Identifying Android Malware
Using Machine Learning
Based Upon Both Static and

Dynamic Features

Pacharawit Topark-ngarm

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the
requirements for the degree of
Master of Science

in Computer Science.

Victoria University of Wellington
2014

Abstract

A recent report showed that more than half (51.6%) of total phone ship-
ments were smartphones. These devices are as powerful as laptop com-
puters from only a few years ago and are used to browse the Internet,
send /receive emails, transfer files, watch, create and transmit multimedia
and install applications that add new functionality. As of Q1 2011, the
Android smartphone operating system (OS) is the most widely sold oper-
ating system worldwide. Unfortunately, the Android malware threat has
continuously increased since the first Android malware was reported in
2010. This thesis describes an approach to identify Android malware us-
ing a mix of static and dynamic features. The static features are the permis-
sions requested by the application and are obtained from the application
itself. Whereas, the dynamic features are extracted from the application at
runtime by instrumenting the binary code and executing it in a emulator.
This instrumentation approach was developed as part of the work for this
thesis. We evaluate the use of the features with a range of machine learn-
ing binary classifiers in order to classify an unknown application as either
benign or malware.

ii

Contents

1 Introduction 1
1.1 Motivation 1
1.2 ThesisGoals 2
1.3 Thesis organisation 3

2 Background and Related Work 5
21 Android 5

2.1.1 Architecture 5
2.1.2 Java Virtual Machine 7
2.1.3 JavaClass File Structure 10
2.1.4 The Dalvik Virtual Machine 13
215 Javavs.Dalvik 0. 14
2.1.6 Android Application Package (APK). 15
2.1.7 The Applications 15
22 Malware 16
221 Viruso 16
222 WOrmMS o e e 17
223 TrojanHorses 17
224 AndroidMalware. 17
23 Defense 19
231 Firewalls 19
232 Anti-Viruso 19
2.4 Intrusion Detection System 20

111

iv

24.1 Network-Based Intrusion Detection

2.4.2 Host-Based Intrusion Detection

243 Anomaly Detection

244 Honeypots.
2.5 Android Security

2.5.1 Android Security Architecture

252 Android’s Bouncer Service
25.3 Related Work

26 Summary oo

Design

3.1 Motivation

3.2 Requirements

3.3 Design Decisions

3.3.1 Extracting Runtime Features
3.3.2 Modularising the Instrumentation Code

3.3.3 Hooking to Intercept Intents
334 StaticAnalysis
335 FormatofOQutput...............

3.4 System Architecture.
3.5 Hooking at Byte Code Level

351 Parsing.....................
3.5.2 Parsing the Instrumentation Class
3.5.3 Instrumenting Algorithms

3.6 Extract Permission

3.7 Formatting for Machine Learning
3.8 Machine Learning

3.8.1 Training Phase
3.8.2 Runtime Phase

Implementation
4.1 Tools

CONTENTS

CONTENTS

4.2

4.3

411 APKtool
412 Smali/Baksmali.
413 WEKA
414 Python o .
Implementationo ..
421 AddingHooks
Scripts Used to Implement System
431 Disassemble oL
43.2 Extract Permissions.
433 ARFFFile
434 Reassemble
435 SignAPK oo
436 Install APK

5 Experimental Evaluation

5.1 Purpose of Experiments
5.2 DataCollection
52.1 Source of Android Applications
522 TrainingSet
523 TestSet
5.3 Classifiers e
54 Validation
55 System Environment
56 Result.
561 Accuracy oo
5.6.2 Receiver Operating Characteristic (ROC)
563 AUC e
5.7 Discussion
6 Conclusion
6.1 Contribution
6.2 FutureWork

vi

6.2.1 Greater Feature Detection .
6.2.2 Monitoring Physical Phones

CONTENTS

List of Figures

21
2.2
2.3
24
2.5

3.1
3.2
3.3

4.1
4.2

51
52
53
54
5.5

Android Architecture oL
Converting Java code into byte code toberunon JVM
Diagrammatic representations of a Java class file[1]
Conversionof jarto.dex

Permission requestscreen

System Architecture. L
Flow chart of training phase
Flow chart of runtimephase

Weka Explorer
Example of Wekaresultpage

Naive Bayes ROC Curve
K-Nearest Neighbours ROC Curve
Decision Tree (J48) ROC Curve
Multi-Layer Perceptron ROC Curve
Support Vector Machine ROC Curve

Vil

viii LIST OF FIGURES

List of Tables

2.1 Common Virus, Worm, and Trojan Horse characteristics . . . 18
5.1 The Experimental Results 59
52 AreaUndertheCurve 61
5.3 Result Comparison with Similar Study 62

iX

LIST OF TABLES

Listings

21
2.2
2.3
24
3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
4.1
4.2
43
4.4
4.5
4.6

4.7
4.8

4.9

A Java method that returns an integer value. 14
A Java byte code for the method in listing 2.1.. 14
A Dalvik byte code for the method in listing 2.1. 14
Part of permission request declared in AndroidManifest.xml 23
Exampleofa.smalifile 30
Snippetofa .smalicode 34
Parsing Algorithm, 34
Parsing Algorithm 35
Moditying the instrumentation class path. 35
Algorithm to insert hooks into a specified smali file. 36
A permission requested in AndroidManifest.xml 37
Exampleof arfffile.. 37
A snippet of the beginning of asmalicode. 42
A snippet of methods in smali syntax. 42
A snippet of Pythonscript 45
A method that has four parameters. 46
Initialization of an array of object in Smali language. 46
Inserting the parameters into an array and passing the array

to the beforemethod. 46
APKtool command used to dissembled APK 48
Part of Python script to search and store the requested per-

MISSIONS 48
Python script to generate ARFF header. 49

xi

xii

LISTINGS

4.10 Python script to generate ARFFheader. 50
4.11 APKtool command used to reassemble APK 50
412 Command used tosign APK 51

413 Command used toinstall APK 51

Chapter 1
Introduction

Mobile devices have become an inseparable component of most peoples
lives[2], replacing personal computers in terms of the Internet usage by
allowing users to check emails, access online banking services, tweet, or
use Facebook on such devices. Furthermore, the rapidly growing rich mo-
bile applications with overwhelming user experience, such as maps and
GPS functions, make mobile devices more appealing to users. As part
of utilizing mobile devices, certain sensitive data such as contact lists,
passwords and credit card numbers are stored on these mobile devices.
Based upon this scenario, hackers have turned their attention to mobile
devices[2] where it is possible to obtain an abundance of their preferred

data, whereby security issues are taken less seriously on such devices.

1.1 Motivation

Research and development in this area is important because smartphone
has became ubiquitous and powerful. For many people, smartphone is
their main or their only device to store sensitive information about them-
selves. According to a website, smartphone have been shipped one billion
units in a single year for the first time and accounted for 55.1% of all mo-
bile phone shipments in 2013[3]. Hackers will target smartphone as much,

1

2 CHAPTER 1. INTRODUCTION

if not more, as they target the PC. This study will create another option
that can help people to be aware of potential Android malware before in-
stalling the application.

1.2 Thesis Goals

The primary goal of the study is be able to identify Android malware
with the help of a system that combine machine learning classification
method and the number of extracted features from Android APK file. This
presents a malware detection method for any unknown Android applica-
tions. While most of previous studies extracted features that are based on
byte sequence n-grams[4] in this study we evaluate the use of meaningful
teatures from the Android application files such as the requested permis-
sions, framework methods, classes used by the application and dynamic
features such as invocation of Android API. In this research, I introduced a
system that combines features extracted from Android APK and machine
learning classification that can be used to detect potential Android mal-
ware without the need of the application source code. A set of goal for
this research had been set as followed:

1. Design and prototype a framework for extracting static and dynamic
features from a given Android application. The key elements of this

system are:

e Development of a binary rewriting mechanism that allows bi-
nary application code to be instrumented to allow monitoring
of calls to the Android application programming Interface.

e Using this mechanism to also monitor the invocation of An-

droid runtime services via Events.

e Identifying permission requests through static analysis of the
code.

1.3. THESIS ORGANISATION 3

2. Evaluating the use of machine learning binary classifiers to identify
potential Android malware based upon the features extracted in goal

number 1.

1.3 Thesis organisation

The remainder of this thesis is organised as follows:

Chapter 2 presents overview structure of Android operating system
and Android application architecture. The detail of Java byte code and
Dalvik byte code is described. The chapter also presents how Android
application is constructed and transform into APK package file. A brief
detail of smartphone malware can also be found in this chapter. Chap-
ter 3 presents the design of Mobile Honeypot system. This chapter dis-
cusses the process of instrumenting Android application in order to ex-
tract features to create a vector for machine learning classification. The
basic machine learning techniques also described in this chapter. Chapter
4 presents the implementation of Mobile Honeypot in detail. This chapter
discusses the tools needed to run the experiment and how everything is
putting together to create Mobile Honeypot. Chapter 5 presents the result
of the experiment. This chapter discusses the source of Android appli-
cation and Android malware. This chapter so the accurate of the system
and discusses about each classifier. Chapter 6 summarises the thesis and
discuss future work.

CHAPTER 1. INTRODUCTION

Chapter 2

Background and Related Work

This chapter presents the background and provides a review of related
work; in particular the existing solutions proposed to instrument a method.

2.1 Android

Android is a smartphone operating system created by Google Inc.. Since
2011, the Android has become the most widely sold smartphone operating
system worldwide[5].

2.1.1 Architecture

The Android architecture is divided into the following four main compo-

nents. Figure 2.1 shows Android architecture.

o The kernel
e The libraries and Dalvik virtual machine
e The application framework

e The applications

CHAPTER 2. BACKGROUND AND RELATED WORK

Application App0 App1 App2 App3 App4
Layer
T Activity Window Content View Notification
Frameworks Manager Manager Providers System Manager
L
ayer Package Resource XMPP
i Manager Manager Service
Surface Media .
Manager Framework SQLite
Core
; Libraries
Runtime .
Layer OpenGL/ES FreeType WebKit
Dalvik Virtual
Machine (DVM)
SGL SSL libc
T Display Mouse Ethernet Flash Memory Binder (IPC)
Driver Driver Driver Driver Driver
Kernel
Layer - X
USB Keyboard WiFi Audio Power
Driver Driver Driver Drivers Management

Hardware

C, C++, Native Code Java
[] = Linux Kernel [] = Android Frameworks
[[] = Libraries [] = Applications
[] = Android Runtime

Figure 2.1: Android Architecture

2.1. ANDROID 7

The Kernel

Android runs on top of a Linux 2.6 kernel. The kernel is the first layer of
software that interacts with the device hardware. Android kernel will take
care of power and memory management, device drivers, process manage-
ment, networking, and security. In general, end user should not consider
modifying or building a new kernel. Although, hardware or device man-
ufacturers will want to modify the kernel to ensure that the operating sys-

tem works with their specific type of hardware.

The Libraries

The libraries component acts as a translation layer between the kernel and
the application framework. Android libraries are written in C/C++ but
are shown through a Java API, that means, we can access Android libraries
with Java framework.

The runtime component consists of the Dalvik virtual machine that will
interact with and run applications. The virtual machine is an important
part of the Android operating system and executes system and third-party

applications.

2.1.2 Java Virtual Machine

The Java Virtual Machine (JVM)[6] is stack-based. The JVM was devel-
oped by Sun Microsystems, Inc., which is now owned by Oracle. The JVM
is the basis of the Java platform. It is the component of the technology re-
sponsible for its hardware and operating system-independence. It is well
known for the small size of its compiled code and its ability to protect
users from malicious programs.

The JVM is an abstract computing machine. Like a real computing
machine, it has an instruction set and manipulate various memory areas
at run-time. The JVM runs inside a Virtual Machine (VM) allowing the

Java code to be executed on variety of platforms.

8 CHAPTER 2. BACKGROUND AND RELATED WORK

The Java code is stored in .java file. This code contains one or more
Java language attributes like classes, methods, variable, and objects. Java
(Figure 2.2) is used to compile this code and to generate .class file. Class
file is also known as byte code. The Java byte code is an input to the JVM.

The JVM reads this code, interprets it and executes the program.

Jawva Code (.jawva)

-

JAN AC
compiler

il

Byte Code (.class)

|
+ v 1

I N I A AV LY |
3 3 3
Windows | Lir wx | Mac |

Figure 2.2: Converting Java code into byte code to be run on JVM

The JVM has four registers that are responsible for managing the stack[7].
Since the registers of the JVM are similar to the registers in our computer,
the VM is stack-based and its registers are not used for passing or receiving
arguments. In Java, registers hold the machine’s state, and are updated af-
ter each line of byte code is executed to maintain that state. The following
four registers hold the state of the VM:

1. Frame, the reference frame that contains a pointer to the execution

environment of the current method.

2. Optop, the operand top that contains a pointer to the top of the
operand stack, and is used to evaluate arithmetic expressions.

3. PC, the program counter that contains the address of the next byte

code to be executed.

2.1. ANDROID 9

4. Vars, the variable register that contains a pointer to local variables.

The JVM uses an operand stack to supply parameters to methods and
operations, and to receive results back from them. All byte code instruc-
tions take operands from the stack, operate on them, and return results to
the stack. Like registers in the VM, the operand stack is 32 bits wide.

Each method in our Java program has a stack frame associated with
it. The stack frame holds the state of the method with three sets of data:
the local variables, the execution environment, and the operand stack. Al-
though the sizes of the local variable and the execution environment data
sets are always fixed at the start of the method call, the size of the operand
stack changes as the method’s byte code instructions are executed. The
64-bit numbers are not guaranteed to be 64-bit aligned as the Java stack is
32 bits wide.

The execution environment is maintained within the stack as a data
set, and is used to handle dynamic linking, normal method returns, and
exception generation. In order to handle dynamic linking, the execution
environment contains symbolic references to methods and variables for
the current method and current class. These symbolic calls are translated
into actual method calls through the dynamic link to a symbol table.

Whenever a method completes normally, a value is returned to the
calling method. The execution environment handles normal method re-
turns by restoring the registers of the caller and incrementing the program
counter of the caller to skip the method call instruction. Execution of the
program then continues in the calling method’s execution environment.

If an execution of the current method completes normally, a value is
returned to the calling method. This occurs when the calling method ex-
ecutes a return instruction appropriate to the return type. If the calling
method executes a return instruction that is not appropriate to the return
type, the method throws an exception or an error. Errors that can occur
include dynamic linkage failure, such as a failure to find a class file, or

run-time errors, such as a reference outside the bounds of an array. When

10 CHAPTER 2. BACKGROUND AND RELATED WORK

errors occur, the execution environment generates an exception.

Java’s method area is similar to the compiled code areas of the run-time
environments used by other programming languages. It stores byte code
instructions that are associated with methods in the compiled code, and
the symbol table the execution environment needs for dynamic linking.
Any debugging or additional information that might need to be associated
with a method is stored in this area.

Each program running in the Java run-time environment has a garbage-
collected heap assigned to it as instances of class objects are allocated from
this heap, another word for the heap is memory allocation pool. By de-
fault, the heap size is set to IMB on most systems. Although the heap is set
to a specific size at the start of a program, it can grow, when new objects
are allocated. To ensure that the heap does not get too large, the unused
objects are automatically reallocated or garbage-collected by the JVM.

2.1.3 Java Class File Structure

A Java class file is consist of 10 basic sections[8] as shown in figure 2.3.
The length of the Java class is not known before it gets loaded. There are
variable length sections such as constant pool, methods, and attributes.
These sections are organized in such a way that they are prefaced by their
size or length. This way JVM knows the size of variable length sections
before actually loading them.

The above diagram depicts that a Java class file is divided into different
components such as magic, version, constant pool, access flags, this class,
super class, interfaces, fields, methods, and attributes. The data written in
a class file is kept at one byte aligned and is tightly packed. This helps in
making class file compact. The order of different sections in a Java class
file is strictly defined so that the JVM knows what to expect in a class file
and the order of loading different components. The following provides a

detailed information about the class files component.

2.1.

ANDROID

11

Magic

Version

Constant Pool

Access Flags

this Class

super Class

Interfaces

Fields

Methods

Attributes

Figure 2.3: Diagrammatic representations of a Java class file[1]

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Magic number: is used to uniquely identify the format and to dis-
tinguish it from other formats. The first four bytes of the class file are
0xCAFEBABE. The next four bytes of the class file contain major and mi-
nor version numbers. This number allows the JVM to verify and identify
the class file. If the number is greater than what JVM can load, the class
tile will be rejected.

Constant pool: all the constants related to the class or an interface will
get stored in the constant pool. The constant includes class names, vari-
able names, interface names, method names and signature, final variable
values, string literals etc.

Access flags: follows the constant pool. It is a two byte entry that indi-
cates whether the file defines a class or an interface, whether it is public or
abstract or final in case it is a class.

This class: is a two byte entry that points to an index in the constant
pool. In the above diagram, this class has a value 0x0007 which is an index
in constant pool.

Super Class: is the next two bytes after this class. Similar to this class,
the value of two bytes is a pointer that points to the constant pool which
has entry for super class of the class.

Interfaces: all the interfaces that are implemented by the class (or in-
terface) are defined in the file goes in the interface section of a class file.
Starting at two bytes of the interface section is the count that provides in-
formation about the total number of interfaces being implemented.

Fields: a field is an instance or a class level variable (property) of the
class or interface. The fields section contains only those fields that are
defined by the class or an interface of the file and not those which are
inherited from the super class or super interface.

Methods: the methods component hosts, that is, the methods that are
explicitly defined by this class, not any other methods that may be inher-
ited from the super class.

Attribute section: contains several attribute about the class file, such

2.1. ANDROID 13

as one of the attributes is the source code attribute which reveals the name
of the source file from which this class file was compiled.

2.1.4 The Dalvik Virtual Machine

Dan Bornstein named Dalvik after a small fishing village in Iceland. The
Dalvik VM[9] was create in order to allow Android application executed
on devices with very limited resources. Smartphone is such device be-
cause because they are limited by processing power, the amount of mem-
ory available, and a short battery life. The Dalvik VM executes .dex files. A
.dex file is made by taking the compiled Java .class or jar files and consol-
idating all the constants and data within each .class file into a shared con-
stant pool. The dx tool, which comes with the Android SDK, performs this
conversion. After conversion, .dex files will have a significantly smaller

file size. Figure 2.4 shows how dx tool convert jar file to .dex file.

Jar file
.class file

heterogeneous
constant pool

.dex file

string_ids
constant pool
type_ids
constant pool
.class file proto_ids
heterogeneous constant pool
constant pool == = field_ids

constant pool
method_ids
constant pool

other data

other data

.class file

heterogeneous other data
constant pool

other data

Figure 2.4: Conversion of .jar to .dex

14 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.5 Javavs. Dalvik

The Dalvik virtual machine has a register-based architecture; whereas, the
Java virtual machine has a stack-based architecture. Therefore, JVM keeps
track of all its variables by using the stack. Operations are then called to
perform tasks on the stack. The Java static method in this example takes an
integer parameter, and then returns an integer which is the given number

plus a fixed number.

public static int addConst (int val) {
return val + 123456;
}

Listing 2.1: A Java method that returns an integer value.

public static int addConst (int);
[max_stack=2, max_locals=1, args_size=1]
iload_0
ldc #int 123456
iadd

ireturn

s W e o

Listing 2.2: A Java byte code for the method in listing 2.1.

At the beginning of the Java byte code, it defines the stack size in listing
2.1; the first instruction of the Java byte code (line 0) loads the integer
variable (var) onto the stack. The second line (line 1) pushes the constant
integer (123456) onto the stack. The following line (line 3) pops the two
integers, adds them, and pushes the result back onto the stack. The final

line (line 4) returns the final result of the method.

public static int addConst (int);
[regs=2, ins=1, outs=0]
0: const v0, #0x1E240
1: add-int/2addr v0, vl

2: return vO0

Listing 2.3: A Dalvik byte code for the method in listing 2.1.

The Dalvik byte code is a register-based as the Dalvik byte code exam-
ple above shows, as it defines the size of the register in the second line. In
listing 2.3 the first instruction of the Dalvik byte code (line 0) moves the
given constant integer into the specified register (v0). The second instruc-

tion (line 1) performs the addition operation on the two source registers,

2.1. ANDROID 15

storing the result in the first source register. The final line (line 2) returns
the result that was stored in the first source register (v0). The DVM uses
different operation codes (opcodes) structure than the JVM[10].

2.1.6 Android Application Package (APK)

The Android Application Package (APK) file is the file format used to dis-
tribute and install application software and middleware onto Google’s An-
droid operating system. To make an APK file, a program for Android is
first compiled, and then all of its parts are packaged into one file. This
holds all of that program’s codes (such as classes.dex files), resources, as-

sets, certificates, and manifest file.

DEX file

Android programs are compiled into .dex (Dalvik Executable) files, which
are in turn zipped into a single .apk file on the device. .dex files can be
created by automatically translating compiled applications written in the

Java programming language[11].

Manifest file

Android Manifest file (AndroidManifest.xml) is an XML file required by ev-
ery Android application[12]. The meaning of the manifest file is to de-
scribe the application’s package name, version, permission required, com-
ponents (activities, intent filters, and services), imported libraries, and the

various activities, and etc.

2.1.7 The Applications

The application component of the Android operating system is the closest
to the end user. This section is where the Contacts, Phone, Messaging, and
third party apps in. A complete app will execute in this space by using

16 CHAPTER 2. BACKGROUND AND RELATED WORK

the API libraries and the Dalvik VM. Even though every component of
the Android operating system can be modified, we can only have direct

control over our own applications security.

2.2 Malware

Malware is a short word for malicious and software[13], so its software
written with malicious intention. There are many techniques that the at-
tackers used to spread the malware. Some of the well known techniques
are code injection, file transport, exploit, or boot sector corruption. File in-
jection is the exploitation of a computer bug that is caused by processing
invalid data. Code injection can be used by attacker to inject code into a
computer program to change the course of execution. For example, code
injection is used by some Computer worms to propagate. An exploit is
a piece of software, a chunk of data, or sequence of commands that take
advantage of a bug, glitch or vulnerability in order to cause unintended or
unanticipated behavior to occur on computer software or hardware. This
frequently includes such things as violently gaining control of a computer
system or allowing privilege escalation or a denial of service attack. Mal-
ware can harm the compromised device in many ways. There are three
main categories of malicious software: virus, worm, and Trojan horses as

summarised in table 2.1.

2.2.1 Virus

A virus is a computer program that can copy itself and infect a computer
without the permission or knowledge of the owner. A virus mostly comes
in executable file. If the user executes this file the virus processes its mali-
cious commands, which can be almost everything the OS allows with the

same privileges as the user.

2.2. MALWARE 17

2.2.2 Worms

A worm can often spread without user interaction. Depending on the OS,
this can operate with the same permission as the user. Once started, it
searches for infectable victims in range. If a victim is found, it uses an
exploit to attach itself to the victim and then repeats this behavior. Some-
times worms drop other malware that can be backdoors that allow remote
access. Malicious programs installed that way can make the victim vul-

nerable to a remote triggered Denial of Service (DoS) attacker.

2.2.3 Trojan Horses

A trojan horse is a program that is disguised as a popular application in or-
der to persuade a user to execute or install it. A trojan often acts as a back-
door, contacting a controller which can then have unauthorized access to
the affected computer. A trojan is usually disguised itself by choosing a
well-known name like from a popular game and placing the malware for

download on a web page or file sharing tool.

2.2.4 Android Malware

The Lookout Mobile Threat Report[14] gives a good summary on how An-
droid malware emerged. When looking at the evolution of malware for
mobile phones, the first feature of malware was to send short messages
to premium rate numbers or call such numbers[15]. The main incentive
here is that the attacker can easily gain money by deploying such meth-
ods. Smartphone typically has a connection to the Internet all the time, the
next logical step for mobile malware was to develop botnet capabilities. A
big step in the Android malware evolution was the utilization of privilege
escalation exploits. If the application has root level access to the system, it
can use all resources of the system. This allows the application to install

other applications, which use arbitrary number of permissions, without

18

Table 2.1: Common Virus, Worm, and Trojan Horse characteristics

CHAPTER 2. BACKGROUND AND RELATED WORK

Malicious Prop- | Vector Payload
erty

Virus need host / re- | file transport, | replication,
quire user inter- | file injection, | variant
action exploit

Worm independent exploit replication,
program / no remote ac-
user interaction cess
required

Trojan program with | file transport, | remote

Horse hidden agen- | exploit access, de-
da/ require structive
user interaction function-

ality

2.3. DEFENSE 19

the knowledge of the user.

2.3 Defense

In this section, we review the existing defenses against malware.

2.3.1 Firewalls

Firewalls primarily consist of packet filters and /or proxy servers. A packet
filter is a component that can restrict network flow based on the infor-
mation found in the TCP/IP header. Once network flow is permitted, a
packet filter does not provide any protection against the data contained in
this network flow. However, a packet filter can block access on a particular
server port, which would effectively block a particular type of client from
connecting to particular types of servers, at the expense of availability of
the service. Alternatively, a packet filter can allow for more fine grained
control of access. It can prevent access to malicious servers by blocking

network flow to these servers.

2.3.2 Anti-Virus

Antivirus software is another defense mechanism. The major of such mech-
anism relies on up-to-date malware signature database to detect malware[16].The
early versions were highly focused to detect just particular types of viruses.
Shortly after, first-generation scanners appeared that were able to identify
viruses based on simple string matching. Antivirus software initially was
tasked with identifying viruses and disinfecting the infected files. The
scanning techniques, as a result, were highly specialized to concentrate on
binary data within executable files. In addition, antivirus software uses
emulators to identify stealth viruses and heuristics to identify unknown
viruses. In recent years, antivirus software has started to focus on iden-

tification of exploits found on web pages as well. Nevertheless, a recent

20 CHAPTER 2. BACKGROUND AND RELATED WORK

evaluation of available antivirus software has revealed that they are quite
ineffective in detecting malware[17] probably due to the historical focus

on identifying malicious binary data.

2.4 Intrusion Detection System

An Intrusion detection system (IDS) is a network security device that mon-
itors network and/or system activities for malicious or unwanted behav-

ior. There several types of Intrusion Detection Systems.

2.4.1 Network-Based Intrusion Detection

A network-based IDS (NIDS) looks for attack signatures in network traffic[18].
Typically, a network adaptor running in promiscuous mode monitors and
analyzes all traffic in real-time as it travels across the network. The at-
tack recognition module uses network packets as the data source. There
are three common techniques for recognizing attack signatures: pattern,
expression or bytecode matching, frequency or threshold crossing, and
correlation of lesser events. Snort is a popular NIDS developed in the

open-source community.

2.4.2 Host-Based Intrusion Detection

A host-based IDS (HIDS) looks for attack signatures in log files of hosts[19].
It can also verify the checksums of key system files and executables at
regular intervals. Some products can use regular-expressions to refine at-
tact signatures (e.g. passwd program executed AND .rhosts file changed).
Some product listen to port activity and generate alerts when specific ports
are accessed, providing limited NIDS capability. There is a trend towards
host-based intrusion detection. The most effective IDSs combine NIDS
and HIDS.

2.4. INTRUSION DETECTION SYSTEM 21

Due to the near real-time nature of IDS alerts, and IDS can be used as
a response tool, but automated responses are not without dangers. An
attacker might trick the IDS to respond, with the response aimed at an in-
nocent target (e.g. by spoofing the source IP address). Users can be locked
out their accounts because of false positives. Repeated email notifications
become a denial-of service attack on the administrators email account.

2.4.3 Anomaly Detection

Statistical anomaly detection (or behavior-based detection) uses statistical
techniques to detect potential intrusions. First, the ‘normal” behavior is
defined as a baseline. During operation, a statistical analysis of the data
monitored is performed and the deviation from the baseline is measured.
If a threshold is exceeded, an alarm is issued. This type of IDS does not
need to know about security vulnerabilities in a particular system. The
baseline defines normality. So, there is a chance to detect new attacks with-
out having to update a knowledge base.

On the other hand, anomaly detection detects just anomalies. Suspi-
cious behavior does not always define as an intrusion. For example, a
number of failed login attempts could be due to an attack or to the admin-
istrator forgot the password. There are some problems that we need to
point out. Attacks are not always anomalies especially when the baseline
is adjusted dynamically and automatically. A careful attacker might just
gradually shift ‘normality” over time until his planned attack no longer
generates an alarm. We have to be concerned about false positives (false
alarms) when an attack is identified but none is taking place, and false neg-
atives when an attack is missed because it acts within the range of normal

behavior.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

24.4 Honeypots

Honeypot is a trap set to detect, deflect, or in some manner counteract at-
tempts at unauthorized use of information systems[20]. Generally it con-
sists of a computer, data, or a network site that appears to be part of a net-
work, but is actually isolated, (un)protected, and monitored, and which

seems to contain information or a resource of value to attackers.

2.5 Android Security

Android runs on top of the Linux 2.6 kernel[21], therefore Android Linux
kernel handles security management for the operating system.

2.5.1 Android Security Architecture
Privilege Separation

Android operating system requires every application to run with its own
user identifier (uid) and group identifier (gid). The philosophy behind this
design is to ensure that no application can read or write to code or data of
other applications, the device user, or the operating system itself[21]. This

feature is also known as sandboxing.

Application Code Signing

Any application that is to run on the Android operating system must be
signed[22]. Android uses the certificate of individual developers in order
to identify them and establish trust relationships. The operating system
will not allow an unsigned application to execute. Although, the use of a
certification authority to sign the certificate is not required, and Android
will happily run any application that has been signed with a self-signed
certificate.

2.5. ANDROID SECURITY 23

Permission

For an Android application to work correctly, the developer has to make
sure to add request for appropriate permission in the applications Android-
Manifest.xml (list 4.8). This allows the application to request permission
to use the system component that handles the specific task. The permis-
sion will need to be granted at install time. When the user installs an
application, the user is presented with a list of permissions that the appli-
cation requests. The user cannot selectively allow of disallow individual

permission[23]. The user is prompted with the screen similar to figure 2.5.

<uses-permission android:name="android.permission.RECORD_AUDIO" />

Listing 2.4: Part of permission request declared in AndroidManifest.xml

2.5.2 Android’s Bouncer Service

Bouncer[24] is a service from Google which provides automated scan-
ning of Android Market for potentially malicious software without dis-
rupting the user experience of Android Market or requiring developers to
go through an application approval process. The service performs a set
of analyses on new applications, applications already in Android Market,
and developer accounts. Once an application is uploaded, the service im-
mediately starts analyzing it for known malware, spyware and trojans. It
also looks for behaviors that indicate an application might be misbehav-
ing, and compares it against previously analyzed apps to detect possible
red flags.

2.5.3 Related Work

There are previous works on developing malware detection tool. These
are some of the notable ones.

24 CHAPTER 2. BACKGROUND AND RELATED WORK

Do you want to install this
application?

Allow this application to:

yersonal information

b e o - =1 R [-
1 f AT A \AT iIT&a r =T AT 2
MIladCLL Udild, WIILE COMNLaCL Udld

ork communication

A Servicec that cost vou monev

Figure 2.5: Permission request screen

2.5. ANDROID SECURITY 25
MADAM

MADAM (Multi-Level Anomaly Detector for Android Malware)[25] uses
13 features to detect android malware for both kernal level and user level.
MADAM has been tested on real malware found in the wild and uses a
global-monitoring approach that is able to detect malware contained in
unknown applications (not previously classified).

Monitoring smartphones for anomaly detection

Schmidt et al.[26] monitors smartphones to extract features that can be
used in a machine learning algorithm to detect anomalies. The framework
includes a monitoring client, a Remote Anomaly Detection System (RADS)
and a visualization component. RADS is a web service that receives, from
the monitoring client, the monitored features and exploits this informa-

tion, stored in a database, to implement a machine learning algorithm.

pBMDS

Xie et al.[27] proposes a behavior-based malware detection system (pB-
MDS) that correlates user’s inputs with system calls to detect anomalous
activities related to SMS/MMS sending.

Kirin Security Service for Android

Enck et al.[28] and Ongtang et al.[29] propose Kirin security service for
Android, which performs lightweight certification of applications to mit-
igate malware at install time. Kirin certification uses security rules that
match undesirable properties in security configuration bundled with ap-

plications.

26 CHAPTER 2. BACKGROUND AND RELATED WORK

TaintDroid

Enck et al.[30] introduce TaintDroid. TaintDroid monitors applications in
real-time, verifying and “Taintin” data transmitted from the device. When
an application executes a native method TaintDroid tags and patches the
call, alerting the user of the applications activities. Because the tool is mon-
itoring applications at a lower level, the users device bootloader must be

unlocked and new firmware installed, voiding the devices warranty.

2.6 Summary

This chapter presented an overview of Android architecture. It shows how
Android operating system is designed. The chapter also how Android
OS is different from desktop OS and how Android application is struc-
tured. Then the chapter talked about detail of malware and malware de-
fend mechanism. The chapter also talked about the security of Android. It
described about how Android defends against malware. Google also has
its own tool running behind Google’s Play Store to scan for malware[31].
Finally, the chapter presented some of the previous work related to the
field.

Chapter 3
Design

This chapter discusses how we design our system to analyse and classify
smartphone malware by using code analysis and machine learning tech-
nique. In our design, an android application is first decompiled with APK
tool. The decompiled code (smali) is examined and a hook is inserted to
record activities of the application. Python script is run to scan through
the user’s permission requested by the application. The data gathered al-
together is combined to create a vector for machine learning to classify the
application as benign or malicious.

The structure of this chapter is as follows: Section 3.1 describes the
motivation behind the research. Section 3.2 gives the requirement of the
system. Section 3.3 describes decision made to the design of the system.
Section 3.4 shows the architecture of the system.

3.1 Motivation

Among the various mobile operating systems today, Android has experi-
enced more attacks since it is an open source operating system. A system
that can classify an unknown Android application can benefit users and
prevent users to install malware on their smartphones. The approach in

this research is different from antivirus technique where it relies on de-

27

28 CHAPTER 3. DESIGN

tecting malware based on unique signatures. Although it is very pre-
cise, it is of no value against unknown threats and it requires constant
signature updates[32]. Anomaly-based approaches, on the other hand,
depend on classifiers to train a system to differentiate between normal
and malware behaviour, which can be used to detect anomalies so as to
discover unknown malwares. Although, the machine learning classifiers
has proven to provide more detection accuracy rate[33], this technique
presents a main challenge: we must extract some sort of feature represen-
tation of the application[34] without having the application’s source code.
Although, there had been existing research with the use of machine learn-
ing to detect Android malware [35],[36],[37],[34],[38],[39], this research is
aiming to achieve a better result in term of accuracy by including a wide

range of static and dynamic features extracted from Android APK.

3.2 Requirements

Before we design our system, we have outlined a set of requirements for

the system to follow.

R1 Extract runtime features from applications.
R2 Extract permissions requested by the applications.

R3 No access should be required to the applications source code. All the
required is access to the applications APK file.

R4 Train a machine learning system by using a set features and permission
from R1 and R2.

R5 The system is able to identify Android application to be malware or
benign app.

R6 Use a classifier to identify any given Android application as benign or

malicious.

3.3. DESIGN DECISIONS 29
3.3 Design Decisions

Five key design decisions are discussed below.

3.3.1 Extracting Runtime Features

To extract runtime features we execute the application in an emulated An-
droid virtual machine. We rejected using a modified Android emulator
because this is not a portable approach and we wanted to be able to use
our system with real physical phones in the future. We experimented
with source code manipulation using Aspect], and although successful,
this doesn’t meet the requirement R4. Therefore, we focused on hook-
ing API calls at the byte code level. To intercept Android API calls, our
approach is to build instrumentation framework to instrument the APK.
An instrumentation framework provides the tools needed for monitoring
arguments a method takes and the return value. Hook method stores a
methods arguments that we will use these information to create applica-
tion vector. The framework will invoke the appropriate methods during
the real time execution of the APK. This framework does not require any
help from the user and the vector that stores the information will be gen-

erated automatically.

1. Create a trace of Android API calls.

2. Experimented with Aspect] to add hook to compile-time, required

changing ant script.
3. No access to source code, adding hook to byte code.

4. Unpack APK, extract classes, decompile in assembly language, insert

hooks that call a monitoring library

5. Compile back, repack APK, sign APK

30 CHAPTER 3. DESIGN

6. Adding monitoring, add new local variables, need to be able to allo-
cate new unused Dalvik registers.

.class public Lcom/example/helloworld/MainActivity;
.super Landroid/app/Activity;

.source "MainActivity.java"

direct methods
.method public constructor <init>()V

.locals 0

.prologue
.line 6

invoke-direct {p0}, Landroid/app/Activity;-><init>()V

return-void
.end method

virtual methods

.method public onCreate (Landroid/os/Bundle;)V
.locals 1
.parameter "savedInstanceState"

.prologue
.line 10
invoke-super {p0, pl}, Landroid/app/Activity;->onCreate (Landroid/os/Bundle;)V

.line 11
const/highl6 v0, 0x7f03

invoke-virtual {p0O, v0}, Lcom/example/helloworld/MainActivity;->setContentView (I)V
.line 12

return-void
.end method

Listing 3.1: Example of a .smali file

3.3.2 Modularising the Instrumentation Code

The file monitor.smali is generated at an earlier time by creating a sepa-
rate Android project containing only this class. This project is then com-
piled, the classes.dex file extracted and baksmali used to extract the as-
sembly language monitor.smali. With this approach, the Android project
is written in JAVA which makes it easy to create instead of having to cre-
ate it in byte code. This is hooking class can be reused many times with

new target applications without requiring it to be rewritten. The hooks to

3.4. SYSTEM ARCHITECTURE 31

call the Instrumentation class needs to be inserted into the dis-assembled

classes.dex. This procedure will produce a modified file that contains the
hooks

3.3.3 Hooking to Intercept Intents

Android API also invoked using events. Some events can be intercepted
by adding global broadcast receivers but not all and order of installation
will affect success. We observed that to create an intent actually requires a
method call. Our approach is to intercept events by hooking method calls
that create the intents.

3.3.4 Static Analysis

We could use the hooking mechanism to tract permission request at run-
time, although we are interested in what permission are granted regard-
less of whether they are used or not. Therefore, we extract these informa-
tion from the AndroidManifest.xmli[40].

3.3.5 Format of Output

We decided to use WEKA to perform the machine learning, therefore, we
adopt the standard ARFF file format used by WEKA.

3.4 System Architecture

The instrumentation system is designed to intercept any API calls and
record the activities of the application by using an instrumented class. Fig-
ure 3.1 present the architecture of the instrumented system.

The instrumented class monitor.smali file will be included with the dis-
sembled APK to form a new modified APK. This will be explained further

below.

32

f—

Unmaodified
APK

CHAPTER 3. DESIGN

1 Extracting smali file from APK

Warkstation

b

Dissembled APK

Monitor
API Calls

=P .smalifiles

2 Install instrument file

Andraidia
nifest.xml

3 Extracting static features

Modified APK

| /] Repack instrumented APK

5 Sign APK and install

Smartphone

6 Extracting dynamic features

Figure 3.1: System Architecture

3.5. HOOKING AT BYTE CODE LEVEL 33

The file monitor.smali is generated at an earlier time by creating a sep-
arate Android project containing only this class. This separate project is
compiled into an APK and then the APKtool is used to extracted the as-
sembly language monitor.smali. This hooking class can be reused many
times with new target applications without requiring it to be rewritten.

First, the APK needs to disassembled into a Smali code, that will be
done be extracting the classes.dex file from the target APK. After that, the
Baksmali tool must be used to dis-assemble the class of the APK from a
Dalvik byte code into a Smali code. The hooks to call the Instrumentation
class needs to be inserted into the dis-assembled classes.dex. This proce-
dure will produce a modified file that contains the hooks. In addition to
this modified file, the instrumentation.smali file has to be added into the
same directory. The files in this directory are assembled using the Smali
tool to create a classes.dex file. This in turn is inserted back into the orig-
inal APK. The modified APK is then signed with Jarsigner using a key
generated by Keytool[41].

3.5 Hooking at Byte Code Level

Our approach is to use an instrumentation framework to instrument the
APK. An instrumentation framework provides the tools needed for mon-
itoring arguments a method takes and the store those values for later use.
Our system has benefitted from such a framework by initializing an array
of objects; the before hook method stores a methods arguments, and a vari-
able to store the return value for the after hook method. The framework
will invoke the appropriate methods during the real time execution of the
APK. The before method take an array of objects that are the arguments of
a method and then iterates through them and keep them in a file. The after
method takes the return value as an argument and store it before finishing
the execution of the method. This framework does not require any help

from the user and the array that stores the arguments will be generated

34 CHAPTER 3. DESIGN

automatically.
This section describes the design of the parsing and instrumentation

algorithms of our system.

3.5.1 Parsing

A target class needs to be parsed to locate the implementation of the class.
After displaying the methods the user will have the chance to decide which
method is to be instrumented. In Smali/Baksmali the code starts each
method with the word .method, as listing 4.4 shows; this helped to deter-
mine the start of a method.

direct methods
.method public constructor <init>()V

.end method

Listing 3.2: Snippet of a .smali code

The information of the parsed class will be stored into an ArrayList of
string to be used later on. The ArrayList is used because it is easy to be

extended dynamically.

Input: The Smali/Baksmali code of the target class
while input file still has data do
if the first line of the input file has the word ".method" then
print out that line
end
add that line to an ArrayList
get the next line

end

Listing 3.3: Parsing Algorithm

3.5.2 Parsing the Instrumentation Class

Disassembled classes of the target APK start with some information that
indicate the name of the class, the file path, inheritance if there is any and

the original file name, as listing 3.4 shows.

3.5. HOOKING AT BYTE CODE LEVEL 35

class name, also determines file path when dumped
.class public Lcom/packageName/example;

inherits from Object (could be activity, view, etc.)
.super Ljava/lang/Object;

original java file name

.source "example.java"

Listing 3.4: Parsing Algorithm

Since we will add a new class (instrumentation class) into the APK, the
added class has to have the same information that other classes have such
as the file path. The following algorithm has been implemented to modify

the instrumentation class information.

Input: The instrumentation class
while Input file still has data do
if the first line of the input starts with ".class" then
replace the information of the instrumentation class to the
target class, and keep the name of the instrumentation class
write into a file
else
write into a file
end
get the next line

end

Listing 3.5: Modifying the instrumentation class path.

The system generates a new file contain the instrumentation class after
modifying the file path. Algorithm in listing 3.5 takes the instrumentation
class as an argument, and then it looks for the word .class. If it finds it,
it will replace the information to be similar to the target class and it will
write it into a file; if it does not find it, it will just write the data into that
file.

3.5.3 Instrumenting Algorithms

The target class will be parsed and stored into an array of string by apply-
ing Algorithm 1. Another algorithm is required to find the method that a

user specified to add hooks into it. Since there are two methods that need

36 CHAPTER 3. DESIGN

to be inserted into the target method, it is important to determine the be-
ginning and the end of the target method. The target method could have
more than one argument. Therefore, it is more efficient to store all of the
arguments into an array and the pass them to the instrumentation method

if they are more than one rather than pass one argument at time.

Input: The array of strings that contains the target class
Get the name of the target method from the user
while the array still has information && user input does not equal EXIT do
get the first value of the array
if the first value of the array equals to the target method then
get the number of parameters in the target method
if number of parameters > 0 then
initialize an array of objects in Smali language
foreach parameter do
initialize a space for the parameter
put the parameter into the array
end
foreach line of the specified method do
get the first line
if the line equals to return then
get the return variable
else
return
end
if the line equals to .end method then
if the method return type is String then
insert a hook and pass the return value as a
parameter
elseif the method return type is an Integer then
invoke-static method to get the value of the integer
move the result into a specific register
insert an after hook and pass the specific register
as a parameter
end
else // if there is only one parameter
pass the parameter to the before method of the instrumentation class

end

Listing 3.6: Algorithm to insert hooks into a specified smali file.

1. Create a trace of which API calls invoke intents.

2. Intercept API calls without the need of original source code.

3.6 Extract Permission

Androids APl is controlled by an application permission system. The per-

mission validation mechanism is implemented as part of the trusted sys-

3.7. FORMATTING FOR MACHINE LEARNING 37

tem process[42]. Each application must declare upfront what permissions
it requires, and the user is notified during installation about what permis-
sions it will receive. If a user does not want to grant a permission to an
application, he or she can cancel the installation process. The permissions
can provide users with control over their privacy and reduce the impact
of bugs and vulnerabilities in applications. However, a permission sys-
tem will be ineffective if developers routinely request more permissions
than they require. Overprivileged applications expose users to unneces-

sary permission warnings and increase the impact of a bug or vulnerabil-
ity.

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

Listing 3.7: A permission requested in AndroidManifest.xml

1. Android permission requests of each application are contained in
AndroidManifest.xml file

2. AndroidManifest.xml file is located in main output folder when ap-

plication dissembled.

3.7 Formatting for Machine Learning

The arguments stored from the instrument class and the requested permis-
sion are transform into an application vector which is stored in .arff file.
This file is the input of WEKA machine learning.

@relation android

Q@attribute ACCESS_COARSE_LOCATION {0,1}
@attribute ACCESS_NETWORK_STATE {0,1}
@attribute BLUETOOTH {0,1}

@attribute BLUETOOTH_ADMIN {0,1}
@attribute CALL_PHONE {0,1}
@attribute CAMERA {0,1}

@attribute INTERNET {0,1}

@attribute READ_CONTACTS {0,1}
@attribute READ_SMS {0,1}

@attribute SEND_SMS {0,1}

@attribute RECORD_AUDIO {0,1}
@attribute READ_PHONE_STATE {0,1}

38 CHAPTER 3. DESIGN

Rattribute malware {yes,no}

,,,,,,,,, 0,no

,,,,,,,,,, 0,no

,,,,,,,,,, 0,no

,,,,,,,, 0,no

,,,,,,,,, 1,yes

,,,,,,,,,, 1,yes

,,,,,,,,,, 0,yes

ocrroroopo
oOr H O BP O o o
© 0O 0o o o r o R
o o+ O o o o o
H R R R O O P e
O O 0 o o o o
O 0O o0 o o r oK
o r O 0o o r o
H O B P