TE WHARE WANANGA O TE UPOKO O TE IKA A MAUI

gEVICTORIA

UNIVERSITY OF WELLINGTON

EXAMINATIONS - 2019

TRIMESTER 2

SWEN 430

COMPILER ENGINEERING

Time Allowed: TWO HOURS
CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Instructions: Answer all questions

You may answer the questions in any order. Make sure you clearly identify
the question you are answering.

Question Topic Marks
1. Grammars and Parsing 20

2. Types and Type Checking 20

3. Static Analysis 20
4. Java Bytecode 20
5. Machine Code 20
6. Advanced Topics 20

Total 120

SWEN 430 Page 1 of 21

StudentID:

1. Grammars and Parsing (20 marks)

(a) (6 marks)

Briefly describe the fwo conditions a context-free grammar must satisfy in order to be con-
sidered LL(1) (i.e. suitable for a recursive descent parser).

Condition 1:

Condition 2:

(b) Consider the following grammar, where nonterminals are in italics, terminals are enclosed
in double quotes, id denotes an identifier, and (empty) denotes an empty string.

Header := RPartid“(” APart“)”
RPart == id| (empty)
APart == id|id" APart

i. (8 marks) Explain the ways in which this grammar violates the LL(1) conditions, and
how they would affect the behaviour of a recursive descent parser based on this grammar.

ii. (6 marks) Write an equivalent LL(1) grammar.

SWEN 430 Page 2 of 21

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 3 of 21

StudentID:

2. Types and Type Checking (20 marks)
(a) (12 marks)

For each of the following kinds of errors, say whether that kind of error can be detected by a
type checker in a strongly typed language, and explain your answer.

(i) Adding an integer to a Boolean value.

(ii) Calling a function or method with the wrong number of arguments.

(iii) Division by zero.

(iv) Calling a non-existent method on an object.

(v) Missing case label in a switch statement.

(vi) Dereferencing a null pointer.

SWEN 430 Page 4 of 21

StudentID:

(b) (8 marks)

Adding union types to a programming language increases the expressiveness of the language,
but makes type checking more complicated. Discuss the main issues that arise in testing for
type equivalence and subtype compatibility in the presence of union types.

SWEN 430 Page 5 of 21

StudentID:

3. Static Analysis (20 marks)

The definite unassignment phase is used in Java to check that £inal variables are only assigned
once. The following illustrates:

[0: i=0)
| int aMethod (final int n) { falee v
2 int i = 0; 1: if(i < n) Joe—
3 while (i < n) ¢{ yorue
s 1= i+ 1; [2:i=i+1)
5 n = 1i; v
6 } [3: n =i]—
7 return i;

)

The above method fails definite unassignment because the £inal variable n may be assigned
more than once. The definite unassignment algorithm determines, at each point, which variables
may have been assigned at that point.

(a) (5 marks) Explain briefly, using an example, why no algorithm accurately can detect all
cases of definite unassignment.

(b) (5marks) Using the aMethod () example above, explain briefly why a depth-first traversal
algorithm is insufficient for checking definite unassignment.

SWEN 430 Page 6 of 21

StudentID:

(¢) (10 marks) Briefly, outline how an algorithm for detecting definite unassignment would
work. You may give the dataflow equations if this helps.

SWEN 430 Page 7 of 21

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 8 of 21

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 9 of 21

4. Java Bytecode

StudentID:

(20 marks)

(a) Consider the following method written in Java bytecode:

public int f (int([]);
0:

7
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
23:
24:

o U w N

iconst_0O
istore_2
iconst_ 0O
istore_3
iload_2
aload_1
arraylength
if_icmpge 23
iload_3
aload_1
iload_2
iaload
iadd
istore 3
iload_2
iconst_ 1
iadd
istore_2
goto 4
iload_3
ireturn

i. (S marks) In the box below, give Java source code equivalent to the bytecode above:

NOTE: Appendix A on p19 provides an overview of bytecode instructions for reference.

SWEN 430

Page 10 of 21

StudentID:

ii. (3 marks) What is the maximum stack height of the above method? Be sure to show

your working by indicating below the height at each point.

public int f(int[]);
0: iconst_0

istore_2

iconst_0

istore_3

iload_2

aload_1

arraylength

7: if_icmpge 23

10: iload_3

11: aload_1

12: iload_2

13: iaload

14: iadd

15: istore_3

16: iload_2

17: iconst_1

o U w N

18: iadd
19: istore_2
20: goto 4

23: iload_3
24: ireturn

(b) For each of the following JVM error messages, briefly discuss what might have caused the

problem. You may use examples to illustrate as necessary.

i. 2marks) “Unable to pop operand off an empty stack”

ii. (2marks) “Accessing value from uninitialized register”

ili. (2 marks) “Inconsistent stack height”

SWEN 430 Page 11 of 21

StudentID:

(c) (6 marks) Translate the following method into Java bytecode:

1 public static int fib(int n) {

2 if(n == || n ==1) { return n; }
3 else {
4 return fib(n - 1) + fib(n - 2);

SWEN 430 Page 12 of 21

StudentID:

5. Machine Code (20 marks)

Consider the following function, mul, written in x86_64 assembly language:
1 mul:

2 pushg %rbp

3 movqg %$rsp, S%rbp

4 subg $16, %rsp

5 movg $0, %rax

6 movqg %$rax, -8 (%rbp)
7 movg $0, %rax

8 movqg %$rax, —-16 (%rbp)
9 Ll:

10 movg —-16 (%rbp), S%rax
11 movqg 32 (%rbp), S%rbx
12 cmpg %$rbx, %$rax

13 jge L2

14 movg -8 (%rbp), S%Srax
15 movqg 24 (%rbp), S%rbx
16 addg %$rbx, %rax

17 movqg %$rax, -8 (%rbp)
18 movg —-16 (%rbp), S%Srax
19 movg $1, %$rbx

20 addg %rbx, %rax

21 movg %$rax, —16 (%rbp)
2 Jmp L1

3 L2:

24 movg -8 (%rbp), S%rax
25 movqg %$rax, 16 (%rbp)
26 movqg %rbp, %rsp

27 propg %rbp

28 ret

NOTE: the Appendix on page 20 provides an overview of x86_64 machine instructions for
reference.

(a) (5 marks) Function parameters are normally passed on the stack or in registers. How are
parameters passed in the above function? Justify your answer.

SWEN 430 Page 13 of 21

StudentID:

(b) (5 marks) Translate the mul function into WHILE.

(c) (5 marks) During execution, stack frames are created to hold critical information. Briefly,
discuss the stack frame layout for the mul function using diagrams to illustrate.

SWEN 430 Page 14 of 21

StudentID:

(d) (5 marks) The implementation of mul is not efficient. For example, it uses more machine
instructions than necessary. Briefly, discuss how it can be rewritten to improve efficiency.

SWEN 430 Page 15 of 21

StudentID:

6. Advanced Topics (20 marks)

(a) (10 marks)

(i) Briefly explain how implementing method calls in an object-oriented language differs
from implementing function calls in a language like C, and why method calls can poten-
tially be less efficient than C-like function calls.

(i) Discuss how static analysis techniques can be used to analyse method declarations and
calls in an object-oriented program, and use this information to improve the efficiency
of method calls.

SWEN 430 Page 16 of 21

(b)

SWEN 430

StudentID:

(10 marks)

Programmers tend to think of their programs as executing on a relatively simple com-
puter, such as a PDP11, and many compiler optimisations are based on similar assump-
tions.

Discuss some of the ways in which modern machines differ from this simple model, and
the impact that this has for code generation and optimisation in a compiler.

Page 17 of 21

StudentID:

sk oskoskoskoskoskosk sk sk sk sk sk sk ok

SWEN 430 Page 18 of 21

StudentID:

Appendix A: Java Bytecodes

Load reference element from array onto

aaload ..,aref,index = ..., ref
stack.
sastore Store reference element into array from .. ref,index,val = ...
stack.
aloadn Load reference from local variable n onto = ... ref
stack.
areturn Return reference from method. ..,ref = ...
arraylength Push array length on stack. ..,aref = ..., int
Store reference into local variable n from
astoren ., ref = ...
stack.
bipush ¢ Load integer byte constant c onto stack. .= ...,int
dup Duplicate top item on stack. ..,val = ...,val,val
iadd Add two ints on stack. ..,int,int = ..., int
iaload Load int element from array onto stack. ..ref,index = ...val
iastore Store int element into array from stack. ..ref,index,val = ...

iconst_c

Load integer constant c onto stack.

.= ...,int

idiv Divide two ints on stack. ..,int,int = ..., int
iloadn Load int from local variable n onto = .. int
stack.
imul Multiply two ints on stack. ..,int,int = ...,int
ineg Negate int on stack. ..,int = ..., int
invokeinterface | Invoke interface method. ..,oref[val, [val,...]] = [val]
invokespecial I.nvf)ke. special instance method (e.g. ini- ..,oref[val, [val,...]] = [val]
tialisation).
invokestatic Invoke static method. -[val,[val,...]] = [val]
invokevirtual Invoke instance method. ..,oref[val,[val,...]] = [val]
ireturn Return int from method. .., int = ...
istoren Store int into local variable 7 from stack. .., int = ...
isub Subtract two ints on stack. ..,int,int = ..., int
i f<cond> Branch if int comparison with zero suc- o dint = ..
ceeds.
if acmp<cond> d Branch to d if reference comparison suc- . ref,ref = ...
ceeds.
if_icmp<cond>d | Branchtod if int comparison succeeds. ..,int,int = ...
1de ¢ Load constant (e.g. integer or string) ¢ on = .. int
stack.
new C Create a new object of class C. .= ...,ref
gotod Branch unconditionally to d. L=
pop Pop top item off stack. .., val = ...
return Return from method. =
sipush c Load integer word constant c onto stack. .= ...,int

SWEN 430

Page 19 of 21

StudentID:

Appendix B: x86_64 Machine Instructions

movqg S$c, %rax Assign constant ¢ to rax register

movqg %rax, %rdi Assign register rax to rdi register

addg $c, $%rax Add constant c to rax register

addg %rax, $rbx Add rax register to rbx register

subg $c, %rax Substract constant ¢ from rax register

subg %rax, %rbx Subtract rax register from rbx register

cmpg $0, $rdx Compare constant O register against rdx register
cmpg %$rax, %$rdx Compare rax register against rdx register

movqg $%$rax, (%rbx) Assign rax register to dword at address rbx
movqg (%rbx), %$rax Assign rax register from dword at address rbx
movqg 4 (%rsp), $rax Assign rax register from dword at address rsp+4
movqg %rdx, (%$rsi,%rbx,4) | Assign rdx register to dword at address rsi+4+rbx

pushg %rax Push rax register onto stack

pushqg %c Push constant ¢ onto stack
popg %rdi Pop qword off stack and assign to register rdi
jz target Branch to target if zero flag set.

jnz target Branch to target if zero flag not set.

jl target Branch to target if less than (i.e. sign flag set).

jle target Branch to target if less than or equal (i.e. sign or zero flags set).

ret Return from function.

SWEN 430 Page 20 of 21

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 21 of 21

