exp) Stmt else Stmt

i. (6 marks) Explain why this grammar violates the first LL(1) condition (also known as
the Choice Condition), and why a parser based directly on this grammar would not work
correctly.

ii. (4 marks) Show how the grammar can be modified so that it satisfies the first LL(1)
condition, and explain how this corrects the problem with the parser.

SWEN 430 Page 2 of 27

StudentID:

(c) Consider the following grammar, where again nonterminals are in italics and all other symbols
are terminals, and nonterminals other than Exp are assumed to be defined elsewhere.
Exp := Expop Term | Term

i. (6 marks) Explain why this grammar violates the first LL(1) condition, and why a parser
based directly on this grammar would not work correctly.

ii. (S marks) One way to avoid the above problem is to rewrite the grammar as:
Exp := Termop Exp | Term
op = + |-

Explain why this solution is often undesirable when a parser builds a parse tree based on
the grammar, which is then used for generating code.

SWEN 430 Page 3 of 27

StudentID:

iii. (S marks) Explain how an alternative solution can be obtain by basing the parser on an
Extended BNF grammar, and how this avoids the problem encountered with the solution
described in part (ii).

SWEN 430 Page 4 of 27

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 5 of 27

StudentID:

2. Typing & Static Analysis (30 marks)

(a) Consider a simplified version of the Ay language, where a program is a sequence of function
definitions followed by an expression to be evaluated, and the body of a function is just an
expression (i.e. there are no statements). The syntax for this language, and most of its type
system are shown below.

P = fq...fpe programs
£ ::= Tyng(Temng){e} functions
e 1= expressions
b logical constants
| c numeric constants
| n variables
| ej op ex binary
| n(e) application
b ::= true | false truth values
c e | =1 0| 1] ... numeric values
T ::= bool | int types
op ::= ‘=="|"1=" | "+ |1 ¥ operators
| / </ | I <:/ | G >:/ | G >/
—— (T-Bool) ———— (T-Num) x:Tel (T-Var)
I'+Db:bool 'Fc:int '-x:T
. g . q AN A
I'Fepcint, TEey:int, op e {'+/,—,"«'} (T-AOp)

I'Hejopes:int

The :int, They:int, ope{' <, <=/, >""=>"}
't e;opes:bool

(T-Rel)

I'te:T, The:T,ope{ ==,"1="}
I'-ejopes:bool

(T-Eq)

FU{nQ:Tg}I—e:Ti
Fl-Tl ng (TQ I12) {e} 0K

(T-Fun)

THEOK, TU{f}Fe:T
THfe:T

(T-Prog)

SWEN 430 Page 6 of 27

StudentID:

i. (6 marks) What is missing from the type system is a rule for typing function calls.
Complete the following rule for typing function calls, and explain the meaning of the
premises you add.

I'kn(e): T

ii. (4 marks) Suppose the language is extended to include a notion of subtying, for example
we might treat Booleans as a subtype of integers. In this case, we want to modify the above
rule for typing fuction calls so that subtypes or supertypes can be used where appropriate.
Briefly explain how the above rule would be modified to support subtying.

SWEN 430 Page 7 of 27

StudentID:

(b) This part is concerned with the process of detecting dead code.

i. (4 marks) Explain, using an example, what is meant by dead code, and why it is helpful
for a compiler to detect dead code.

ii. (6 marks) Explain, using an example, what is meant by a Conrol Flow Graph, and how
a simple depth-first traversal algorithm can be used to detect dead code.

iii. (5 marks) Explain briefly, using an example, why no algorithm can be guaranteed to
detect all cases of dead code.

SWEN 430 Page 8 of 27

StudentID:

iv. (S marks) Explain briefly, using an example, how the algorithm you described in part
(iii) can be extended to detect uninitialised variables.

SWEN 430 Page 9 of 27

StudentID:

3. Java Bytecode (30 marks)

(a) Consider the following method written in Java bytecode:

public List create(java.lang.String);
new class java/util/ArrayList
dup
invokespecial java/util/ArrayList."<init>": ()V
astore 2
aload 2
aload 1
invokeinterface Jjava/util/List.add: (Ljava/lang/Object;)Z
pop
aload 2
areturn

i. (Smarks) In the box below, give Java source code equivalent to the bytecode above.

ii. (2marks) Briefly, outline one way the above bytecode could be rewritten to an equivalent
with fewer bytecodes.

iii. (3 marks) What is the maximum stack height of the above method? Be sure to show
your working.

SWEN 430 Page 10 of 27

StudentID:

(b) Consider the following method implemented in Java:

int sum(int[] xs) {
int r = 0;
int 1 = 0;
while (i < xs.length) {
r = r + xs[i];
i=1i+1;
}

return r;

i. (6 marks) In the box below, translate the above method into Java bytecode.

SWEN 430 Page 11 of 27

StudentID:

(c) The following outlines a method for translating integer expressions represented in a simple
Abstract Syntax Tree (AST) to Java Bytecode:

void translate (Expr expr, Map<String, Integer> env) { ... }
For simplicity, the method prints its translation to System. out in format similar to that

found on Page 10. The env argument identifies the allocated JVM register of each variable.
All variables correspond to the JVM type int.

In the boxes below, complete the methods for translating pieces of our AST into Java bytecode.
1. (2 marks)

interface Variable extends Expr {
public String getName () ;

void translate (Expr.Variable e, Map<String, Integer> env) {

ii. (4 marks)

enum BinOp { ADD, SUB, MUL, DIV }

interface BinaryOp extends Expr {
public BinOp getOperator();
public Expr getLlhs();
public Expr getRhs();

void translate (Expr.BinaryOp e, Map<String, Integer> env) {

SWEN 430 Page 12 of 27

StudentID:

We now consider the related method for translating statements into Java Bytecode:

void translate (Stmt stmt, Map<String, Integer> env) {
In the boxes below, complete the methods for translating statements into Java bytecode.
You may use labels to identify branch destinations as follows:
goto labell
labell:
iii. (3 marks)

interface Assign extends Stmt {
public Expr.Variable getLhs();
public Expr getRhs();

void translate (Stmt.Assign s, Map<String, Integer> env) {

iv. (5 marks)

interface If extends Stmt ({
public Expr getCondition();
public List<Stmt> getTrueBranch();
public List<Stmt> getFalseBranch();

void translate(Stmt.If s, Map<String, Integer> env) {

SWEN 430 Page 13 of 27

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 14 of 27

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 15 of 27

4. Machine Code

Consider the following program written in WHILE:

int multiply (int x, int vy) {

int 1 = 0;

int r = 0;

while (i < y) {
r =r + x;
i=1+1;

}

return r;

StudentID:

(30 marks)

(a) (10 marks) In the box below, translate the above program into X86_64 machine code.
You should assume: (1) parameters x and y are passed in the $rdi and $rsi registers
respectively; (2) the return value is passed in the $rax register; (3) all other registers are
callee-saved.

NOTE: the Appendix on page 25 provides an overview of x86_ 64 machine instructions for
reference.

SWEN 430

Page 16 of 27

StudentID:

(b) (5 marks) During execution of a machine code program, a stack frame is created at runtime
to hold critical information. Briefly, discuss the layout of a stack frame on X86_64. You may
use your answer from (a) above to illustrate.

(¢) (5 marks) When generating machine code, a calling convention is needed to coordinate
between caller and callee. Briefly, discuss what a calling convention is. You may use your
answer from (a) above to illustrate.

SWEN 430 Page 17 of 27

StudentID:

(d) (5 marks) The special flags register is an unusual feature of the x86_64 architecture.
Briefly, explain what this register does. You may use your answer from (a) above to illustrate.

(e) (Smarks) The GNU C Compiler (GCC) supports the -fomit-frame-pointer command-
line switch. When enabled, GCC will avoid storing the frame pointer in the rbp (or any other)
register when it is safe to do so. As such, this optimisation can free up the rbp register for
general use. Briefly, discuss the situations in which this optimisation can be applied.

SWEN 430 Page 18 of 27

StudentID:

5. Register Allocation (30 marks)
(a) Register allocation is an important process within a modern compiler.

i. (S marks) Briefly, discuss what register allocation is.

ii. (S marks) Briefly, discuss why register allocation is important for the performance of
compiled programs.

(b) An integral component of any register allocation mechanism is live variables analysis.

i. (S marks) Briefly, discuss what a live variable is.

SWEN 430 Page 19 of 27

StudentID:

ii. (S marks) Briefly, discuss how live variable information helps with register allocation.

iii. (3 marks) Draw the interference graph for the following method written in WHILE:

int[] trim(int[] ls, int n) {

int[] rs = [0;n];

int i = 0;

while (i < |rs]|) {
rs[i] = 1ls[i];

return rs;

iv. (2 marks) Give a minimal colouring for your interference graph.

SWEN 430 Page 20 of 27

StudentID:

v. (S marks) Briefly, discuss how graph colouring helps with register allocation.

SWEN 430 Page 21 of 27

StudentID:

6. Advanced Topics (30 marks)

Pick one of the research papers discussed and presented in the last two weeks of the course and
answer the following questions.

Note that this is a 30 mark (or 30 minute) question and thus each of these parts should take you
around 10 minutes to answer - a one paragraph answer is NOT going to get many marks!

(a) (10 marks) Describe in your own words what was the paper about and what compiler-related
issue or technique it presented.

SWEN 430 Page 22 of 27

StudentID:

(b) (10 marks) Give an example of how you would use such a technique in real life compiler.

SWEN 430 Page 23 of 27

StudentID:

(¢) (10 marks) Describe how the contribution of the paper improved on the state of the art.

ok oskoskoskoskoskoskoskosk sk sk sk sk ook

SWEN 430 Page 24 of 27

StudentID:

Appendix: Overview of x86_64 Machine Instructions

movqg S$c, %rax Assign constant ¢ to rax register

movqg %rax, %rdi Assign register rax to rdi register

addg $c, $%rax Add constant c to rax register

addg %rax, $rbx Add rax register to rbx register

subg $c, %rax Substract constant ¢ from rax register

subg %rax, %rbx Subtract rax register from rbx register

cmpg $0, $rdx Compare constant O register against rdx register
cmpg %$rax, %$rdx Compare rax register against rdx register

movqg $%$rax, (%rbx) Assign rax register to dword at address rbx
movqg (%rbx), %$rax Assign rax register from dword at address rbx
movqg 4 (%rsp), $rax Assign rax register from dword at address rsp+4
movqg %rdx, (%$rsi,%rbx,4) | Assign rdx register to dword at address rsi+4+rbx

pushg %rax Push rax register onto stack

pushqg %c Push constant ¢ onto stack
popg %rdi Pop qword off stack and assign to register rdi
jz target Branch to target if zero flag set.

jnz target Branch to target if zero flag not set.

jl target Branch to target if less than (i.e. sign flag set).

jle target Branch to target if less than or equal (i.e. sign or zero flags set).

ret Return from function.

SWEN 430 Page 25 of 27

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 26 of 27

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 27 of 27

