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Abstract

A recent report showed that more than half (51.6%) of total phone ship-
ments were smartphones. These devices are as powerful as laptop com-
puters from only a few years ago and are used to browse the Internet,
send/receive emails, transfer files, watch, create and transmit multimedia
and install applications that add new functionality. As of Q1 2011, the
Android smartphone operating system (OS) is the most widely sold oper-
ating system worldwide. Unfortunately, the Android malware threat has
continuously increased since the first Android malware was reported in
2010. This thesis describes an approach to identify Android malware us-
ing a mix of static and dynamic features. The static features are the permis-
sions requested by the application and are obtained from the application
itself. Whereas, the dynamic features are extracted from the application at
runtime by instrumenting the binary code and executing it in a emulator.
This instrumentation approach was developed as part of the work for this
thesis. We evaluate the use of the features with a range of machine learn-
ing binary classifiers in order to classify an unknown application as either
benign or malware.
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Chapter 1

Introduction

Mobile devices have become an inseparable component of most peoples
lives[2], replacing personal computers in terms of the Internet usage by
allowing users to check emails, access online banking services, tweet, or
use Facebook on such devices. Furthermore, the rapidly growing rich mo-
bile applications with overwhelming user experience, such as maps and
GPS functions, make mobile devices more appealing to users. As part
of utilizing mobile devices, certain sensitive data such as contact lists,
passwords and credit card numbers are stored on these mobile devices.
Based upon this scenario, hackers have turned their attention to mobile
devices[2] where it is possible to obtain an abundance of their preferred
data, whereby security issues are taken less seriously on such devices.

1.1 Motivation

Research and development in this area is important because smartphone
has became ubiquitous and powerful. For many people, smartphone is
their main or their only device to store sensitive information about them-
selves. According to a website, smartphone have been shipped one billion
units in a single year for the first time and accounted for 55.1% of all mo-
bile phone shipments in 2013[3]. Hackers will target smartphone as much,

1



2 CHAPTER 1. INTRODUCTION

if not more, as they target the PC. This study will create another option
that can help people to be aware of potential Android malware before in-
stalling the application.

1.2 Thesis Goals

The primary goal of the study is be able to identify Android malware
with the help of a system that combine machine learning classification
method and the number of extracted features from Android APK file. This
presents a malware detection method for any unknown Android applica-
tions. While most of previous studies extracted features that are based on
byte sequence n-grams[4] in this study we evaluate the use of meaningful
features from the Android application files such as the requested permis-
sions, framework methods, classes used by the application and dynamic
features such as invocation of Android API. In this research, I introduced a
system that combines features extracted from Android APK and machine
learning classification that can be used to detect potential Android mal-
ware without the need of the application source code. A set of goal for
this research had been set as followed:

1. Design and prototype a framework for extracting static and dynamic
features from a given Android application. The key elements of this
system are:

• Development of a binary rewriting mechanism that allows bi-
nary application code to be instrumented to allow monitoring
of calls to the Android application programming Interface.

• Using this mechanism to also monitor the invocation of An-
droid runtime services via Events.

• Identifying permission requests through static analysis of the
code.
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2. Evaluating the use of machine learning binary classifiers to identify
potential Android malware based upon the features extracted in goal
number 1.

1.3 Thesis organisation

The remainder of this thesis is organised as follows:
Chapter 2 presents overview structure of Android operating system

and Android application architecture. The detail of Java byte code and
Dalvik byte code is described. The chapter also presents how Android
application is constructed and transform into APK package file. A brief
detail of smartphone malware can also be found in this chapter. Chap-
ter 3 presents the design of Mobile Honeypot system. This chapter dis-
cusses the process of instrumenting Android application in order to ex-
tract features to create a vector for machine learning classification. The
basic machine learning techniques also described in this chapter. Chapter
4 presents the implementation of Mobile Honeypot in detail. This chapter
discusses the tools needed to run the experiment and how everything is
putting together to create Mobile Honeypot. Chapter 5 presents the result
of the experiment. This chapter discusses the source of Android appli-
cation and Android malware. This chapter so the accurate of the system
and discusses about each classifier. Chapter 6 summarises the thesis and
discuss future work.
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Chapter 2

Background and Related Work

This chapter presents the background and provides a review of related
work; in particular the existing solutions proposed to instrument a method.

2.1 Android

Android is a smartphone operating system created by Google Inc.. Since
2011, the Android has become the most widely sold smartphone operating
system worldwide[5].

2.1.1 Architecture

The Android architecture is divided into the following four main compo-
nents. Figure 2.1 shows Android architecture.

• The kernel

• The libraries and Dalvik virtual machine

• The application framework

• The applications

5
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CHAPTER 1: Android Architecture

 
3

The Kernel
Android runs on top of a Linux 2.6 kernel. The kernel is the first layer of software that interacts 
with the device hardware. Similar to a desktop computer running Linux, the Android kernel will 
take care of power and memory management, device drivers, process management, networking, 
and security. The Android kernel is available at http://android.git.kernel.org/.

Modifying and building a new kernel is not something you will want to consider as an application 
developer. Generally, only hardware or device manufacturers will want to modify the kernel to 
ensure that the operating system works with their particular type of hardware.
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Figure 2.1: Android Architecture



2.1. ANDROID 7

The Kernel

Android runs on top of a Linux 2.6 kernel. The kernel is the first layer of
software that interacts with the device hardware. Android kernel will take
care of power and memory management, device drivers, process manage-
ment, networking, and security. In general, end user should not consider
modifying or building a new kernel. Although, hardware or device man-
ufacturers will want to modify the kernel to ensure that the operating sys-
tem works with their specific type of hardware.

The Libraries

The libraries component acts as a translation layer between the kernel and
the application framework. Android libraries are written in C/C++ but
are shown through a Java API, that means, we can access Android libraries
with Java framework.

The runtime component consists of the Dalvik virtual machine that will
interact with and run applications. The virtual machine is an important
part of the Android operating system and executes system and third-party
applications.

2.1.2 Java Virtual Machine

The Java Virtual Machine (JVM)[6] is stack-based. The JVM was devel-
oped by Sun Microsystems, Inc., which is now owned by Oracle. The JVM
is the basis of the Java platform. It is the component of the technology re-
sponsible for its hardware and operating system-independence. It is well
known for the small size of its compiled code and its ability to protect
users from malicious programs.

The JVM is an abstract computing machine. Like a real computing
machine, it has an instruction set and manipulate various memory areas
at run-time. The JVM runs inside a Virtual Machine (VM) allowing the
Java code to be executed on variety of platforms.
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The Java code is stored in .java file. This code contains one or more
Java language attributes like classes, methods, variable, and objects. Java
(Figure 2.2) is used to compile this code and to generate .class file. Class
file is also known as byte code. The Java byte code is an input to the JVM.
The JVM reads this code, interprets it and executes the program.

9 | P a g e  
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Figure 2.1: Converting Java code into byte code to be run on JVM [6]. 

JVM is divided into several components like the stack, the garbage-collected heap, the 
registers and the method area as shown in Figure 2.2. 

 

 

Figure 2.2: Converting Java code into byte code to be run on JVM

The JVM has four registers that are responsible for managing the stack[7].
Since the registers of the JVM are similar to the registers in our computer,
the VM is stack-based and its registers are not used for passing or receiving
arguments. In Java, registers hold the machine’s state, and are updated af-
ter each line of byte code is executed to maintain that state. The following
four registers hold the state of the VM:

1. Frame, the reference frame that contains a pointer to the execution
environment of the current method.

2. Optop, the operand top that contains a pointer to the top of the
operand stack, and is used to evaluate arithmetic expressions.

3. PC, the program counter that contains the address of the next byte
code to be executed.



2.1. ANDROID 9

4. Vars, the variable register that contains a pointer to local variables.

The JVM uses an operand stack to supply parameters to methods and
operations, and to receive results back from them. All byte code instruc-
tions take operands from the stack, operate on them, and return results to
the stack. Like registers in the VM, the operand stack is 32 bits wide.

Each method in our Java program has a stack frame associated with
it. The stack frame holds the state of the method with three sets of data:
the local variables, the execution environment, and the operand stack. Al-
though the sizes of the local variable and the execution environment data
sets are always fixed at the start of the method call, the size of the operand
stack changes as the method’s byte code instructions are executed. The
64-bit numbers are not guaranteed to be 64-bit aligned as the Java stack is
32 bits wide.

The execution environment is maintained within the stack as a data
set, and is used to handle dynamic linking, normal method returns, and
exception generation. In order to handle dynamic linking, the execution
environment contains symbolic references to methods and variables for
the current method and current class. These symbolic calls are translated
into actual method calls through the dynamic link to a symbol table.

Whenever a method completes normally, a value is returned to the
calling method. The execution environment handles normal method re-
turns by restoring the registers of the caller and incrementing the program
counter of the caller to skip the method call instruction. Execution of the
program then continues in the calling method’s execution environment.

If an execution of the current method completes normally, a value is
returned to the calling method. This occurs when the calling method ex-
ecutes a return instruction appropriate to the return type. If the calling
method executes a return instruction that is not appropriate to the return
type, the method throws an exception or an error. Errors that can occur
include dynamic linkage failure, such as a failure to find a class file, or
run-time errors, such as a reference outside the bounds of an array. When
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errors occur, the execution environment generates an exception.

Java’s method area is similar to the compiled code areas of the run-time
environments used by other programming languages. It stores byte code
instructions that are associated with methods in the compiled code, and
the symbol table the execution environment needs for dynamic linking.
Any debugging or additional information that might need to be associated
with a method is stored in this area.

Each program running in the Java run-time environment has a garbage-
collected heap assigned to it as instances of class objects are allocated from
this heap, another word for the heap is memory allocation pool. By de-
fault, the heap size is set to 1MB on most systems. Although the heap is set
to a specific size at the start of a program, it can grow, when new objects
are allocated. To ensure that the heap does not get too large, the unused
objects are automatically reallocated or garbage-collected by the JVM.

2.1.3 Java Class File Structure

A Java class file is consist of 10 basic sections[8] as shown in figure 2.3.
The length of the Java class is not known before it gets loaded. There are
variable length sections such as constant pool, methods, and attributes.
These sections are organized in such a way that they are prefaced by their
size or length. This way JVM knows the size of variable length sections
before actually loading them.

The above diagram depicts that a Java class file is divided into different
components such as magic, version, constant pool, access flags, this class,
super class, interfaces, fields, methods, and attributes. The data written in
a class file is kept at one byte aligned and is tightly packed. This helps in
making class file compact. The order of different sections in a Java class
file is strictly defined so that the JVM knows what to expect in a class file
and the order of loading different components. The following provides a
detailed information about the class files component.
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Java class file is strictly defined so that the JVM knows what to expect in a class file and the 
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the class file’s component. 
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formats. The first four bytes of the class file are 0xCAFEBABE. The next four bytes of the 
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Figure 2.3: Diagrammatic representations of a Java class file[1]
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Magic number: is used to uniquely identify the format and to dis-
tinguish it from other formats. The first four bytes of the class file are
0xCAFEBABE. The next four bytes of the class file contain major and mi-
nor version numbers. This number allows the JVM to verify and identify
the class file. If the number is greater than what JVM can load, the class
file will be rejected.

Constant pool: all the constants related to the class or an interface will
get stored in the constant pool. The constant includes class names, vari-
able names, interface names, method names and signature, final variable
values, string literals etc.

Access flags: follows the constant pool. It is a two byte entry that indi-
cates whether the file defines a class or an interface, whether it is public or
abstract or final in case it is a class.

This class: is a two byte entry that points to an index in the constant
pool. In the above diagram, this class has a value 0x0007 which is an index
in constant pool.

Super Class: is the next two bytes after this class. Similar to this class,
the value of two bytes is a pointer that points to the constant pool which
has entry for super class of the class.

Interfaces: all the interfaces that are implemented by the class (or in-
terface) are defined in the file goes in the interface section of a class file.
Starting at two bytes of the interface section is the count that provides in-
formation about the total number of interfaces being implemented.

Fields: a field is an instance or a class level variable (property) of the
class or interface. The fields section contains only those fields that are
defined by the class or an interface of the file and not those which are
inherited from the super class or super interface.

Methods: the methods component hosts, that is, the methods that are
explicitly defined by this class, not any other methods that may be inher-
ited from the super class.

Attribute section: contains several attribute about the class file, such
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as one of the attributes is the source code attribute which reveals the name
of the source file from which this class file was compiled.

2.1.4 The Dalvik Virtual Machine

Dan Bornstein named Dalvik after a small fishing village in Iceland. The
Dalvik VM[9] was create in order to allow Android application executed
on devices with very limited resources. Smartphone is such device be-
cause because they are limited by processing power, the amount of mem-
ory available, and a short battery life. The Dalvik VM executes .dex files. A
.dex file is made by taking the compiled Java .class or .jar files and consol-
idating all the constants and data within each .class file into a shared con-
stant pool. The dx tool, which comes with the Android SDK, performs this
conversion. After conversion, .dex files will have a significantly smaller
file size. Figure 2.4 shows how dx tool convert .jar file to .dex file.

CHAPTER 1: Android Architecture

 
5

The Application Framework
The application framework is one of the building blocks for the final system or end-user 
applications. The framework provides a suite of services or systems that a developer will find 
useful when writing applications. Commonly referred to as the API (application programming 
interface) component, this framework will provide a developer with access to user interface 
components such as buttons and text boxes, common content providers so that apps may 
share data between them, a notification manager so that device owners can be alerted of 
events, and an activity manager for managing the lifecycle of applications.

As a developer, you will write code and use the APIs in the Java programming language. Listing 1-1,  
taken from Google’s sample API demos (http://developer.android.com/resources/samples/
ApiDemos/index.html), demonstrates how to use the application framework to play a video file. The 
import statements in bold allow access to the core C/C++ libraries through a Java API.
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Figure 1-3. Conversion of a .jar file to a .dex file

Table 1-1. A File Size Comparison (in Bytes) of .jar and .dex Files

Application Uncompressed .jar Compressed .jar Uncompressed .dex
Common system 
libraries

21445320 = 100% 10662048 = 50% 10311972 = 48%

Web browser app 470312 = 100% 232065 = 49% 209248 = 44%

Alarm clock app 119200 = 100% 61658 = 52% 53020 = 44%

Figure 2.4: Conversion of .jar to .dex
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2.1.5 Java vs. Dalvik

The Dalvik virtual machine has a register-based architecture; whereas, the
Java virtual machine has a stack-based architecture. Therefore, JVM keeps
track of all its variables by using the stack. Operations are then called to
perform tasks on the stack. The Java static method in this example takes an
integer parameter, and then returns an integer which is the given number
plus a fixed number.
public static int addConst(int val) {

return val + 123456;

}

Listing 2.1: A Java method that returns an integer value.

public static int addConst(int);

[max_stack=2, max_locals=1, args_size=1]

0: iload_0

1: ldc #int 123456

3: iadd

4: ireturn

Listing 2.2: A Java byte code for the method in listing 2.1.

At the beginning of the Java byte code, it defines the stack size in listing
2.1; the first instruction of the Java byte code (line 0) loads the integer
variable (var) onto the stack. The second line (line 1) pushes the constant
integer (123456) onto the stack. The following line (line 3) pops the two
integers, adds them, and pushes the result back onto the stack. The final
line (line 4) returns the final result of the method.
public static int addConst(int);

[regs=2, ins=1, outs=0]

0: const v0, #0x1E240

1: add-int/2addr v0, v1

2: return v0

Listing 2.3: A Dalvik byte code for the method in listing 2.1.

The Dalvik byte code is a register-based as the Dalvik byte code exam-
ple above shows, as it defines the size of the register in the second line. In
listing 2.3 the first instruction of the Dalvik byte code (line 0) moves the
given constant integer into the specified register (v0). The second instruc-
tion (line 1) performs the addition operation on the two source registers,
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storing the result in the first source register. The final line (line 2) returns
the result that was stored in the first source register (v0). The DVM uses
different operation codes (opcodes) structure than the JVM[10].

2.1.6 Android Application Package (APK)

The Android Application Package (APK) file is the file format used to dis-
tribute and install application software and middleware onto Google’s An-
droid operating system. To make an APK file, a program for Android is
first compiled, and then all of its parts are packaged into one file. This
holds all of that program’s codes (such as classes.dex files), resources, as-
sets, certificates, and manifest file.

DEX file

Android programs are compiled into .dex (Dalvik Executable) files, which
are in turn zipped into a single .apk file on the device. .dex files can be
created by automatically translating compiled applications written in the
Java programming language[11].

Manifest file

Android Manifest file (AndroidManifest.xml) is an XML file required by ev-
ery Android application[12]. The meaning of the manifest file is to de-
scribe the application’s package name, version, permission required, com-
ponents (activities, intent filters, and services), imported libraries, and the
various activities, and etc.

2.1.7 The Applications

The application component of the Android operating system is the closest
to the end user. This section is where the Contacts, Phone, Messaging, and
third party apps in. A complete app will execute in this space by using
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the API libraries and the Dalvik VM. Even though every component of
the Android operating system can be modified, we can only have direct
control over our own applications security.

2.2 Malware

Malware is a short word for malicious and software[13], so its software
written with malicious intention. There are many techniques that the at-
tackers used to spread the malware. Some of the well known techniques
are code injection, file transport, exploit, or boot sector corruption. File in-
jection is the exploitation of a computer bug that is caused by processing
invalid data. Code injection can be used by attacker to inject code into a
computer program to change the course of execution. For example, code
injection is used by some Computer worms to propagate. An exploit is
a piece of software, a chunk of data, or sequence of commands that take
advantage of a bug, glitch or vulnerability in order to cause unintended or
unanticipated behavior to occur on computer software or hardware. This
frequently includes such things as violently gaining control of a computer
system or allowing privilege escalation or a denial of service attack. Mal-
ware can harm the compromised device in many ways. There are three
main categories of malicious software: virus, worm, and Trojan horses as
summarised in table 2.1.

2.2.1 Virus

A virus is a computer program that can copy itself and infect a computer
without the permission or knowledge of the owner. A virus mostly comes
in executable file. If the user executes this file the virus processes its mali-
cious commands, which can be almost everything the OS allows with the
same privileges as the user.
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2.2.2 Worms

A worm can often spread without user interaction. Depending on the OS,
this can operate with the same permission as the user. Once started, it
searches for infectable victims in range. If a victim is found, it uses an
exploit to attach itself to the victim and then repeats this behavior. Some-
times worms drop other malware that can be backdoors that allow remote
access. Malicious programs installed that way can make the victim vul-
nerable to a remote triggered Denial of Service (DoS) attacker.

2.2.3 Trojan Horses

A trojan horse is a program that is disguised as a popular application in or-
der to persuade a user to execute or install it. A trojan often acts as a back-
door, contacting a controller which can then have unauthorized access to
the affected computer. A trojan is usually disguised itself by choosing a
well-known name like from a popular game and placing the malware for
download on a web page or file sharing tool.

2.2.4 Android Malware

The Lookout Mobile Threat Report[14] gives a good summary on how An-
droid malware emerged. When looking at the evolution of malware for
mobile phones, the first feature of malware was to send short messages
to premium rate numbers or call such numbers[15]. The main incentive
here is that the attacker can easily gain money by deploying such meth-
ods. Smartphone typically has a connection to the Internet all the time, the
next logical step for mobile malware was to develop botnet capabilities. A
big step in the Android malware evolution was the utilization of privilege
escalation exploits. If the application has root level access to the system, it
can use all resources of the system. This allows the application to install
other applications, which use arbitrary number of permissions, without
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Table 2.1: Common Virus, Worm, and Trojan Horse characteristics

Malicious Prop-
erty

Vector Payload

Virus need host / re-
quire user inter-
action

file transport,
file injection,
exploit

replication,
variant

Worm independent
program / no
user interaction
required

exploit replication,
remote ac-
cess

Trojan
Horse

program with
hidden agen-
da/ require
user interaction

file transport,
exploit

remote
access, de-
structive
function-
ality
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the knowledge of the user.

2.3 Defense

In this section, we review the existing defenses against malware.

2.3.1 Firewalls

Firewalls primarily consist of packet filters and/or proxy servers. A packet
filter is a component that can restrict network flow based on the infor-
mation found in the TCP/IP header. Once network flow is permitted, a
packet filter does not provide any protection against the data contained in
this network flow. However, a packet filter can block access on a particular
server port, which would effectively block a particular type of client from
connecting to particular types of servers, at the expense of availability of
the service. Alternatively, a packet filter can allow for more fine grained
control of access. It can prevent access to malicious servers by blocking
network flow to these servers.

2.3.2 Anti-Virus

Antivirus software is another defense mechanism. The major of such mech-
anism relies on up-to-date malware signature database to detect malware[16].The
early versions were highly focused to detect just particular types of viruses.
Shortly after, first-generation scanners appeared that were able to identify
viruses based on simple string matching. Antivirus software initially was
tasked with identifying viruses and disinfecting the infected files. The
scanning techniques, as a result, were highly specialized to concentrate on
binary data within executable files. In addition, antivirus software uses
emulators to identify stealth viruses and heuristics to identify unknown
viruses. In recent years, antivirus software has started to focus on iden-
tification of exploits found on web pages as well. Nevertheless, a recent
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evaluation of available antivirus software has revealed that they are quite
ineffective in detecting malware[17] probably due to the historical focus
on identifying malicious binary data.

2.4 Intrusion Detection System

An Intrusion detection system (IDS) is a network security device that mon-
itors network and/or system activities for malicious or unwanted behav-
ior. There several types of Intrusion Detection Systems.

2.4.1 Network-Based Intrusion Detection

A network-based IDS (NIDS) looks for attack signatures in network traffic[18].
Typically, a network adaptor running in promiscuous mode monitors and
analyzes all traffic in real-time as it travels across the network. The at-
tack recognition module uses network packets as the data source. There
are three common techniques for recognizing attack signatures: pattern,
expression or bytecode matching, frequency or threshold crossing, and
correlation of lesser events. Snort is a popular NIDS developed in the
open-source community.

2.4.2 Host-Based Intrusion Detection

A host-based IDS (HIDS) looks for attack signatures in log files of hosts[19].
It can also verify the checksums of key system files and executables at
regular intervals. Some products can use regular-expressions to refine at-
tact signatures (e.g. passwd program executed AND .rhosts file changed).
Some product listen to port activity and generate alerts when specific ports
are accessed, providing limited NIDS capability. There is a trend towards
host-based intrusion detection. The most effective IDSs combine NIDS
and HIDS.



2.4. INTRUSION DETECTION SYSTEM 21

Due to the near real-time nature of IDS alerts, and IDS can be used as
a response tool, but automated responses are not without dangers. An
attacker might trick the IDS to respond, with the response aimed at an in-
nocent target (e.g. by spoofing the source IP address). Users can be locked
out their accounts because of false positives. Repeated email notifications
become a denial-of service attack on the administrators email account.

2.4.3 Anomaly Detection

Statistical anomaly detection (or behavior-based detection) uses statistical
techniques to detect potential intrusions. First, the ‘normal’ behavior is
defined as a baseline. During operation, a statistical analysis of the data
monitored is performed and the deviation from the baseline is measured.
If a threshold is exceeded, an alarm is issued. This type of IDS does not
need to know about security vulnerabilities in a particular system. The
baseline defines normality. So, there is a chance to detect new attacks with-
out having to update a knowledge base.

On the other hand, anomaly detection detects just anomalies. Suspi-
cious behavior does not always define as an intrusion. For example, a
number of failed login attempts could be due to an attack or to the admin-
istrator forgot the password. There are some problems that we need to
point out. Attacks are not always anomalies especially when the baseline
is adjusted dynamically and automatically. A careful attacker might just
gradually shift ‘normality’ over time until his planned attack no longer
generates an alarm. We have to be concerned about false positives (false
alarms) when an attack is identified but none is taking place, and false neg-
atives when an attack is missed because it acts within the range of normal
behavior.
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2.4.4 Honeypots

Honeypot is a trap set to detect, deflect, or in some manner counteract at-
tempts at unauthorized use of information systems[20]. Generally it con-
sists of a computer, data, or a network site that appears to be part of a net-
work, but is actually isolated, (un)protected, and monitored, and which
seems to contain information or a resource of value to attackers.

2.5 Android Security

Android runs on top of the Linux 2.6 kernel[21], therefore Android Linux
kernel handles security management for the operating system.

2.5.1 Android Security Architecture

Privilege Separation

Android operating system requires every application to run with its own
user identifier (uid) and group identifier (gid). The philosophy behind this
design is to ensure that no application can read or write to code or data of
other applications, the device user, or the operating system itself[21]. This
feature is also known as sandboxing.

Application Code Signing

Any application that is to run on the Android operating system must be
signed[22]. Android uses the certificate of individual developers in order
to identify them and establish trust relationships. The operating system
will not allow an unsigned application to execute. Although, the use of a
certification authority to sign the certificate is not required, and Android
will happily run any application that has been signed with a self-signed
certificate.
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Permission

For an Android application to work correctly, the developer has to make
sure to add request for appropriate permission in the applications Android-
Manifest.xml (list 4.8). This allows the application to request permission
to use the system component that handles the specific task. The permis-
sion will need to be granted at install time. When the user installs an
application, the user is presented with a list of permissions that the appli-
cation requests. The user cannot selectively allow of disallow individual
permission[23]. The user is prompted with the screen similar to figure 2.5.

<uses-permission android:name="android.permission.RECORD_AUDIO" />

Listing 2.4: Part of permission request declared in AndroidManifest.xml

2.5.2 Android’s Bouncer Service

Bouncer[24] is a service from Google which provides automated scan-
ning of Android Market for potentially malicious software without dis-
rupting the user experience of Android Market or requiring developers to
go through an application approval process. The service performs a set
of analyses on new applications, applications already in Android Market,
and developer accounts. Once an application is uploaded, the service im-
mediately starts analyzing it for known malware, spyware and trojans. It
also looks for behaviors that indicate an application might be misbehav-
ing, and compares it against previously analyzed apps to detect possible
red flags.

2.5.3 Related Work

There are previous works on developing malware detection tool. These
are some of the notable ones.
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Figure 2.5: Permission request screen
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MADAM

MADAM (Multi-Level Anomaly Detector for Android Malware)[25] uses
13 features to detect android malware for both kernal level and user level.
MADAM has been tested on real malware found in the wild and uses a
global-monitoring approach that is able to detect malware contained in
unknown applications (not previously classified).

Monitoring smartphones for anomaly detection

Schmidt et al.[26] monitors smartphones to extract features that can be
used in a machine learning algorithm to detect anomalies. The framework
includes a monitoring client, a Remote Anomaly Detection System (RADS)
and a visualization component. RADS is a web service that receives, from
the monitoring client, the monitored features and exploits this informa-
tion, stored in a database, to implement a machine learning algorithm.

pBMDS

Xie et al.[27] proposes a behavior-based malware detection system (pB-
MDS) that correlates user’s inputs with system calls to detect anomalous
activities related to SMS/MMS sending.

Kirin Security Service for Android

Enck et al.[28] and Ongtang et al.[29] propose Kirin security service for
Android, which performs lightweight certification of applications to mit-
igate malware at install time. Kirin certification uses security rules that
match undesirable properties in security configuration bundled with ap-
plications.
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TaintDroid

Enck et al.[30] introduce TaintDroid. TaintDroid monitors applications in
real-time, verifying and “Taintin” data transmitted from the device. When
an application executes a native method TaintDroid tags and patches the
call, alerting the user of the applications activities. Because the tool is mon-
itoring applications at a lower level, the users device bootloader must be
unlocked and new firmware installed, voiding the devices warranty.

2.6 Summary

This chapter presented an overview of Android architecture. It shows how
Android operating system is designed. The chapter also how Android
OS is different from desktop OS and how Android application is struc-
tured. Then the chapter talked about detail of malware and malware de-
fend mechanism. The chapter also talked about the security of Android. It
described about how Android defends against malware. Google also has
its own tool running behind Google’s Play Store to scan for malware[31].
Finally, the chapter presented some of the previous work related to the
field.
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Design

This chapter discusses how we design our system to analyse and classify
smartphone malware by using code analysis and machine learning tech-
nique. In our design, an android application is first decompiled with APK
tool. The decompiled code (smali) is examined and a hook is inserted to
record activities of the application. Python script is run to scan through
the user’s permission requested by the application. The data gathered al-
together is combined to create a vector for machine learning to classify the
application as benign or malicious.

The structure of this chapter is as follows: Section 3.1 describes the
motivation behind the research. Section 3.2 gives the requirement of the
system. Section 3.3 describes decision made to the design of the system.
Section 3.4 shows the architecture of the system.

3.1 Motivation

Among the various mobile operating systems today, Android has experi-
enced more attacks since it is an open source operating system. A system
that can classify an unknown Android application can benefit users and
prevent users to install malware on their smartphones. The approach in
this research is different from antivirus technique where it relies on de-

27
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tecting malware based on unique signatures. Although it is very pre-
cise, it is of no value against unknown threats and it requires constant
signature updates[32]. Anomaly-based approaches, on the other hand,
depend on classifiers to train a system to differentiate between normal
and malware behaviour, which can be used to detect anomalies so as to
discover unknown malwares. Although, the machine learning classifiers
has proven to provide more detection accuracy rate[33], this technique
presents a main challenge: we must extract some sort of feature represen-
tation of the application[34] without having the application’s source code.
Although, there had been existing research with the use of machine learn-
ing to detect Android malware [35],[36],[37],[34],[38],[39], this research is
aiming to achieve a better result in term of accuracy by including a wide
range of static and dynamic features extracted from Android APK.

3.2 Requirements

Before we design our system, we have outlined a set of requirements for
the system to follow.

R1 Extract runtime features from applications.

R2 Extract permissions requested by the applications.

R3 No access should be required to the applications source code. All the
required is access to the applications APK file.

R4 Train a machine learning system by using a set features and permission
from R1 and R2.

R5 The system is able to identify Android application to be malware or
benign app.

R6 Use a classifier to identify any given Android application as benign or
malicious.
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3.3 Design Decisions

Five key design decisions are discussed below.

3.3.1 Extracting Runtime Features

To extract runtime features we execute the application in an emulated An-
droid virtual machine. We rejected using a modified Android emulator
because this is not a portable approach and we wanted to be able to use
our system with real physical phones in the future. We experimented
with source code manipulation using AspectJ, and although successful,
this doesn’t meet the requirement R4. Therefore, we focused on hook-
ing API calls at the byte code level. To intercept Android API calls, our
approach is to build instrumentation framework to instrument the APK.
An instrumentation framework provides the tools needed for monitoring
arguments a method takes and the return value. Hook method stores a
methods arguments that we will use these information to create applica-
tion vector. The framework will invoke the appropriate methods during
the real time execution of the APK. This framework does not require any
help from the user and the vector that stores the information will be gen-
erated automatically.

1. Create a trace of Android API calls.

2. Experimented with AspectJ to add hook to compile-time, required
changing ant script.

3. No access to source code, adding hook to byte code.

4. Unpack APK, extract classes, decompile in assembly language, insert
hooks that call a monitoring library

5. Compile back, repack APK, sign APK
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6. Adding monitoring, add new local variables, need to be able to allo-
cate new unused Dalvik registers.

.class public Lcom/example/helloworld/MainActivity;

.super Landroid/app/Activity;

.source "MainActivity.java"

# direct methods

.method public constructor <init>()V

.locals 0

.prologue

.line 6

invoke-direct {p0}, Landroid/app/Activity;-><init>()V

return-void

.end method

# virtual methods

.method public onCreate(Landroid/os/Bundle;)V

.locals 1

.parameter "savedInstanceState"

.prologue

.line 10

invoke-super {p0, p1}, Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)V

.line 11

const/high16 v0, 0x7f03

invoke-virtual {p0, v0}, Lcom/example/helloworld/MainActivity;->setContentView(I)V

.line 12

return-void

.end method

Listing 3.1: Example of a .smali file

3.3.2 Modularising the Instrumentation Code

The file monitor.smali is generated at an earlier time by creating a sepa-
rate Android project containing only this class. This project is then com-
piled, the classes.dex file extracted and baksmali used to extract the as-
sembly language monitor.smali. With this approach, the Android project
is written in JAVA which makes it easy to create instead of having to cre-
ate it in byte code. This is hooking class can be reused many times with
new target applications without requiring it to be rewritten. The hooks to
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call the Instrumentation class needs to be inserted into the dis-assembled
classes.dex. This procedure will produce a modified file that contains the
hooks

3.3.3 Hooking to Intercept Intents

Android API also invoked using events. Some events can be intercepted
by adding global broadcast receivers but not all and order of installation
will affect success. We observed that to create an intent actually requires a
method call. Our approach is to intercept events by hooking method calls
that create the intents.

3.3.4 Static Analysis

We could use the hooking mechanism to tract permission request at run-
time, although we are interested in what permission are granted regard-
less of whether they are used or not. Therefore, we extract these informa-
tion from the AndroidManifest.xml[40].

3.3.5 Format of Output

We decided to use WEKA to perform the machine learning, therefore, we
adopt the standard ARFF file format used by WEKA.

3.4 System Architecture

The instrumentation system is designed to intercept any API calls and
record the activities of the application by using an instrumented class. Fig-
ure 3.1 present the architecture of the instrumented system.

The instrumented class monitor.smali file will be included with the dis-
sembled APK to form a new modified APK. This will be explained further
below.
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Figure 3.1: System Architecture
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The file monitor.smali is generated at an earlier time by creating a sep-
arate Android project containing only this class. This separate project is
compiled into an APK and then the APKtool is used to extracted the as-
sembly language monitor.smali. This hooking class can be reused many
times with new target applications without requiring it to be rewritten.

First, the APK needs to disassembled into a Smali code, that will be
done be extracting the classes.dex file from the target APK. After that, the
Baksmali tool must be used to dis-assemble the class of the APK from a
Dalvik byte code into a Smali code. The hooks to call the Instrumentation
class needs to be inserted into the dis-assembled classes.dex. This proce-
dure will produce a modified file that contains the hooks. In addition to
this modified file, the instrumentation.smali file has to be added into the
same directory. The files in this directory are assembled using the Smali
tool to create a classes.dex file. This in turn is inserted back into the orig-
inal APK. The modified APK is then signed with Jarsigner using a key
generated by Keytool[41].

3.5 Hooking at Byte Code Level

Our approach is to use an instrumentation framework to instrument the
APK. An instrumentation framework provides the tools needed for mon-
itoring arguments a method takes and the store those values for later use.
Our system has benefitted from such a framework by initializing an array
of objects; the before hook method stores a methods arguments, and a vari-
able to store the return value for the after hook method. The framework
will invoke the appropriate methods during the real time execution of the
APK. The before method take an array of objects that are the arguments of
a method and then iterates through them and keep them in a file. The after
method takes the return value as an argument and store it before finishing
the execution of the method. This framework does not require any help
from the user and the array that stores the arguments will be generated
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automatically.
This section describes the design of the parsing and instrumentation

algorithms of our system.

3.5.1 Parsing

A target class needs to be parsed to locate the implementation of the class.
After displaying the methods the user will have the chance to decide which
method is to be instrumented. In Smali/Baksmali the code starts each
method with the word .method, as listing 4.4 shows; this helped to deter-
mine the start of a method.
# direct methods

.method public constructor <init>()V

...

...

.end method

Listing 3.2: Snippet of a .smali code

The information of the parsed class will be stored into an ArrayList of
string to be used later on. The ArrayList is used because it is easy to be
extended dynamically.

Input: The Smali/Baksmali code of the target class

while input file still has data do

if the first line of the input file has the word ".method" then

print out that line

end

add that line to an ArrayList

get the next line

end

Listing 3.3: Parsing Algorithm

3.5.2 Parsing the Instrumentation Class

Disassembled classes of the target APK start with some information that
indicate the name of the class, the file path, inheritance if there is any and
the original file name, as listing 3.4 shows.
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# class name, also determines file path when dumped

.class public Lcom/packageName/example;

# inherits from Object (could be activity, view, etc.)

.super Ljava/lang/Object;

# original java file name

.source "example.java"

Listing 3.4: Parsing Algorithm

Since we will add a new class (instrumentation class) into the APK, the
added class has to have the same information that other classes have such
as the file path. The following algorithm has been implemented to modify
the instrumentation class information.
Input: The instrumentation class

while Input file still has data do

if the first line of the input starts with ".class" then

replace the information of the instrumentation class to the

target class, and keep the name of the instrumentation class

write into a file

else

write into a file

end

get the next line

end

Listing 3.5: Modifying the instrumentation class path.

The system generates a new file contain the instrumentation class after
modifying the file path. Algorithm in listing 3.5 takes the instrumentation
class as an argument, and then it looks for the word .class. If it finds it,
it will replace the information to be similar to the target class and it will
write it into a file; if it does not find it, it will just write the data into that
file.

3.5.3 Instrumenting Algorithms

The target class will be parsed and stored into an array of string by apply-
ing Algorithm 1. Another algorithm is required to find the method that a
user specified to add hooks into it. Since there are two methods that need
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to be inserted into the target method, it is important to determine the be-
ginning and the end of the target method. The target method could have
more than one argument. Therefore, it is more efficient to store all of the
arguments into an array and the pass them to the instrumentation method
if they are more than one rather than pass one argument at time.
Input: The array of strings that contains the target class

Get the name of the target method from the user

while the array still has information && user input does not equal EXIT do

get the first value of the array

if the first value of the array equals to the target method then

get the number of parameters in the target method

if number of parameters > 0 then

initialize an array of objects in Smali language

foreach parameter do

initialize a space for the parameter

put the parameter into the array

end

foreach line of the specified method do

get the first line

if the line equals to return then

get the return variable

else

return

end

if the line equals to .end method then

if the method return type is String then

insert a hook and pass the return value as a

parameter

elseif the method return type is an Integer then

invoke-static method to get the value of the integer

move the result into a specific register

insert an after hook and pass the specific register

as a parameter

end

else // if there is only one parameter

pass the parameter to the before method of the instrumentation class

end

end

Listing 3.6: Algorithm to insert hooks into a specified smali file.

1. Create a trace of which API calls invoke intents.

2. Intercept API calls without the need of original source code.

3.6 Extract Permission

Androids API is controlled by an application permission system. The per-
mission validation mechanism is implemented as part of the trusted sys-
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tem process[42]. Each application must declare upfront what permissions
it requires, and the user is notified during installation about what permis-
sions it will receive. If a user does not want to grant a permission to an
application, he or she can cancel the installation process. The permissions
can provide users with control over their privacy and reduce the impact
of bugs and vulnerabilities in applications. However, a permission sys-
tem will be ineffective if developers routinely request more permissions
than they require. Overprivileged applications expose users to unneces-
sary permission warnings and increase the impact of a bug or vulnerabil-
ity.

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Listing 3.7: A permission requested in AndroidManifest.xml

1. Android permission requests of each application are contained in
AndroidManifest.xml file

2. AndroidManifest.xml file is located in main output folder when ap-
plication dissembled.

3.7 Formatting for Machine Learning

The arguments stored from the instrument class and the requested permis-
sion are transform into an application vector which is stored in .arff file.
This file is the input of WEKA machine learning.
@relation android

@attribute ACCESS_COARSE_LOCATION {0,1}

@attribute ACCESS_NETWORK_STATE {0,1}

@attribute BLUETOOTH {0,1}

@attribute BLUETOOTH_ADMIN {0,1}

@attribute CALL_PHONE {0,1}

@attribute CAMERA {0,1}

@attribute INTERNET {0,1}

@attribute READ_CONTACTS {0,1}

@attribute READ_SMS {0,1}

@attribute SEND_SMS {0,1}

@attribute RECORD_AUDIO {0,1}

@attribute READ_PHONE_STATE {0,1}
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@attribute malware {yes,no}

@data

1,0,0,0,1,0,1,0,1,1,0,0,no

0,1,0,0,0,0,1,0,0,0,0,0,no

1,0,0,0,1,0,0,0,1,1,0,0,no

0,0,1,1,0,0,0,0,0,0,0,0,no

1,1,0,0,0,0,1,0,0,0,1,1,yes

0,1,1,1,0,1,1,0,0,0,1,1,yes

0,0,1,1,0,0,1,1,0,1,0,0,yes

0,0,0,0,0,0,1,0,0,0,1,1,yes

Listing 3.8: Example of .arff file.

3.8 Machine Learning

The classification process has two phases, training and runtime. Training
phase is the machine learning task of inferring a function from labeled
training data. The training data consist of a set of training examples. A
supervised learning algorithm analyzes the training data and produces
an inferred function, which can be used for mapping new examples in
runtime phase. The procedures are as followed:

1. A list of API calls and permissions requested extracted from decom-
piled application are combined to create a vector needed as an input
for machine learning.

2. A training set consisted of known benign and malicious applications
is used to train a classifier.

3. Trained classifier is used to classifier android application at runtime.

3.8.1 Training Phase

The following describes the process of the training phase of the system, as
shown in Figure 3.2.

1. A set of Android applications are disassembled to obtain .smali code
and AndroidManifest.xml with the help of APK tool.
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Figure 3.2: Flow chart of training phase
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2. A hook is inserted to record and store information of the application.

3. The information of obtained from the previous process is format into
an .arff file as an input to train the classifier in WEKA.

4. The result from the trainings are saved as a setting to be used to
classify the test set.

3.8.2 Runtime Phase

The runtime phase is slightly different from the training phase, as shown
in Figure 3.3. The classifier uses the setting from the training phase to
classify the application to be whether benign or malicious.

Figure 3.3: Flow chart of runtime phase



Chapter 4

Implementation

This chapter explains the implementation of the system. First, it shows
the Instrumentation class that was implemented. it provides an overview
of the hookings implementation functions and other tools that have been
used to implement the system. The final product contains five classes that
are required to parse and instrument the code.

4.1 Tools

Several existing tools were used during the implementation of our system.
The first tool is the APKtool1 which allows to unpack the APK to extract
the .DEX file. Second, the Baksmali/Smali2 tools that were used to dis-
assemble and assemble the APK after the instrumentation. The tool was
implemented in Java language using the Eclipse tool. Finally, the Keytool
was used to generate a key to sign the APK using the Jarsigner3 tool.

1https://code.google.com/p/android-apktool/
2https://code.google.com/p/smali/
3http://developer.android.com/tools/publishing/app-signing.html
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4.1.1 APKtool

Apktool4 is a tool for reverse engineering 3rd party, closed, binary An-
droid applications. It can decode resources to nearly original form and
rebuild them back after making some modifications. This makes it possi-
ble to debug smali code step by step. Also it makes working with android
application easier because of project-like files structure and automation of
some repetitive tasks like building apk, etc.

4.1.2 Smali/Baksmali

Smali/Baksmali5 is a Java-based assembler/dis-assembler for the dex for-
mat used by Dalvik, Android’s VM implementation. The syntax is based
on the Jasmin’s assembly language syntax and supports the full function-
ality of the dex format (annotations, debug info, line info, etc.). Smali and
Baksmali are Dutch words; the word Smali means assembler and the word
Baksmali means dis-assembler.

.class public Lcom/packageName/example;

.super Ljava/lang/Object;

.source "example.java"

Listing 4.1: A snippet of the beginning of a smali code.

Listing 4.1 shows a typical Smali class header. The first line of the Smali
code shows the class path and name. The class path is Lcom/packageName/
and the class name is example. The second line of the Smali code starts
with .super which represents the class that is example. It is inheriting
from the Object class by default as per the Java specification. The final
line of the Smali class header represents the original Java file name.

# direct methods

.method public constructor <init>()V

.registers 1

.prologue

4https://code.google.com/p/android-apktool/
5https://code.google.com/p/smali/
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.line 8

invoke-direct {p0}, Landroid/app/Activity;-><init>()V

return-void

.end method

Listing 4.2: A snippet of methods in smali syntax.

In listing 4.2, the first line indicates the type of the methods: direct and
virtual. Direct methods are the constructors that have extra attributes such
as init which describes different forms of object initialization. The vir-
tual method is a method that is not static or final, and is not a constructor.
The V at the end of the method in the second line means the return type
of the method is void. The line after defining the method .register 1

specifies the number of the used registers in a method that need to be exe-
cuted; the number 1 means it uses only one register. The .prologue and
.line can be mostly ignored, but sometimes line numbers are useful for
debugging errors. The next line calls the constructor of our mother class;
the p0 means parameter 0 which is like this from Java class. In Smali
code the letter v represents local registers and p represents parameter reg-
isters. The line e returns the value void. The last line indicates the end of
the method.

4.1.3 WEKA

Weka[43] is open source software under the GNU (General Public License).
System is developed at University of Waikato in New Zealand. “Weka”
stands for the Waikato Environment for Knowledge Analysis. The soft-
ware is freely available at http://www.cs.waikato.ac.nz/ml/weka. The
system is written using object oriented language JAVA. There are several
different levels at which Weka can be used. Weka provides implemen-
tations of state-of-the-art data mining and machine learning algorithms.
Weka contains modules for data preprocessing, classification, clustering
and association rule extraction. Figures 4.1 and 4.2 are the screenshots of
WEKA software.
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Figure 4.1: Weka Explorer

Figure 4.2: Example of Weka result page
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4.1.4 Python

Python6 is an interpreted scripting language and has gained a reputation
as being easy to learn. The syntax of the language is designed to be read-
able. Python has ability to do regular expression. A regular expression is
a special sequence of characters that helps you match or find other strings
or sets of strings, using a specialized syntax held in a pattern.

for line in readfile1:

if repermission.search(line):

quotes = re.findall(r’"[ˆ"]*"’,line)

for quote in quotes:

outfile1.write(quote)

Listing 4.3: A snippet of Python script

4.2 Implementation

The Instrumentation class is implemented as follows. When we instru-
ment method calls, we use the instrumentation class to log the detail of
the method calls. The instrumentation class takes an array of objects and
store them in a file. This class is instrumented into an Android application
by following this procedure.

4.2.1 Adding Hooks

Since hooks will be added based on the number of the parameters to create
a space for them in the Array of object that the Instrumentation class takes.
If a method has no parameters then it will only add current object of the
instrumented class. The number of the parameters must be calculated.
Therefore, a class called getRegister() is implemented to find out the
register number. This method will iterate through the method of interest

6https://www.python.org/
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and calculate the number of the parameters. Usually, the parameters are
listed after the beginning of a method, as Listing 4.4 shows.

.method public

print(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object

;Lj

ava/lang/Object;)[Ljava/lang/Object;

.registers 8

.parameter "a1"

.parameter "b"

.parameter "c"

.parameter "d"

...

.end method

Listing 4.4: A method that has four parameters.

After getting the number of the parameters, an array of object will be
initialized and the value of the parameters will be inserted into the array,
as Listing 4.4 shows.

array.add(i+getRegisters.countReg+2, "const/16 v1, 0xa");

array.add(i+getRegisters.countReg+3, "new-array v0, v1,

[Ljava/lang/Object;");

array.add(i+getRegisters.countReg+4, ".local v0,

a:[Ljava/lang/Object;");

Listing 4.5: Initialization of an array of object in Smali language.

The array is now initialized, and a space for each parameter needs to be
initialized to be able to add the parameters. The method will keep creating
spaces for the parameters so long as there are parameters.

int inc = 1;

int nx = 2;

for (int i1 =0; i1 <= getRegisters.countReg; i1++){
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array.add(i+getRegisters.countReg+4+inc,"const/4 v1, 0x"+i1

);

array.add(i+getRegisters.countReg+4+nx,"aput-object p"+i1+"

, v0, v1");

inc += 2;

nx+= 2;}

array.add(i + getRegisters.countReg + 3 + nx , "invoke-

static {p0, v0}, "+path+InstCode.fileName+";-

>"+"before"+"(Landroid/content/Context;[Ljava/lang/Object;)

V);

Listing 4.6: Inserting the parameters into an array and passing the array
to the before method.

After that, the value of the parameter will be added (listing 4.6 - line
5). Once this method adds all the existed parameters values into the array,
a call to the before method of the instrumentation class will be added and
the array of the parameters will be passed onto it.

To read the return value, the method will keep iteration through the
target the method, when it finds the word return it will skip it and read
the returned value. Reading a returned string value is different than read-
ing an integer value. The integer value requires more implementation.
Therefore, this method has a condition to distinguish between integer and
string value.

In Smali the letter I indicates an integer and the word string indicates
a string. Thus, the condition in this method will look for these signs. If
the returned value is a string then the register identification of that value
will be passed to the after method, where if it is an integer then it gets its
value and stores it into a register and passes that register identification to
the after method.

After doing all the modification that is mentioned above the system
will generate two Smali files: instrumentation and a copy of the modify
target file. The user then needs to insert these files into the original APK.
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In addition, the APK must be signed to be able to install it in an Android
phone. Signing the APK requires the user to know the name that is used
to sign the original APK, then create a signatures name the same as the in
the original package to be able to resign the APK again.

The system will generate a files, out.smali which is the instrumented
version of the target class and monitor.smali which is the Instrumentation
file after modifying the path. Now, the user only needs to modify the
name of the out.smali to match the target class name, insert these file into
the APK and sign the APK.

4.3 Scripts Used to Implement System

This section shows some of the commands and scripts used throughout
this research.

4.3.1 Disassemble

The APKtool command used to disassemble the APK file to obtain .smali
files and AndroidManifest.xml.

apktool d -f OriginalAPK.apk

Listing 4.7: APKtool command used to dissembled APK

4.3.2 Extract Permissions

We use regular expression operations in Python to search for any permis-
sions requested in AndroidManifest.xml file. We use ”permission” as the
keyword in our search.

repermission = re.compile(’permission’, re.M)

for line in readfile:
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if repermission.search(line):

quotes = re.findall(r’"[ˆ"]*"’,line)

for quote in quotes:

outfile.write(quote)

outfile.write("\n")

Listing 4.8: Part of Python script to search and store the requested
permissions

4.3.3 ARFF File

To transfer the information obtained from the previous steps into a vec-
tor needed for the WEKA7 (Attribute-Relation File Format or ARFF)[44].
ARFF files have two distinct sections. The first section is the Header infor-
mation, which is followed the Data information. The Header of the ARFF
file contains the name of the relation, a list of the attributes (the columns in
the data), and their types. Listing 4.9 shows an part of Python script used
to generate ARFF file.

#Create the structure of the .arff file

outfile.write("@relation android\n\n")

outfile.write("@attribute ACCESS_COARSE_LOCATION {0,1}\n")

outfile.write("@attribute ACCESS_NETWORK_STATE {0,1}\n")

outfile.write("@attribute BLUETOOTH {0,1}\n")

outfile.write("@attribute BLUETOOTH_ADMIN {0,1}\n")

outfile.write("@attribute CALL_PHONE {0,1}\n")

outfile.write("@attribute CAMERA {0,1}\n")

outfile.write("@attribute INTERNET {0,1}\n")

outfile.write("@attribute READ_CONTACTS {0,1}\n")

outfile.write("@attribute READ_SMS {0,1}\n")

outfile.write("@attribute SEND_SMS {0,1}\n")

outfile.write("@attribute malware {yes,no}\n\n")

7http://www.cs.waikato.ac.nz/ml/weka/
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outfile.write("@data\n")

Listing 4.9: Python script to generate ARFF header

The Python script used to generate data of the ARFF file looks like the
one in the list 4.10

myArray = [accesscoarselocation, accessnetworkstate,

bluetooth, bluetoothadmin, callphone,

camera, internet, readcontacts, readsms, sendsms]

def my_range(start, end, step):

while start <= end:

yield start

start += step

for x in my_range(0, len(myArray), 1):

if x != len(myArray):

if myArray[x].findall(buffer):

outfile.write("1,")

else:

outfile.write("0,")

else:

outfile.write("yes\n") #yes for malicious,

no for benign

Listing 4.10: Python script to generate ARFF header

4.3.4 Reassemble

The APKtool command used to reassemble the instrumented class back
together to form an instrumented APK is as follows in the list 4.11.

./apktool b app_name

Listing 4.11: APKtool command used to reassemble APK



4.3. SCRIPTS USED TO IMPLEMENT SYSTEM 51

4.3.5 Sign APK

Signing application is critical to installing an APK on a device or emulator,
as otherwise the system will refuse to install it. The command executed to
sign the APK is as follows in the list 4.12:

.jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -

keystore android.keystore -signedjar APK_name alias_name

Listing 4.12: Command used to sign APK

4.3.6 Install APK

To install APK, the adb function is executed using Javas ProcessBuilder
class. The command executed is as follows in the list 4.13:

adb -s [device_Name] install -r [app_path_signed]

Listing 4.13: Command used to install APK



52 CHAPTER 4. IMPLEMENTATION



Chapter 5

Experimental Evaluation

This chapter present the results of the experiment. It explains the detail of
the Android applications used in this experiment, including the source of
the applications and the size of the training set and the test set. Also, the
detail classifiers that used to classify Android applications and the discus-
sion of the results from the experiments are presented in this chapter.

5.1 Purpose of Experiments

The purpose of this experiment is to evaluate the accuracy of a binary
classifier for Android malware based upon dynamic and static features
of the applications. Five different machine learning classifiers are tested
in the experiment in order to determine which classifier can give the best
result.

5.2 Data Collection

The dataset used in this study were obtained by multiple sources. These
included Google Play Store, Android security community, public web-
sites, etc. We downloaded 100 free Android applications from Google

53



54 CHAPTER 5. EXPERIMENTAL EVALUATION

Play Store in New Zealand. The applications were selected from 5 differ-
ent categories (20 applications from each category) included, communi-
cation, entertainment, productivity, music, and games. Since, Google has
its own security tool, codenamed Bouncer[24], which provides automated
scanning of Android Market for potentially malicious software. There-
fore, we considered applications downloaded from Google market place
as benign applications. The reason why we only use 100 applications is
because it considerably takes a amount of time to instrument and extract
features from each application. The malicious applications are collected
from multiple websites[45, 46] and some researchers even write their own
malware[47]. We have downloaded about 600 malicious applications from
the websites but ended up using 100 applications with the same reason as
of the benign applications. Unlike iOS, Android user can choose to down-
load and install Android application from any other sources other than
Google if they want to. Many websites have android applications avail-
able for download for free, so we downloaded some of them from those
websites. There are many research groups/communities which interested
in Android security, we also asked these people to provide us with the
malicious applications.

5.2.1 Source of Android Applications

There are many ways to obtain Android applications. Google has its own
app store, called ”Google Play Store”1, where people can download Google
approved applications. To be in the market place, the application has to
pass through Google’s system of verifying the application in a variety of
aspect.

1https://play.google.com/store
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5.2.2 Training Set

The classifiers used in WEKA are trained by a 50 of each benign and
malicious application vectors, 100 vectors in total. The training dataset
was randomly selected from the pool of benign and malicious. The data
was randomly arranged in the dataset using a pre-processing feature in
WEKA, which is a machine learning software, and in particular a package
called weka.filters.unsupervised.instance.randomize. This way, the classi-
fier training process is more accurate.

5.2.3 Test Set

We use the remainder of the data from the pool to be our test samples. We
use the data of only 100 applications, the same size of data set (100 vec-
tors in total) in the test phase, due to the constraints in the data preparing
process since we have not implement the process to instrument the appli-
cation in bulk. The application is run one-by-one in order to generate a
vector. This size is comparable to the experiment in [48].

5.3 Classifiers

The classifiers work with a labelled dataset and find a pattern to build a
proper detection mode. In this experiment, 5 classifiers have been used,
ranging from a simple to more complex and powerful ones. We also want
to compare our result with the other researcher, Su et al.[49]. The 5 classi-
fiers are as follows:

• Naı̈ve Bayes: It is a simple probabilistic classifier based on the Bayes
theorem with a strong features independence assumption, meaning
that, it presumes there is no dependency between various dataset
features, something that is rarely true.
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• K-Nearest Neighbor: It is one of the most straightforward classifiers,
also referred to as KNN. Regardless of its simplicity, it has accom-
plished a number of pattern recognition tasks. In this experiment, 3
neighbours were chosen to perform this classifier, this is the stand

• Decision Tree (J48): It is a renowned, relatively simple classifier. It is
an open source Java implementation of the C4.5 decision tree. The
model looks like a tree and a decision is made based on whether a
record of data belongs to a branch or not. It is a popular classifier
since it is easy to interpret and explain.

• Multi-Layer Perceptron (MLP): The multi-layer perceptron (MLP) is
a type of artificial neural network (ANN) consisting of a network of
neuron layers inspired by the human brain. It has been widely em-
ployed among researchers in various fields such as banking, defence,
and electronics. MLP has medium-level complexity.

• Support Vector Machine (SVM): The support vector machine was de-
veloped in the reverse order of a neural network. It has a robust
theoretical background, which renders it superior in terms of perfor-
mance compared to neural networks. However, it is complex, hard
to interpret, CPU-bound, and memory-intensive.

5.4 Validation

To evaluate each classifier, 2 validation methods known as k-fold cross-
validation and 70% split were used. The k-fold cross-validation[50] method
is a means of enhancing the holdout method. The holdout method is one
kind of cross validation where the data is divided into two sets, training
set and testing set[50]. The function approximator is computed with the
training set only. Then the function approximator is asked to predict the
output values for the data in the testing set which it has never seen these
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output values before. The K-fold cross-validation, however, the data set is
divided into k subsets, then one of the k subset will be chosen to serves as
the test set. The training set will utilise the remaining k-1 subsets which
the data are compiled together to form a whole training set. The process is
repeated k times, then the average error across all k trials is computed. The
advantage of this method is that it matters less how the data gets divided.
Every data point gets to be in a test set exactly once, and in a training set
k-1 times. The variance of the resulting estimate is reduced as k increases.
The disadvantage of this method is that the training phase has to be rerun
from scratch k times, meaning it takes k times as many computations to
perform an evaluation. Specifically, a 10-fold option was used, which is
described as applying the classifier to data 10 times and every time with a
90-10 configuration, i.e. 90% of data for training and 10% for testing. The
final model is the average of all 10 iterations.

The second method is 70% split, which is defined as using 70% of a
dataset for training purposes. The benefit of this method is that it takes
much less time compared to the 10-fold method since the process is done
once, whereas the same process is done 10 times for the other method.
Over-fitting is a drawback of the 70% method, and it occurs when a clas-
sifier memorizes a dataset instead of getting trained. Generally, in the
majority experiments, like the experiment from [48], the 10-fold method
produces better results than the split method which we also observed this
in our experiment.

5.5 System Environment

This experiment was throughly performed on a single laptop, 13 inch Mac-
book Pro 2009. The machine specifications are:

• Processor: Intel core 2 duo 2.26 GHZ.

• Memory: 4GB of RAM.
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• Operating System: OS X 10.8. 32-bit.

• Machine Learning: WEKA.

• Java Runtime Environment (JRE): Version 1.7.0 21.

5.6 Result

The aim of the experiment is to evaluate the performance of our technique
by using the information from the APK file, both API calls and permis-
sions, to build up a malware detection method. Five different machine
learning classifiers included Naı̈ve Bayes, K-Nearest Neighbours (KNN),
Decision Tree (J48), Multi-Layer Perceptron (MLP), and Support Vector
Machine (SVM) were used to evaluate the performance in this experiment.
The result are shown in term of true positive rate (TPR), false positive rate
(FPR), receiver operating characteristic (ROC), and area under the curve
(AUC).

5.6.1 Accuracy

The results are expressed in terms of performance measurements. Detec-
tion rate, also known as a true positive rate (TPR), is the probability of
correctly detecting an instance as malware. Additionally, false positive
rate (FPR) is another measurement defined as the false detection of benign
application as malicious. In general, the higher number of the TPR, the
better the result is. Conversely, the lower number of the FPR signify the
better of the result. There is a tradeoff between these two number, as we
tried to maximise our TPR, the FPR will also increase.

5.6.2 Receiver Operating Characteristic (ROC)

An ROC curve is normally used to measure intrusion detection perfor-
mance. It indicates how the detection rate changes, as the internal thresh-
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Table 5.1: The Experimental Results

10-fold validation 70% split validation
TPR FPR TPR FPR

Naı̈ve Bayes 94.90% 10.30% 91.70% 11.70%
K-nearest neighbor (KNN) 84.60% 26.90% 83.30% 23.30%

Decision Tree (J48) 76.90% 30.80% 83.30% 17.60%
MLP 94.90% 6.40% 83.30% 17.60%
SVM 84.60% 23.10% 83.30% 23.30%

(a) (b)

Figure 5.1: Naive Bayes ROC Curve

old is varied to generate more or fewer false alarms. It plots intrusion
detection accuracy against false positive probability.

ROC curves signify the tradeoff between false positive and true posi-
tive rates, which means that any increase in the true positive rate is accom-
panied by a decrease in the false positive rate. Then, as shown by the ROC
curves, the K-Nearest Neighbours classifier performed the best result. The
line in the K-Nearest Neighbours diagram is the closest to the left-hand
border and the top border compared to other diagrams, indicated that it
offers the finest result among the other classifiers.
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(a) (b)

Figure 5.2: K-Nearest Neighbours ROC Curve

(a) (b)

Figure 5.3: Decision Tree (J48) ROC Curve

(a) (b)

Figure 5.4: Multi-Layer Perceptron ROC Curve
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(a) (b)

Figure 5.5: Support Vector Machine ROC Curve

5.6.3 AUC

Area under the curve (AUC) is used to measure the accuracy. An area of
1 means a perfect result while a 0.5 value is a worthless result. The AUC
point system is as follows: 0.90 1.00 = excellent (A), 0.80 - 0.90 = good (B),
0.70 - 0.80 = fair (C), 0.60 - 0.70 = poor (D) and 0.50 - 0.60 = fail (F).

Table 5.2: Area Under the Curve

Area Under the Curve
Cross-Validation Split-Validation

Naı̈ve Bayes 0.985 1
K-Nearest Neighbours (KNN) 0.862 0.914

Decision Tree (J48) 0.670 0.871
MLP 0.982 0.971
SVM 0.808 0.800

5.7 Discussion

The result from the experiment shown in previous sections suggests that
our detection method can identify Android malware with the accuracy
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rate of up to 94.90%. The classifier with the best overall performance is
Naı̈ve Bayes, then MLP, KNN, SVM, J48 respectively. Two different types
of classify method, 10-fold cross-validation and 70% split-validation, were
tested with all five classifiers in the experiment. The result has shown that
the cross-validation performs better based on true positive rate. Due to
the time constraint, this experiment was only performed on 100 samples,
we suggest that if more samples were used in the experiment, the result
should yield higher accuracy. The result from this experiment is compa-
rable to Su et al.[49]. Their work utilised network traffic monitoring agent
which runs on the actual phone. The agent then send the data to a remote
server to do the analysis. Their work produced the true positive rate of
90.80% for decision tree (J48) and 96.7% for random forest classifiers. As
the table 5.3 shows the mix result in comparison. Our result from Naı̈ve
Bayes is higher than the result from decision tree(J48) of Su et al. but lower
than the random forest. The higher accuracy does not necessarily mean
that their classifier is better because they focus on a narrower malware do-
main (botnets). It does suggest though that it would be worth investigate
including the dynamic features with ours.

Table 5.3: Result Comparison with Similar Study

Su et al.[49]
Current Study

Cross-Validation Split-Validation
Naı̈ve Bayes - 94.90% 91.70%

K-Nearest Neighbours (KNN) - 84.60% 83.30%
Decision Tree (J48) 90.80% 76.90% 83.30%

Random Forest 96.70% - -
MLP - 94.90% 83.30%
SVM - 84.60% 83.30%
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Conclusion

The major purpose of this research is to create a system that can identify
potential Android malware. In this research we used features extracted
from Android application (.apk) files. The extracted data is used as fea-
tures during a classification process of the applications. Our system is
able to do the following:

1. Unpack (disassemble), pack (assemble) an APK file, and sign An-
droid applications.

2. Read the disassembled files and generate information vector of the
applications.

3. Generate an instrumented copy of the target class.

4. Identify a potential Android malware.

We performed an evaluation using a collection comprising of 100 be-
nign application and 100 malware from many sources. The results show
that Naı̈ve Bayes give an accuracy level of 0.918 with a 0.103 FPR. The
high FPR is possible due to the initial classification of the applications. For
example, many entertainment applications which are tagged as tools are
more similar semantically to the games class. Features, extracted statically

63
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from .apk files, coupled with Machine Learning classification can provide
good indication about the nature of an .apk file without running it, and
may assist in the detection of malicious applications. The most impor-
tant features for the detection are extracted using our .dex file parser that
can transform contents of the .dex file into standard features (e.g., strings,
types, classes, methods, fields, static values, inheritance, opcodes).

6.1 Contribution

In this thesis, I have developed a system that can classify an unknown An-
droid application without the need of the source code of the application.
Features and permissions were extracted from .apk files to form a vec-
tor, and combined with Machine Learning classification, this can provide
good a detection system to detect malicious application without the need
of running the application. My contribution to the research are as follows:

• Develop a framework for extracting static and dynamic features from
a given Android application.

• Development of a binary instrumented mechanism that allows in-
strumented application to monitoring of calls to the Android API
and the use of declared permissions.

• Implemented a system that can identify potential Android malware
from APK file.

• Evaluated the functionality and correctness of the system and mea-
sured the accuracy of 5 machine learning classifiers.

We achieved an accuracy of 94.90% for the best classifier. This is com-
parable but lower than the closest related work, but we focused on a broader
range of malware.
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6.2 Future Work

Through the result has shown that Mobile Honeypot can effectively iden-
tify Android malware tool, the system has potential to grow into an even
more powerful policy checker however, and in this section we outline ar-
eas of future work.

6.2.1 Greater Feature Detection

Currently, only limited features had been integrated to our checker due
to the fact that Android malware still available in a limited number. As
Android malware keep growing and become more evolved, we should
be able to obtain more malware with a variety. I plan to include more
features detection to the monitor in order to create a larger vector, more
information for the machine learning. The system should then be able to
identify Android malware with more accuracy.

6.2.2 Monitoring Physical Phones

I also plan to develop a agent that runs on a physical smartphone as com-
parable to Su et al.[49] including the network traffic monitoring feature.
As the user download an application, the agent would send data to a
proxy server to evaluate the application and send back the result to the
user. The agent will alert the user for any potential malware can then
make a decision whether to uninstall the application. This should provide
convenience to the user. The more user, the more application contribute
to the project, this should yield a higher accuracy of the classification as a
result.
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