Surname:,

FirstName:

TE WHARE WANANGA O TE UPOKO O TE IKA A MAUI

=8
all 5
Dthd

Time Allowed:

CLOSED BOOK

Permitted materials:

Instructions:

SWEN 430

TESTS - 2021

TRIMESTER 2

SWEN 430

COMPILER ENGINEERING

TWO HOURS

No calculators permitted.
Non-electronic Foreign language to English dictionaries are allowed.

Answer all questions

You may answer the questions in any order.
the question you are answering.

Question Topic Marks

1. Grammars and Parsing 20
2. Types and Type Checking 20
3. Static Analysis 20
4. Java Bytecode 20
5. Machine Code 20
6. Memory Models 20

Total 120

Page 1 of 23

VICTORIA

UNIVERSITY OF WELLINGTON

Make sure you clearly identify

StudentID:

1. Grammars and Parsing (20 marks)

(a) Briefly, describe the following components of a compiler.

i. (2 marks) Lexer.

ii. (2 marks) Parser.

iii. (2 marks) Abstract Syntax Tree.

(b) Consider the following grammar:

E — N|EE
N — [oliz]if2]is]i[4)i[s]i[e]17] (g1 [¢]

i. (4 marks) For each of the following inputs, state whether it would be accepted or not
by the grammar:

(00,1)

((0,1))

s | [rel
o
'—l
N

SWEN 430 Page 2 of 23

StudentID:

ii. (4 marks) Provide suitable Java classes for an Abstract Syntax Tree representation of
the grammar from page 2,

SWEN 430 Page 3 of 23

StudentID:

iii. (6 marks) Complete the following class Parser which should implement a recursive
descent parser for the grammar given on page 2:

public class Parser ({
private final String input;
private int offset = 0;

public Parser (String input) { this.input = input; }

SWEN 430 Page 4 of 23

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 5 of 23

2. Types and Type Checking

StudentID:

(20 marks)

Consider the following simple imperative language and its corresponding typing rules.

S ii= (Statements)
| Tx = e (Declarations)
| X = e (Assignments)
| s, S (Sequence)
| e (Expressions)

e l= (Expressions)
| C (Integers)
| X (Variables)
| xe (Dereference)
| new e (Allocation)

T:= (Types)
| &T (Reference type)
| int (Int type)
| void (Void type)

o x:TeTl v
Fc:int (TIND I'=x:T (TVAR)
IT'te:&T . I'te:T N
IT'kxe: T (T-Dere) Tl—newe:&T(_ew)
I'tx:T I'ke:T et
I’I—sze:void(_ec)
IT'tx:T I'ke:T
(T-Assign)

I'x = e:void

r|_S1ZT1 rl_SQITQ
rl_Sl}SQZTQ

(T-Seq)

(a) (5 marks) For each of the following typing judgements identify a suitable typing environ-
ment I, or explain why no such typing environment exists.

Fr'Fx=1: void

'~ &intx =newy; z=*y : void

I'Fx=newy,; *x

l'-y=x; &int x =new 1

void

FFx=y,; y=*x

SWEN 430

Page 6 of 23

StudentID:

(b) Suppose the language were extended with a statement “delete e” which deallocates mem-
ory as in WHILE. For example, “delete p” deallocates the memory referred to by p.

i. (4 marks) Provide a suitable typing rule for this statement.

ii. (5 marks) Executing “&int p =new 1; ... ; delete p” can result in a stuck pro-
gram. Briefly, discuss what this means using an example to illustrate.

iii. (6 marks) Introducing the delete statement means the simple progress theorem shown
in lectures no longer holds for our language. Briefly, discuss what this means.

SWEN 430 Page 7 of 23

StudentID:

3. Static Analysis (20 marks)

This question concerns the uniqueness analysis developed for WHILE which determines, at each
point, whether or not a variable is defined. A variable is defined after it has been assigned a
value, but may become undefined if its value is consumed (e.g. moved to another variable). For

simplicity, assume all references are unique references. For example, is a reference

to an variable and, furthermore, must be the only reference to that variable. The following

illustrates:

1 &int p = new 123;

2 &int g

3 // p is defined, q is undefined

4 if x >= 0 {

5 qa = ps

6 // p is undefined, q is defined
7 }

// p and g are undefined

o

(a) (5 marks) Explain briefly, using an example, why any algorithm for uniqueness analysis
must be conservative (i.e. imprecise) in some way.

(b) (5 marks) Using examples to illustrate, explain briefly why a depth-first traversal algorithm
is insufficient for implementing the uniqueness analysis.

SWEN 430 Page 8 of 23

StudentID:

(c) A variable is consumed by a statement if it must be undefined after that statement to
preserve uniqueness. The method w returns the set of variables consumed by

evaluating statement .

i. (6 marks) Sketch an implementation of | consume (s) | for statements | x

,[delete e], expressions[{new e]andtypes

You may assume | t ypeOf (x) |returns the declared type of a variable .

assert e

SWEN 430 Page 9 of 23

StudentID:

ii. (4 marks) Using w, give appropriate dataflow equations for the unique-
ness analysis.

SWEN 430 Page 10 of 23

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 11 of 23

4. Java Bytecode

StudentID:

(20 marks)

(a) Consider the following method written in Java bytecode:

boolean f (int[],

0:

o Uk w N

9:
10:
11:
12:
15:
16:
17:
18:
19:
20:
21:
24:
25:

iconst_0
istore_3
iload_3
aload_1
arraylength
if_icmpge 24
aload_1
iload_3
iaload
iload_2
if_icmpne 17
iconst_1
ireturn
iload_3
iconst_1
iadd
istore_3
goto 2
iconst_0
ireturn

int);

i. (S marks) In the box below, give Java source code equivalent to the bytecode above:

NOTE: Appendix A on p21 provides an overview of bytecode instructions for reference.

SWEN 430

Page 12 of 23

StudentID:

(b) (2 marks) Branch instructions in Java bytecode use relative addressing. Briefly, explain
what this means.

(¢) (6 marks) Using an example to illustrate both Java source and the generated bytecode,
explain what is meant by the term short circuiting.

SWEN 430 Page 13 of 23

StudentID:

(d) (7 marks) Translate the following method into Java bytecode:

1 public void fill(int[] items, int item) {
2 for(int i=0;i!=items.length;i=i+1) {
3 items[i] = item;

SWEN 430 Page 14 of 23

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 15 of 23

StudentID:

5. Machine Code (20 marks)
Consider the following program written in WHILE:

1 int max (int x, int y) {
2 if(x < y) { return y; }
3 else { return x; }

4}

(a) (6 marks) In the box below, translate the above program into X86_ 64 machine code. You
should assume: (1) parameters and are passed in the

respectively; (2) the return value is passed in the register; (3) all other registers are
callee-saved.

$rdi|and | $rsi | registers

NOTE: Appendix B on page 22 provides an overview of x86_ 64 instructions for reference.

SWEN 430 Page 16 of 23

StudentID:

(b) On xX86_64, the register normally holds the frame pointer.

i. (4 marks) Briefly, discuss what the frame pointer is used for.

ii. (4 marks) Briefly, discuss whether a frame pointer is needed for method .

(c) (6 marks) Briefly, discuss why register allocation is important for the performance of
compiled programs.

SWEN 430 Page 17 of 23

StudentID:

6. Memory Models (20 marks)

(a) In the following litmus tests, and are shared variables, whilst and are local

variables. Assume all variables are initialised with| O |

i. (S marks) Under the Sequential Consistency model, can executing following program

ever leave both { rl=1 } and [r2=1 } at the end? Justify your answer.

Thread 1 \ Thread 2
rl = Xx; r2 =vy;
y = 1; x = 1;

ii. (S marks) Under the Total Store Ordering (TSO) model, can executing the following

program ever leave both ‘ r1=0 } and { r2=0 ’ at the end? Justify your answer.

Thread 1 \ Thread 2
y = 1; x =1;
rl = x; r2 =vy;

SWEN 430 Page 18 of 23

StudentID:

(b) A data race can occur when two threads access the same shared variable at the same time.

1. (2marks) Can a data race occur if both threads read from the shared variable?

ii. (2marks) Briefly, discuss how data races can cause variables to be assigned unexpected
values.

(¢) (6 marks) Let be an instance of (defined below) and suppose Thread 1
repeatedly calls m and Thread 2 repeatedly calls m.

1 class Channel {

2 private int value = 0;

3 private volatile boolean ready = false;
4

5 public void write(int v) {

6 value = v;

7 ready = true;

8 }

9 public int read() {

10 while (!ready) { }

11 return value;

2} }

On Java 5 (or later) can Thread 2 ever read the value @? Justify your answer.

sk oskoskoskoskoskoskosk sk sk sk sk sk ok

SWEN 430 Page 19 of 23

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 20 of 23

StudentID:

Appendix A: Java Bytecodes

Load reference element from array onto

aaload ..,aref,index = ..., ref
stack.
sastore Store reference element into array from .. ref,index,val = ...
stack.
aloadn Load reference from local variable n onto = ... ref
stack.
areturn Return reference from method. ..,ref = ...
arraylength Push array length on stack. ..,aref = ..., int
Store reference into local variable n from
astoren ., ref = ...
stack.
bipush ¢ Load integer byte constant c onto stack. .= ...,int
dup Duplicate top item on stack. ..,val = ...,val,val
iadd Add two ints on stack. ..,int,int = ..., int
iaload Load int element from array onto stack. ..ref,index = ...val
iastore Store int element into array from stack. ..ref,index,val = ...

iconst_c

Load integer constant c onto stack.

.= ...,int

idiv Divide two ints on stack. ..,int,int = ..., int
iloadn Load int from local variable n onto = .. int
stack.
imul Multiply two ints on stack. ..,int,int = ...,int
ineg Negate int on stack. ..,int = ..., int
invokeinterface | Invoke interface method. ..,oref[val, [val,...]] = [val]
invokespecial I.nvf)ke. special instance method (e.g. ini- ..,oref[val, [val,...]] = [val]
tialisation).
invokestatic Invoke static method. -[val,[val,...]] = [val]
invokevirtual Invoke instance method. ..,oref[val,[val,...]] = [val]
ireturn Return int from method. .., int = ...
istoren Store int into local variable 7 from stack. .., int = ...
isub Subtract two ints on stack. ..,int,int = ..., int
i f<cond> Branch if int comparison with zero suc- o dint = ..
ceeds.
if acmp<cond> d Branch to d if reference comparison suc- . ref,ref = ...
ceeds.
if_icmp<cond>d | Branchtod if int comparison succeeds. ..,int,int = ...
1de ¢ Load constant (e.g. integer or string) ¢ on = .. int
stack.
new C Create a new object of class C. .= ...,ref
gotod Branch unconditionally to d. L=
pop Pop top item off stack. .., val = ...
return Return from method. =
sipush c Load integer word constant c onto stack. .= ...,int

SWEN 430

Page 21 of 23

StudentID:

Appendix B: x86_64 Machine Instructions

movqg S$c, %rax Assign constant ¢ to rax register

movqg %rax, %rdi Assign register rax to rdi register

addg $c, $%rax Add constant c to rax register

addg %rax, $rbx Add rax register to rbx register

subg $c, %rax Substract constant ¢ from rax register

subg %rax, %rbx Subtract rax register from rbx register

cmpg $0, $rdx Compare constant O register against rdx register
cmpg %$rax, %$rdx Compare rax register against rdx register

movqg $%$rax, (%rbx) Assign rax register to dword at address rbx
movqg (%rbx), %$rax Assign rax register from dword at address rbx
movqg 4 (%rsp), $rax Assign rax register from dword at address rsp+4
movqg %rdx, (%$rsi,%rbx,4) | Assign rdx register to dword at address rsi+4+rbx

pushg %rax Push rax register onto stack

pushqg %c Push constant ¢ onto stack
popg %rdi Pop qword off stack and assign to register rdi
jz target Branch to target if zero flag set.

jnz target Branch to target if zero flag not set.

jl target Branch to target if less than (i.e. sign flag set).

jle target Branch to target if less than or equal (i.e. sign or zero flags set).

ret Return from function.

SWEN 430 Page 22 of 23

StudentID:

SPARE PAGE FOR EXTRA ANSWERS

Cross out rough working that you do not want marked.
Specify the question number for work that you do want marked.

SWEN 430 Page 23 of 23

