
T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I

VUWVICTORIA
U N I V E R S I T Y O F W E L L I N G T O N

EXAMINATIONS – 2019

TRIMESTER 2

SWEN 430

COMPILER ENGINEERING

Time Allowed: TWO HOURS

CLOSED BOOK

Permitted materials: No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Instructions: Answer all questions

You may answer the questions in any order. Make sure you clearly identify
the question you are answering.

Question Topic Marks
1. Grammars and Parsing 20

2. Types and Type Checking 20

3. Static Analysis 20

4. Java Bytecode 20

5. Machine Code 20

6. Advanced Topics 20

Total 120

SWEN 430 Page 1 of 21

Student ID: .

1. Grammars and Parsing (20 marks)

(a) (6 marks)
Briefly describe the two conditions a context-free grammar must satisfy in order to be con-
sidered LL(1) (i.e. suitable for a recursive descent parser).

Condition 1:

For any two productions N → α and N → β from the same non-terminal N, we must have
first(α) ∩ first(β) = ∅ (otherwise the grammar is ambiguous)

Condition 2:

For any non-terminal N which has a production N → ε, we must have first(N) ∩
follow(N) = ∅ (otherwise the grammar is ambiguous)

(b) Consider the following grammar, where nonterminals are in italics, terminals are enclosed
in double quotes, id denotes an identifier, and 〈empty〉 denotes an empty string.

Header ::= RPart id “(” APart “)”
RPart ::= id | 〈empty〉
APart ::= id | id “,” APart

i. (8 marks) Explain the ways in which this grammar violates the LL(1) conditions, and
how they would affect the behaviour of a recursive descent parser based on this grammar.

• Grammar has ambiguity around productions for RPart because we have
first(RPart)∩ follow(RPart) = {id}. This violates condition 2. This is a problem
for a recursive descent parser as it will need to make a decision when parsing
RPart which production to use. For example, it might greedily consume an id

and never choose the empty production.

• Grammar has ambiguity around productions for APart because they have iden-
tical first() sets. This violates condition 1. A recursive descent parser could
work around this, however, as having parsed an id it can use a lookahead to see
whether a comma follows.

ii. (6 marks) Write an equivalent LL(1) grammar.

Header ::= RPart “(” APart “)”
RPart ::= id RPartRest
RPartRest ::= id | 〈empty〉
APart ::= id APartRest
APartRest ::= “,” APart | 〈empty〉

SWEN 430 Page 2 of 21

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 3 of 21

Student ID: .

2. Types and Type Checking (20 marks)

(a) (12 marks)
For each of the following kinds of errors, say whether that kind of error can be detected by a
type checker in a strongly typed language, and explain your answer.

(i) Adding an integer to a Boolean value.

Yes, can be detected by type checker because addition operator expects operands of
type integer.

(ii) Calling a function or method with the wrong number of arguments.

Yes, can be detected by type checker because it must know which function or method
is being called, hence it must know how many parameters are required.

(iii) Division by zero.

No, this cannot be detected by a type checker. This is because the integer type does
not contain enough information to tell us whether a variable can be zero or not

(iv) Calling a non-existent method on an object.

Yes, can be detected by type checker since the type of the operand will tell us what
methods may be invoked.

(v) Missing case label in a switch statement.

In principle, this could be detected by a type checker. However, generally speaking it
is not detected due to the very large number of cases (e.g. for variable of integer type).

(vi) Dereferencing a null pointer.

In a language like Java, this cannot be detected by the type checker because a variable
of e.g. type String can be a valid reference or null and the type checker cannot
distinguish these cases. However, in other languages (e.g. WHILE) it can be detected
by the type checker.

SWEN 430 Page 4 of 21

Student ID: .

(b) (8 marks)

Adding union types to a programming language increases the expressiveness of the language,
but makes type checking more complicated. Discuss the main issues that arise in testing for
type equivalence and subtype compatibility in the presence of union types.

Union types introduce a separation between the meaning of a type and its syntax. For
example, the type int is expressed differently from int∨ int but has the same meaning.
Developing an algorithm to do this correctly is challenging and hard to express using type
rules alone. This results in a gap between what the algorithm can do, and what we would
ideally like it to do. We say that such an algorithm is sound if, when it claims T1 ≤ T2
for some types T1 and T2, this is always true. Likewise, such an algorithm is complete if,
whenever it is true that T1 is a subtype of T2 the algorithm can conclude that T1 ≤ T2.

SWEN 430 Page 5 of 21

Student ID: .

3. Static Analysis (20 marks)
The definite unassignment phase is used in Java to check that final variables are only assigned
once. The following illustrates:

1 int aMethod(final int n) {
2 int i = 0;
3 while(i < n) {
4 i = i + 1;
5 n = i;
6 }
7 return i;
8 }

2: i = i+1

0: i = 0

1: if(i < n)

4: return i

true

false

3: n = i

The above method fails definite unassignment because the final variable n may be assigned
more than once. The definite unassignment algorithm determines, at each point, which variables
may have been assigned at that point.

(a) (5 marks) Explain briefly, using an example, why no algorithm accurately can detect all
cases of definite unassignment.

Static analyses cannot reason with perfect precision, and must draw safe (i.e. conservative)
conclusions. In definite unassignment analysis, for example, the analysis may not know for
sure whether a variable has been defined or not. But if it thinks it might be, then it must
assume it has been. For example, consider program:

1 final int p;
2

3 if x >= 0 { p = 1; }
4 if x < 0 { p = 0; }

In this example, we know that p is never defined twice. But, our definite unassignment
analysis cannot reason about conditions in this way.

(b) (5 marks) Using the aMethod() example above, explain briefly why a depth-first traversal
algorithm is insufficient for checking definite unassignment.

A depth-first traversal visits every node in the control-flow graph exactly once. How-
ever, this is not sufficient for tracking uniqueness information around loops. Considering
aMethod() above, a depth-first traversal of the CFG for this graph will, in essence, take
two paths: 2→ 3→ 7 and 2→ 3→ 4→ 5.
In both of these paths, variable n is defined at most once. In order to see that it could be
defined more than once, we must propagate information coming out of 5 back around the
loop so that it eventually propagates back into 5.

SWEN 430 Page 6 of 21

Student ID: .

(c) (10 marks) Briefly, outline how an algorithm for detecting definite unassignment would
work. You may give the dataflow equations if this helps.

The analysis maintains the set of variables which are currently undefined. This is initialise
with all variables in the method, except for the arguments. Whenever a variable is assigned
(or declared with an initialise), it is removed from the set. At control-flow join points
(e.g. after a conditional) we require that, for a variable to be still considered undefined, it
must have been undefined on all incoming branches. The dataflow equations are given as
follows:

UNDEFIN(v) =
⋂

w→v∈E

UNDEFOUT(w)

UNDEFOUT(v) = UNDEFIN(v)− DEFAT(v)

These questions make use of a function DEFAT(v) which returns the set of variables defined
(e.g. assigned) at a given node v in the control-flow graph. This function was given in
lectures for the definite assignment analysis.

SWEN 430 Page 7 of 21

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 8 of 21

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 9 of 21

Student ID: .

4. Java Bytecode (20 marks)

(a) Consider the following method written in Java bytecode:

public int f(int[]);
0: iconst_0
1: istore_2
2: iconst_0
3: istore_3
4: iload_2
5: aload_1
6: arraylength
7: if_icmpge 23
10: iload_3
11: aload_1
12: iload_2
13: iaload
14: iadd
15: istore_3
16: iload_2
17: iconst_1
18: iadd
19: istore_2
20: goto 4
23: iload_3
24: ireturn

i. (5 marks) In the box below, give Java source code equivalent to the bytecode above:

NOTE: Appendix A on p19 provides an overview of bytecode instructions for reference.

1 public int sum(int[] items) {
2 int i = 0;
3 int r = 0;
4 while(i < items.length) {
5 r = r + items[i];
6 i=i+1;
7 }
8 return r;
9 }

SWEN 430 Page 10 of 21

Student ID: .

ii. (3 marks) What is the maximum stack height of the above method? Be sure to show
your working by indicating below the height at each point.

public int f(int[]);
0: iconst_0
1: istore_2
2: iconst_0
3: istore_3
4: iload_2
5: aload_1
6: arraylength
7: if_icmpge 23
10: iload_3
11: aload_1
12: iload_2
13: iaload
14: iadd
15: istore_3
16: iload_2
17: iconst_1
18: iadd
19: istore_2
20: goto 4
23: iload_3
24: ireturn

maxheight = 3

(b) For each of the following JVM error messages, briefly discuss what might have caused the
problem. You may use examples to illustrate as necessary.

i. (2 marks) “Unable to pop operand off an empty stack”

A bytecode which expects at least one operand on the stack is being used on an empty
stack. For example, if a method began with istore_2 we might see this error.

ii. (2 marks) “Accessing value from uninitialized register”

A bytecode is reading a given register which has not yet been initialised. For example, if
the first bytecode of method f(int[]) was iload_2, this error would be generated

iii. (2 marks) “Inconsistent stack height”

This occurs when, at a join point in the control-flow graph, the stack heights from in-
coming paths are not the same. For example, the error would be given for this program:
...
ifeq L1
iload_0
L2:

SWEN 430 Page 11 of 21

Student ID: .

(c) (6 marks) Translate the following method into Java bytecode:

1 public static int fib(int n) {
2 if(n == 0 || n == 1) { return n; }
3 else {
4 return fib(n - 1) + fib(n - 2);
5 }
6 }

1 public static int fib(int);
2 iload_0
3 ifeq L1
4 iload_0
5 iconst_1
6 if_icmpne L2
7 L1:
8 iload_0
9 ireturn

10 L2:
11 iload_0
12 iconst_1
13 isub
14 invokestatic fib(int)
15 iload_0
16 iconst_2
17 isub
18 invokestatic fib(int)
19 iadd
20 ireturn
21 }

SWEN 430 Page 12 of 21

Student ID: .

5. Machine Code (20 marks)

Consider the following function, mul, written in x86_64 assembly language:

1 mul:
2 pushq %rbp
3 movq %rsp, %rbp
4 subq $16, %rsp
5 movq $0, %rax
6 movq %rax, -8(%rbp)
7 movq $0, %rax
8 movq %rax, -16(%rbp)
9 L1:

10 movq -16(%rbp), %rax
11 movq 32(%rbp), %rbx
12 cmpq %rbx, %rax
13 jge L2
14 movq -8(%rbp), %rax
15 movq 24(%rbp), %rbx
16 addq %rbx, %rax
17 movq %rax, -8(%rbp)
18 movq -16(%rbp), %rax
19 movq $1, %rbx
20 addq %rbx, %rax
21 movq %rax, -16(%rbp)
22 jmp L1
23 L2:
24 movq -8(%rbp), %rax
25 movq %rax, 16(%rbp)
26 movq %rbp, %rsp
27 popq %rbp
28 ret

NOTE: the Appendix on page 20 provides an overview of x86_64 machine instructions for
reference.

(a) (5 marks) Function parameters are normally passed on the stack or in registers. How are
parameters passed in the above function? Justify your answer.

Parameters are passed on the stack in this example. This is evident because of instructions
such as “movq 24(%rbp), %rbx” which are loading values from locations above the
frame pointer. These must identify parameters passed to the function.

SWEN 430 Page 13 of 21

Student ID: .

(b) (5 marks) Translate the mul function into WHILE.

1 int mul(int m, int n) {
2 int r = 0;
3 int i = 0;
4 //

5 while i < m {
6 r = r + n;
7 i = i + 1;
8 }
9 //

10 return r;
11 }

(c) (5 marks) During execution, stack frames are created to hold critical information. Briefly,
discuss the stack frame layout for the mul function using diagrams to illustrate.

The stack frame layout for mul looks as follows:

old frame pointer

return address

return value

int n

int m

int r

int i−16

−08

0

+08

+16

+24

+32

SWEN 430 Page 14 of 21

Student ID: .

(d) (5 marks) The implementation of mul is not efficient. For example, it uses more machine
instructions than necessary. Briefly, discuss how it can be rewritten to improve efficiency.

The implementation of mul could be made more efficient by storing local variables in reg-
isters. For example, r and i could be stored in the %rdi and %rsi registers respectively.
Depending on the calling convention being used, these might need to be saved on the stack
at the beginning of the method so they could be recalled at the end.

SWEN 430 Page 15 of 21

Student ID: .

6. Advanced Topics (20 marks)

(a) (10 marks)

(i) Briefly explain how implementing method calls in an object-oriented language differs
from implementing function calls in a language like C, and why method calls can poten-
tially be less efficient than C-like function calls.

Method calls in object-oriented languages (e.g. Java) are normally implemented using
a virtual dispatch table (or vtable for short). This allows methods to be overriden in
subclasses. However, it also means that calling such a method requires first reading
a function pointer from the vtable and then performing a indirect invocation on it. In
contrast, C-like function calls are done using static invocations directly to the method
being called.

(ii) Discuss how static analysis techniques can be used to analyse method declarations and
calls in an object-oriented program, and use this information to improve the efficiency
of method calls.

A technique such as Class Hierarchy Analysis (CHA) can be used to help analyse
method calls in object-oriented programs. This works by determining, for a variable
of a given type, the set of possible methods that could be dispatched to based on the
inheritance hierarchy. The analysis must then conservatively assume that any potential
target could be called in practice. For example, consider this code:

1 class A { int f() { return 0; } }
2 class B extends A { int f() { return 1; } }
3

4 public class Test {
5 public static void main(String[] args) {
6 A a = new A();
7 B b = new B();
8 a.f(); // call #1

9 b.f(); // call #2

10 }
11 }

In this case, CHA would conclude the targets for a.f() include both A.f() and
B.f(), whilst for b.f() that B.f() is the only target.

SWEN 430 Page 16 of 21

Student ID: .

(b) (10 marks)

Programmers tend to think of their programs as executing on a relatively simple com-
puter, such as a PDP11, and many compiler optimisations are based on similar assump-
tions.

Discuss some of the ways in which modern machines differ from this simple model, and
the impact that this has for code generation and optimisation in a compiler.

SWEN 430 Page 17 of 21

Student ID: .

* * * * * * * * * * * * * * *

SWEN 430 Page 18 of 21

Student ID: .

Appendix A: Java Bytecodes

aaload
Load reference element from array onto
stack.

. . . , aref, index⇒ . . . , ref

aastore
Store reference element into array from
stack.

. . . , ref, index, val⇒ . . .

aload n Load reference from local variable n onto
stack.

. . .⇒ . . . , ref

areturn Return reference from method. . . . , ref⇒ . . .
arraylength Push array length on stack. . . . , aref⇒ . . . , int

astore n Store reference into local variable n from
stack.

. . . , ref⇒ . . .

bipush c Load integer byte constant c onto stack. . . .⇒ . . . , int
dup Duplicate top item on stack. . . . , val⇒ . . . , val, val
iadd Add two ints on stack. . . . , int, int⇒ . . . , int
iaload Load int element from array onto stack. . . . ref, index⇒ . . . val
iastore Store int element into array from stack. . . . ref, index, val⇒ . . .
iconst_c Load integer constant c onto stack. . . .⇒ . . . , int
idiv Divide two ints on stack. . . . , int, int⇒ . . . , int

iload n Load int from local variable n onto
stack.

. . .⇒ . . . , int

imul Multiply two ints on stack. . . . , int, int⇒ . . . , int
ineg Negate int on stack. . . . , int⇒ . . . , int
invokeinterface Invoke interface method. . . . , oref[val, [val, . . .]]⇒ [val]

invokespecial
Invoke special instance method (e.g. ini-
tialisation).

. . . , oref[val, [val, . . .]]⇒ [val]

invokestatic Invoke static method. . . . [val, [val, . . .]]⇒ [val]
invokevirtual Invoke instance method. . . . , oref[val, [val, . . .]]⇒ [val]
ireturn Return int from method. . . . , int⇒ . . .
istore n Store int into local variable n from stack. . . . , int⇒ . . .
isub Subtract two ints on stack. . . . , int, int⇒ . . . , int

if<cond>
Branch if int comparison with zero suc-
ceeds.

. . . , int⇒ . . .

if_acmp<cond> d Branch to d if reference comparison suc-
ceeds.

. . . , ref, ref⇒ . . .

if_icmp<cond> d Branch to d if int comparison succeeds. . . . , int, int⇒ . . .

ldc c Load constant (e.g. integer or string) c on
stack.

. . .⇒ . . . , int

new C Create a new object of class C. . . .⇒ . . . , ref
goto d Branch unconditionally to d. . . .⇒ . . .
pop Pop top item off stack. . . . , val⇒ . . .
return Return from method. . . .⇒ . . .
sipush c Load integer word constant c onto stack. . . .⇒ . . . , int

SWEN 430 Page 19 of 21

Student ID: .

Appendix B: x86 64 Machine Instructions

movq $c, %rax Assign constant c to rax register
movq %rax, %rdi Assign register rax to rdi register
addq $c, %rax Add constant c to rax register
addq %rax, %rbx Add rax register to rbx register
subq $c, %rax Substract constant c from rax register
subq %rax, %rbx Subtract rax register from rbx register
cmpq $0, %rdx Compare constant 0 register against rdx register
cmpq %rax, %rdx Compare rax register against rdx register

movq %rax, (%rbx) Assign rax register to dword at address rbx
movq (%rbx),%rax Assign rax register from dword at address rbx
movq 4(%rsp),%rax Assign rax register from dword at address rsp+4
movq %rdx, (%rsi,%rbx,4) Assign rdx register to dword at address rsi+4*rbx

pushq %rax Push rax register onto stack
pushq %c Push constant c onto stack
popq %rdi Pop qword off stack and assign to register rdi

jz target Branch to target if zero flag set.
jnz target Branch to target if zero flag not set.
jl target Branch to target if less than (i.e. sign flag set).
jle target Branch to target if less than or equal (i.e. sign or zero flags set).

ret Return from function.

SWEN 430 Page 20 of 21

Student ID: .

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 21 of 21

