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Sampling Issues of Tournament Selection in
Genetic Programming

Huayang Xie and Mengjie Zhang

Abstract—Tournament selection is one of the most commonly
used parent selection schemes in Genetic Programming (GP).
While it has a number of advantages over other selection schemes,
it still has some issues that need to be thoroughly investigated.
Two of the issues are assocated with the sampling process from
the population into the tournament. The first one is the so-
called “multi-sampled” issue, where the some individuals in
the population are picked up (sampled) many times to form
the tournament. The second one is the “not-sampled” issue,
meaning that some individuals are never picked up when forming
the tournament. In order to develop a more effective selection
scheme for GP, it is necessary to understand the actual impacts
of these issues in standard tournament selection. This paper
investigates the behaviour of different sampling replacement
strategies through mathematical modelling, theoretical simula-
tions and empirical experiments. The results show that different
sampling replacement strategies have little impact on selection
pressure and cannot tune the selection pressure in dynamic
evolution. In order to conduct effective parent selection in GP,
research focuses should be on developing automatic and dynamic
selection pressure tuning methods instead of alternative sampling
replacement strategies. Although GP is used in the empirical
experiments, the findings revealed in this paper are expected to
be applicable to other evolutionary algorithms.

Index Terms—Genetic Programming, Multi-sampled Issue,
Not-sampled Issue, Tournament Selection

I. I NTRODUCTION

Genetic programming (GP) [1], one of the metaheuristic
search methods in Evolutionary Algorithms (EAs) [2], is
based on the Darwinian natural selection theory. Its special
characters make it an attractive learning or search algorithm
for many real world problems, including signal filters [3], [4],
circuit designing [5], [6], [7], image recognition [8], [9], [10],
symbolic regression [11], [12], [13], financial prediction[14],
[15], [16], and classification [17], [18], [19].

Selection is a key factor of affecting the performance of
EAs. Although “survival of the fittest” has driven EAs since
the 1950s and many selection methods have been developed,
how to effectively select parents still remains an important
open issue.

Commonly used parent selection schemes in EAs include
fitness proportionate selection [20], ranking selection [21],
and tournament selection [22]. To determine which parent
selection scheme is suitable for a particular evolutionary
learning paradigm, three factors need to be considered. The
first factor is whether the selection pressure of a selection
scheme can be changed easily because it directly affects the

Huayang Xie and Mengjie Zhang are with the School of Engineering and
Computer Science, Victoria University of Wellington, New Zealand (e-mail:
{hxie,mengjie}@ecs.vuw.ac.nz)

convergence of learning. The second is whether a selection
scheme supports parallel architectures because a parallelar-
chitecture is very useful for speeding up learning paradigms
that are computationally intensive. The third factor is whether
the time complexity of a selection scheme is low because the
running cost of the selection scheme can be amplified by the
number of individuals involved.

Tournament selection randomly draws/samplesk individuals
with or without replacement from the current population of
size N into a tournament of sizek and selects the one with
the best fitness from the tournament. In general, selection
pressure in tournament selection can be easily changed by
using different tournament sizes; the larger the tournament
size, the higher the selection pressure. Drawing individuals
with replacement into a tournament makes the population
remain unchanged, which in turn allows tournament selection
to easily support parallel architectures. Selecting the winner
involves simply ranking individuals partially (as the bestone
is only concerned) in a tournament of sizek, thus the time
complexity of asingletournament isO(k). Further, in general,
since the standard breeding process in GP produces one
offspring by applying mutation to one parent and produces
two offspring by applying crossover to two parents, the total
number of tournaments needed to generate the entire next
generation isN . Therefore, the time complexity of tournament
selection isO(kN).

GP is recognised as a computationally-intensive method,
often requiring a parallel architecture to improve its effi-
ciency. Furthermore, it is not uncommon to have millions of
individuals in a population when solving complex problems
[23], thus sorting a whole population is time consuming. The
support of parallel architecture and the linear time complexity
have made tournament selection very popular in GP and the
sampling-with-replacement tournament selection has become
the standard in GP. The literature includes many studies on
the standard tournament selection [24], [25], [26], [27], [28],
[29], [30], [31], [32].

Although standard tournament selection is very popular in
GP, it still has some open questions. For instance, because
individuals are sampled with replacement, it is possible tohave
the same individual sampled multiple times in a tournament
(the multi-sampled issue). It is also possible to have some
individuals not sampled at all when using small tournament
sizes (the not-sampled issue). These two issues may lower
the probability of some good individuals being sampled or
selected but such a view has not been thoroughly investigated.
In addition, although the selection pressure can be easily
changed using different tournament sizes to influence the con-
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vergence of the genetic search process, two problems still exist
during population convergence: 1) when groups of programs
have the same or similar fitness values, the selection pressure
between groups increases regardless of the given tournament
size configuration, resulting in “better” groups dominating the
next population and possibly causing premature convergence;
and 2) when most programs have the same fitness value, the
selection behaviour effectively becomes random. Therefore,
tournament size itself is not always adequate for controlling
selection pressure. Furthermore, the evolutionary learning pro-
cess itself is very dynamic. At some stages, it requires a fast
convergence rate (i.e., high parent selection pressure) tofind a
solution quickly; at other stages, it requires a slow convergence
rate (i.e., low parent selection pressure) to avoid being confined
to a local optimum. However, standard tournament selection
does not meet the dynamic requirements. There exists a strong
demand to clarify the open issues and solve the drawbacks of
standard tournament selection in order to conduct an effective
selection process in GP. To do that, a thorough investigation
of tournament selection is necessary.

A. Goals

This paper aims to clarify whether the two sampling
behaviour related issues are critical in standard tournament
selection, and to determine whether further research should
focus on developing alternative sampling strategies in order to
conduct effective selection processes in GP.

Our initial attempts on solving the drawbacks of standard
tournament selection has been presented in [33], [34], and we
will study them further.

B. Structure

Section II gives a review of selection pressure measurements
and sampling and selection behaviour modellings in standard
tournament selection. Section III presents the necessary as-
sumptions and definitions. Section IV shows the selection
behaviour in standard tournament selection for providing a
valid comparison when investigating the multi-sampled and
not-sampled issues. Sections V and VI analyse the impacts
of the multi-sampled and the not-sampled issues via simula-
tions, respectively. Section VIII investigates the two issues via
experiments. Section IX concludes this paper.

II. L ITERATURE REVIEW

A. Selection pressure measurements

A critical issue in designing a selection technique is se-
lection pressure which has been widely studied in EAs [28],
[29], [25], [31], [35], [36], [37]. Many definitions of selection
pressure can be found in the literature. For instance, it is
defined as the intensity with which an environment tends to
eliminate an organism and thus its genes, or gives it an adap-
tive advantage [38], or as the impact of effective reproduction
due to environmental impact on the phenotype [39], or as the
intensity of selection acting on a population of organisms or
cells in culture [40]. These definitions originate from different
perspectives but they share the same aspect, which can be

summarised as the degree to which the better individuals are
favoured [29]. Selection pressure gives individuals of higher
quality a higher probability of being used to create the next
generation so that EAs can focus on promising regions in the
search space [25].

Selection pressure controls the selection of individual pro-
grams from the current population to produce a new population
of programs in the next generation. It is important in a
genetic search process because it directly affects the population
convergence rate. The higher the selection pressure, the faster
the convergence. A fast convergence decreases learning time,
but often results in a GP learning process being confined in
a local optimum or “premature convergence” [1], [41]. A low
convergence rate generally decreases the chance of premature
convergence but also increases the learning time and may not
be able to find an optimal or acceptable solution in a predefined
limited time.

In tournament selection, the mating pool consists of tour-
nament winners. The average fitness in the mating pool is
usually higher than that in the population. The fitness differ-
ence between the mating pool and the population reflects the
selection pressure, which is expected to improve the fitnessof
each subsequent generation [29].

In biology, the effectiveness of selection pressure can be
measured in terms of differential survival and reproduction,
and consequently in change in the frequency of alleles in
a population [40]. In EAs, there are several measurements
for selection pressure in different contexts, includingtakeover
time, selection intensity, loss of diversity, reproduction rate,
andselection probability distribution.

Takeover time is defined as the number of generations
required to completely fill a population with just copies of the
best individual in the initial generation when only selection
and copy operators are used [28]. For a given fixed-sized pop-
ulation, the longer the takeover time, the lower the selection
pressure. Goldberg and Deb [28] estimated the takeover time
for standard tournament selection as

1

ln k
(lnN + ln(ln N)) (1)

where N is the population size andk is the tournament
size. The approximation improves whenN → ∞. However,
this measure is static and constrained and therefore does not
reflect the selection behaviour dynamics from generation to
generation in EAs.

Selection intensity was firstly introduced in the context of
population genetics to obtain a normalised and dimensionless
measure [42], and, later was adopted and applied to GAs
[43]. Blickle and Thiele [25], [26] measured it using the
expected change of the average fitness of the population. As
the measurement is dependent of the fitness distribution in the
initial generation, they assumed the fitness distribution fol-
lowed the normalised Gaussian distribution and introducedan
integral equation for modelling selection intensity in standard
tournament selection.

For their model, analytical evaluation can be done only for
small tournament sizes and numerical integration is needed
for large tournament sizes. The model is not valid in the case
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of discrete fitness distributions. In addition to these limita-
tions, the assumption that the fitness distribution followed the
normalised Gaussian distribution is not valid in general [44].
Furthermore, because the actual fitness values are ignored but
the relative rankings are used in tournament selection, the
model is of limited use.

Loss of diversity is defined as the proportion of individuals
in a population that are not selected during a parent selection
phase [25], [26]. Blickle and Thiele [25], [26] estimated the
loss of diversity in the standard tournament selection as:

k− 1

k−1 − k− k
k−1 (2)

However, Motoki [31] pointed out that Blickle and Thiele’s
estimation of the loss of diversity in tournament selection
does not follow their definition, and indeed their estimation
is of loss offitnessdiversity. Motoki recalculated the loss of
programdiversity in awholly diversepopulation , i.e., every
individual has a distinct fitness value, on the assumption that
the worst individual is ranked 1st, as:

1

N

N
∑

j=1

(1 − P (Wj))
N (3)

whereP (Wj) = jk−(j−1)k

Nk is the probability that an individual
of rank j is selected in a tournament.

“Reproduction rate” is defined as the ratio of the number of
individuals with a certain fitnessf after and before selection
[25], [26]. A reasonable selection method should favour good
individuals by giving them a high ratio and penalise bad indi-
viduals by giving a low ratio. Brankeet al. [27] introduced a
similar measure which is the expected number of selections of
an individual. It is calculated by multiplying the total number
of tournaments conducted in a parent selection phase by the
selection probability of the individual in a single tournament.
They also provided a model to calculate the measure for a
single individual of rankj in standard tournament selection in
a wholly diverse population on the assumption that the worst
individual is ranked 1st, as:

N
jk − (j − 1)k

Nk
(4)

This measure is termedselection frequencyin this paper
hereafter as “reproduction” has another meaning in GP.

Selection probability distribution of a population at a gen-
eration is defined as consisting of the probabilities of each
individual in the population being selected at least once in
a parent selection phase where [45]. Although tournaments
indeed can be implemented in a parallel manner, in [45] they
are assumed to be conducted sequentially so that the number
of tournaments conducted reflects the progress of generating
the next generation. As a result, the selection probabilitydis-
tribution can be illustrated in a three dimensional graph, where
the x-axis shows every individual in the population ranked by
fitness (the worst individual is ranked 1st), the y-axis shows
the number of tournaments conducted in the selection phase
(from 1 toN ), and the z-axis is the selection probability which
shows how likely a given individual marked on x-axis can be
selected at least once after a given number of tournaments

marked on y-axis. The selection probability is calculated by
Equation 9, which is to be described in the next sub section.
Therefore, the measure provides a full picture of the selection
behaviour over the population during the whole selection
phase. Figure 1 shows the selection probability distribution
measure for standard tournament selection of tournament size
4 on a wholly diverse population of size 40.
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Fig. 1. An example of the selection probability distribution measure.

B. Sampling and Selection Behaviour Modelling

Based on the concept of takeover time [28], Bäck [24]
compared several selection schemes, including tournamentse-
lection. He presented the selection probability of an individual
of rankj in one tournament for a minimisation task (therefore
the best individual is ranked 1st), with an implicit assumption
that the population is wholly diverse as:

N−k((N − j + 1)k − (N − j)k) (5)

In order to model the expected fitness distribution after
performing tournament selection in a population with a more
general form, Blickle and Thiele extended the selection prob-
ability model in [24] to describe the selection probability
of individuals with the same fitness. They defined the worst
individual to be ranked 1st and introduced thecumulative
fitness distribution, S(fj), which denotes the number of in-
dividuals with fitness valuefj or worse. They then calculated
the selection probability of individuals with rankj as:

(

S(fj)

N

)k

−
(

S(fj−1)

N

)k

(6)

In order to show the computational savings in backward-
chaining evolutionary algorithms, Poli and Langdon [32] cal-
culated the probability that one individual is not sampled in
one tournament as1 − 1

N
, then consequently the expected

number of individuals not sampled in any tournament as:

N

(

N

N − 1

)−ky

(7)

wherey is the total number of tournaments required to form
an entire new generation.

In order to illustrate that selection pressure is insensitive
to population size in standard tournament selection in a
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N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD N = 400, Random FRD N = 2000, Quadratic FRD

Fig. 2. Four populations with different fitness rank distributions.

population with a more general situation (i.e., some programs
have the same fitness value and therefore have the same rank),
Xie et al. [45] presented a sampling probability model that
any programp is sampled at least once iny ∈ {1, ..., N}
tournaments as:

1 −
(

(

N − 1

N

)N
)

y

N
k

(8)

and a selection probability model that a programp of rank j
is selected at least once iny ∈ {1, ..., N} tournaments as:

1 −











1 −

(∑

j

i=1
|Si|

N

)k

−
(∑

j−1

i=1
|Si|

N

)k

|Sj |











y

(9)

where|Sj | is the number of programs of the same rankj.
In the literature, a variety of selection pressure measure-

ments have been developed and many mathematical models
have been introduced but mainly for thestandardtournament
selection scheme. We will utilise those measurements and
extend those mathematical models to investigate selectionbe-
haviour in alternative tournament selection schemes for further
investigating the multi-sampled and not-sampled issues.

III. A SSUMPTIONS ANDDEFINITIONS

This paper investigates the research questions via simu-
lations firstly then experiments afterwards. To model and
simulate selection behaviours in tournament selection, we
make the following assumptions and definitions.

A population can be partitioned into bags consisting of
programs with equal fitness. These “fitness bags” may have
different sizes. As each fitness bag is associated with a distinct
fitness rank, we can characterise a population by the number of
distinct fitness ranks and the size of each corresponding fitness
bag, which we termfitness rank distribution(FRD). If S is the
population, then we used the notationN to be the size of the
population,Sj to be the bag of programs with the fitness rank
j and |Sj | to be its size, and|S| to be the number of distinct
fitness bags. We denoted tournament size byk and ranked the
program with the worst fitness 1st. We followed the standard
breeding process so that the total number of tournaments isN
at the end of generating all individuals in the next generation.

In order to make the results of the selection behaviour analy-
sis easily understandable, we assumed that tournaments were
conducted sequentially. We chose only the loss of program
diversity, the selection frequency, and the selection probability
distribution measures for the selection behaviour analysis and
ignored the takeover time and the selection intensity due to
their limitations.

We used four populations with four different FRDs, namely
uniform, reversed quadratic, random, and quadratic, in our
simulations. The four FRDs are designed to mimic the four
stages of evolution but by no means to model the real situations
happening in a true run of evolution. The uniform FRD
represents the initialisation stage, where each fitness baghas
a roughly equal number of programs. A typical case of the
uniform fitness rank distribution can be found in a wholly
diverse population. The reversed quadratic FRD representsthe
early evolving stage, where commonly very few individuals
have better fitness values. The random FRD represents the
middle stage of evolution, where better and worse individuals
are possibly randomly distributed. The quadratic FRD repre-
sents the later stage of evolution, where a large number of
individuals have converged to better fitness values.

Since the impact of population size on selection behaviour is
unclear, we tested several different commonly-used population
sizes, ranging from small to large. This paper illustrates only
the results for three population sizes, namely 40, 400, and
2000, for the uniform FRD, the random FRD, and the reversed
quadratic and quadratic FRDs respectively. Note that although
the populations with different FRDs are of different sizes,the
number of distinct fitness ranks is designed to be the same
value (i.e. 40) for easy visualisation and comparison purposes
(see Figure 2). We also studied and visualised other different
numbers of distinct fitness ranks (100, 500 and 1000), and
obtained similar results (these results are not shown in the
paper).

Furthermore, for the selection frequency and the selection
probability distribution measures, we chose three different
tournament sizes (2, 4, and 7) commonly used in the liter-
ature, to illustrate how tournament size affects the selection
behaviour.
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Fig. 3. Trends of the probability that a program is sampled atleast once in standard tournament selection in the parent selection phase. (Note that the scales
on the x-axes differ.)
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Fig. 4. Loss of program diversity in the standard tournamentselection scheme on four populations with different FRDs. Note that the tournament size is
discrete but the plots show curves to aid interpretation.

IV. SELECTION BEHAVIOUR IN STANDARD TOURNAMENT

SELECTION

In order to make a valid comparison when investigating the
multi-sampled and not-sampled issues, it is essential to show
the selection behaviour in standard tournament selection using
the same set of measurements and simulation methods.

According to Equation 8, we simulate the probability trends
of a single program being sampled at least once using six
different tournament sizes (1, 2, 4, 7, 20 and 40) in three
populations of sizes 40, 400, and 2000 (shown in Figure 3).
The figure shows that the larger the tournament size, the higher
the sampling probability. Furthermore, for a given tournament
size, the trends of sampling probabilities of a program in
the selection phase (along the increments of the number of
tournaments) are very similar in different-sized populations.

From [45], the probability of an eventWj that a program
p ∈ Sj wins or is selected in a tournament is:

P (Wj) =

(∑

j

i=1
|Si|

N

)k

−
(∑

j−1

i=1
|Si|

N

)k

|Sj |
(10)

We calculate the total loss of program diversity using
Equation 3 in whichP (Wj) is replaced by Equation 10. We
also split the total loss of program diversity into two parts. One
part is from the fraction of the population that is not sampled
at all during the selection phase. We calculate it also using
Equation 3 by replacing1 − P (Wj) with

(

N−1
N

)k
, which is

the probability that an individual has not been sampled in a

tournament of sizek. The other part is from the fraction of
population that is sampled but never wins any tournament (i.e.,
not selected). We calculate it by taking the difference between
the total loss of program diversity and the contribution from
not-sampled individuals.

Figure 4 shows the three loss of program diversity measures,
namely thetotal loss of program diversity and the contri-
butions fromnot-sampled1 and not-selected2 individuals for
standard tournament selection on the four populations with
different FRDs. Overall there were no noticeable differences
between the three loss of program diversity measures on the
four different populations with different FRDs.

For each of the four populations with different FRDs, we
calculate the expected selection frequency of a program in
the selection phase based on Equation 4 using the proba-
bility model of a program being selected in a tournament
(Equation 10), that isN × P (Wj). Figure 5 shows the
selection frequency in standard tournament selection on the
four populations with different FRDs. Instead of plotting the
expected selection frequency for every individual, we plotit
only for an individual in each of the 40 unique fitness ranks
so that plots in different-sized populations have the same scale
and it is easy to identify what fitness ranks may be lost. From
the figure, overall the standard tournament selection scheme

1It refers to individual programs that have never participated into any
tournament in a parent selection phase.

2It refers to individual programs that have participated into tournaments but
have never won any tournament.
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favours better-ranked individuals for all tournament sizes, and
the selection pressure is biased in favour of better individuals
as the tournament size increases. Furthermore, skewed FRDs
(reversed quadratic and quadratic) aggravate selection bias
quite significantly.

Interestingly, by comparing the results of the selection
frequency measure of the uniform FRD and the random FRD,
we expected to see some differences but there were not and
the shapes were very similar. This may imply that the standard
tournament selection may tolerate the difference between the
uniform and random FRDs, and therefore sometimes take
long time to converge. To interpret this finding, we offer the
following analysis.

If µ is the average number of individuals in eachSj. In the
uniform FRD, for allj ∈ {1, ..., |S|}, |Sj | = µ. While in the
random FRD, it has

∑j

i=1 |Si|
j

≈ µ (11)

and the approximation becomes more precise whenj is close
to |S|. As the selection frequency for a programp of rank j
is N × P (Wj), we simplify P (Wj) for the uniform FRD as:

P (Wj) =

(

jµ
|S|µ

)k

−
(

(j−1)µ
|S|µ

)k

µ
(12)

=
1

µ|S|k
(

jk − (j − 1)k
)

and for the random FRD as:

P (Wj) ≈

(

jµ
|S|µ

)k

−
(

(j−1)µ
|S|µ

)k

|Sj |
(13)

=
1

|Sj ||S|k
(

jk − (j − 1)k
)

From Equation 12, in the uniform FRD, the selection
frequency for an individual of rankj will be just

1

|S|k−1

(

jk − (j − 1)k
)

(14)

which is independent of the actual number of individuals of
the same rank.

From Equation 13, the selection frequency of an individual
of rank j in the random FRD is approximately:

1

|Sj ||S|k
(

jk − (j − 1)k
)

× |S|µ (15)

=
µ

|Sj |
× 1

|S|k−1

(

jk − (j − 1)k
)

which differs from that (Equation 14) in the uniform FRD
by a factor of µ

|Sj |
. For a random FRD, µ

|Sj |
could be small.

Therefore, only slight fluctuations and differences can be
found in the figure of the random FRD under very close
inspection while comparing with that of the uniform FRD.

We also calculate the selection probability distribution based
on Equation 9. Figure 6 illustrates the selection probability
distribution using the three different tournament sizes (2, 4,
and 7) on the four populations with different FRDs. Again,
we plot it for each of the 40 unique individual ranks. Clearly,

different tournament sizes have a different impact on the
selection pressure. The larger the tournament size, the higher
the selection pressure on individuals of better ranks. For the
same tournament size, same population size but different FRDs
(i.e. the second and the fourth rows in Figure 6) result in
different selection probability distributions.

From additional visualisations on other-sized populations
with the four FRDs, we observed that similar FRD but
different population sizes result in similar selection probability
distributions, indicating that population size does not signif-
icantly influence the selection pressure. Note that in general
the genetic material differs between populations of different
sizes, and the impact of genetic material in different-sized
populations on GP performance varies significantly. However,
understanding that impact is another research topic and is
beyond the scope of this paper.

V. A NALYSIS OF THE MULTI -SAMPLED ISSUE VIA

SIMULATIONS

As mentioned earlier, the impact of the multi-sampled issue
was unclear. This section shows that the multi-sampled issue
is not a problem. It does so by analysing theno-replacement
tournament selection, which solves the multi-sampled issue.
It then compares the no-replacement tournament selection to
standard tournament selection, showing there is no significant
difference between them.

A. No-replacement tournament selection

The no-replacement tournament selection samples individu-
als into a tournament but does not return a sampled individual
back to the population immediately thus no individual can
be sampled multiple times into the same tournament. After
the winner is determined, it then returns all individuals of
the tournament to the population. According to [28], no-
replacement tournament selection was introduced at the same
time as standard tournament selection. It is not clear why the
no-replacement tournament selection is less commonly used
in EAs.

B. Modelling no-replacement tournament selection

The only factor making no-replacement tournament selec-
tion different from the standard one is that any individual
in a population will be sampled at most once in a single
tournament. Therefore, ifD is the event that an arbitrary
programp is drawn or sampled in a tournament of sizek,
the probability ofD is:

P (D) =
k

N
(16)

If Iy is the event thatp is drawn or sampled at least once
in y ∈ {1, ..., N} tournaments, the probability ofIy is:

P (Iy) = 1 − (1 − P (D))y = 1 −

(

1 −
k

N

)y

= 1 −

(

N − k

N

)N
y
N

(17)
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N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD N = 400, Random FRD N = 2000, Quadratic FRD
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Fig. 5. Selection frequency in the standard tournament selection scheme on four populations with different FRDs.

Lemma 1. For a particular program p ∈ Sj , if Ej,y is
the event thatp is selected at least once iny ∈ {1, ..., N}
tournaments, the probability ofEj,y is:

P (Ej,y) = 1−







1 −
1

|Sj|







( ∑

j

i=1
|Si|

k

)

(

N

k

) −

( ∑

j−1

i=1
|Si|

k

)

(

N

k

)













y

(18)

Proof: The probability that all the programs sampled for
a tournament have a fitness rank between1 and j (i.e. are
from S1, . . . , Sj) is given by

(
∑j

i=1 |Si|
k

)

(

N
k

)

If Tj is the event that the best ranked program in a tournament
is from Sj , the probability ofTj is:

P (Tj) =

(
∑j

i=1 |Si|
k

)

(

N
k

) −

(
∑j−1

i=1 |Si|
k

)

(

N
k

) (19)

Let Wj be the event that the programp ∈ Sj wins or is
selected in a tournament. As each element ofSj has equal
probability of being selected in a tournament, the probability
of Wj is:

P (Wj) =
P (Tj)

|Sj |
(20)

Therefore the probability thatp is selected at least once iny
tournaments is:

P (Ej,y) = 1 − (1 − P (Wj))
y (21)

Substituting forP (Wj) we obtain Equation 18.

For the special simple situation that all individuals have
distinct fitness values,|Sj | becomes 1. Substituting this into
Equations 19 and 20, we obtain the following equation, which

is identical to the model presented in [27].

P (Wj) =

(

j
k

)

−
(

j − 1
k

)

(

N
k

) (22)

C. Selection behaviour analysis

The loss of program diversity, the selection frequency, and
the selection probability distribution for the no-replacement
tournament selection are illustrated in Figures 7, 8, and 10, re-
spectively. Comparison results of these figures and Figures4, 5
and 6 show that the selection behaviour in the no-replacement
tournament selection is almost identical to that in standard
tournament selection.

With closer inspection of the total loss of program diver-
sity measure, we observed that when large tournament sizes
(such ask > 13) are used, a slight difference occurs in
the no-replacement tournament selection on the small sized
population (N = 40), whereas no noticeable difference exists
on the other sized populations. A possible explanation is
that in the no-replacement tournament selection, according to
Equation 17, the probability that a program has never been
sampled iny = N tournaments is:

(

N − k

N

)N

=

(

N
k
− 1
N
k

)
N
k

k

≈ e−k (23)

for large N/k. This equation is approximately the same as
that in standard tournament selection. However, for the smaller
sized population when larger tournament sizes are used, this
approximation is not valid. Therefore, the no-replacement
tournament selection strategy does not help the loss of program
diversity, especially when the size of a population is large.

Similar observations can be obtained by comparing the
other two selection pressure measures. The results show that if
common tournament sizes (such ask = 4 or 7) and population
sizes (such asN > 100) are used, no significant difference
in selection behaviour has been observed between the two
tournament selection schemes. The next subsection examines
the sampling behaviour to explore the underlying reasons.

Note that overall there were no noticeable differences be-
tween the three loss of program diversity measures on the
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Fig. 6. Selection probability distribution in standard tournament selection scheme with tournament size 2, 4 and 7 on four populations with different FRDs.
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Fig. 8. Selection frequency in the no-replacement tournament selection scheme on four populations with different FRDs.
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four different populations with different FRDs. The loss of
program diversity measure depends almost entirely on the
tournament size, and is almost independent of the FRD, whilst
other two measures can reflect the changes in FRDs. The
loss of program diversity measure cannot capture the effect
of different FRDs, implying that it is not an adequate measure
of selection pressure.

D. Sampling behaviour analysis

Figure 9 demonstrates the sampling behaviour in the no-
replacement tournament selection via the probability trends
of a program being sampled using six tournament sizes in
three populations as the number of tournaments increases up

to the corresponding population size. By comparing Figure 9
and Figure 3, apart from the case of population size 40 and
tournament size 40, which produces the 100% sampling prob-
ability in the no-replacement tournament selection, thereare
no noticeable differences between corresponding trends inthe
standard and no-replacement tournament selection schemes.
The results are not surprising since both Equations 8 and 17
can be approximated by1 − e−k

y

N for largeN .

E. Significance analysis

To further investigate the similarity or difference between
the sampling behaviour in the two tournament selection
schemes, we ask the following question: for a given population
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Fig. 10. Selection probability distribution in the no-replacement tournament selection scheme with tournament size 2, 4 and 7 on four populations with
different FRDs.
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of sizeN , if we keep sampling individuals with replacement,
then what is the largest number of sampling events at a
certain level of confidence that there will be no duplicates
amongst the sampled individuals? Answering this question
requires an analysis of the relationship between confidence
level, population size and tournament size. Equation 24 models
the relationship between the three factors, whereNk is the
total number of different sampling results when sampling
k individuals with replacement, N !

(N−k)! is the number of
sampling events such that no duplicate is in thek sampled
individuals, and(1 − α) is the confidence coefficient3.

N !

Nk (N − k)!
≥ 1 − α. (24)

Figure 11 illustrates the relationship between population
size N , tournament sizek, and the confidence level. For
instance, sampling 7 individuals with replacement will not
sample duplicates with 99% confidence when the population
size is about 2000, and 95% confidence when the population
size is about 400, but only 90% confidence when the pop-
ulation size is about 200. We also calculated that when the
population size is 40, the confidence level is only about 57%
for k = 7. These results explained why we have observed only
differences between the two tournament selection schemes on
the very small-sized population using relatively large tourna-
ment sizes.
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1,000
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Fig. 11. Confidence level, population size and tournament size. Note that
tournament size is discrete but the plot shows curves to aid interpretation.

The results show that for common tournament sizes 4 or
less, we would not expect to see any duplicates except for
very small populations. Even for tournament size 7, we would
expect only to see a small number of duplicates for populations
less than 200 with 90% confidence. For most common and
reasonable settings of tournament sizes and population sizes,
the multi-sampled issueseldomoccurs in standard tourna-
ment selection. In addition, since duplicated individualsdo
not necessarily influence the result of a tournament when
the duplicates have worse fitness values than other sampled

3α is significance leveland100(1 − α)% is the confidence level.

individuals, the probability of significant difference between
standard tournament selection and no-replacement tournament
selection will be even smaller. Therefore eliminating the multi-
sampled issue in standard tournament selection is very unlikely
to significantly change the selection performance. As a result,
the multi-sampled issue is generally not crucial to the selection
behaviour in standard tournament selection.

Given the difficulty of implementing sampling-without-
replacement in a parallel architecture, most researchers have
abandoned sampling-without-replacement, and used the sim-
pler sampling-with-replacement scheme, hoping that the multi-
sampled issue is not important. The results of our analysis
justified this choice.

VI. A NALYSIS OF THE NOT-SAMPLED ISSUE VIA

SIMULATIONS

The not-sampled issue makes some individuals unable to
participate into any tournament, aggravating the loss of pro-
gram diversity. However, it is not clear how seriously it affects
GP search. This section shows that the not-sampled issue is
insignificant either.

An obvious way to tackle the not-sampled issue is to
increase the tournament size because larger tournament sizes
provide a higher probability of an individual being sampled.
However, increasing tournament size will increase the tourna-
ment competition level, and the loss of diversity contributed
by not-selected individuals will increase, possibly resulting in
even worse total loss of diversity.

The not-sampled issue will only be completely solved if
every individual in a population is guaranteed to be sampledat
least once during the selection phase. However, the sampling-
with-replacement method in standard tournament selection
cannot guarantee this no matter how other aspects of selec-
tion are changed. Therefore, a sampling-without-replacement
strategy must be used for this purpose. One strategy is the
no-replacement tournament selection method. Unfortunately,
it still cannot solve the not-sampled issue unless we configure
the tournament size to be the same as the population size.
Obviously, applying the no-replacement tournament selection
with such a configuration is not useful as it is effectively
equivalent to always selecting the best of a population.

To investigate whether the not-sampled issue seriously af-
fects the selection performance in standard tournament se-
lection, we will firstly develop an approach that satisfies
the following requirements: (1) minimises the number of
not-sampled individuals, (2) preserves the same tournament
competition level as in standard tournament selection, and
(3) preserves selection pressure across the population at a
level comparable to standard tournament selection. We then
compare the approach with standard tournament selection.

A. Solutions to the Not-sampled Issue

A simple sampling-without-replacement strategy that solves
the not-sampled issue is to only return the losers to the
population at the end of each tournament. We termed this
strategy asloser-replacement. By using this strategy, the size
of the population gradually decreases along the way to form
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the next generation. (At the end, the population will be smaller
than the tournament size but these tournaments can be run at a
reduced size.) The loser-replacement tournament selection will
not have any selection pressure across the population. It will
be very similar to arandom sequential selectionwhere every
individual in the population can be randomly selected as a
parent to mate but just once. The only difference between the
outcomes of the loser-replacement tournament selection and
the random sequential selection is the mating order. Although
the loser-replacement strategy can ensure zero loss of diversity,
it cannot preserve any selection pressure across population.
Therefore, it is not very useful.

To satisfy all the essential requirements, we propose an-
other sampling-without-replacement strategy. After choosing
a winner, all sampled individuals are kept in a temporary pool
instead of being immediately returned back to the population.
For this strategy, if the tournament size is greater than one,
after a number of tournaments, the population will be empty.
At that point, the population is refilled from the temporary
pool to start a new round of tournaments. More precisely, for
a populationS and tournaments of sizek, the algorithm is:

1: Initialise an empty temporary poolT
2: while need to generate more offspringdo
3: if size(S) < k then
4: Refill: move all individuals fromT to S
5: end if
6: Sample k individuals without replacement from the

populationS
7: Select the winner from the tournament
8: Move thek sampled individuals intoT
9: end while
We term a tournament selection using this strategy as

round-replacementtournament selection. The next subsections
analyse this strategy to investigate the impact of the not-
sampled issue.

B. Modelling round-replacement tournament selection

AssumeN is a multiple ofk, then afterN/k tournaments,
the population becomes empty. The round-replacement algo-
rithm needs to refill the population to start another round of
tournaments. There will bek rounds in total in order to form an
entire next generation. It is obvious that any program will be
sampled exactlyk times during the selection phase thus there
is no need to model the sampling probability. The selection
probability is given in Lemma 2.

Lemma 2. For a particular programp ∈ Sj , if Wj is the
event thatp wins or is selected in a tournament of sizek, the
probability of Wj is:

P (Wj) =

∑k
n=1

1
n

(

|Sj | − 1
n − 1

)(
∑j−1

i=1 |Si|
k − n

)

(

N
k

) (25)

Proof: The characteristic of the round-replacement tour-
nament selection is that it guaranteesp will be sampled once
in just one of theN/k tournaments in a round. According to

this, the effect of a full round of tournaments is to partition
S into N/k disjoint subsets. The programp is a member of
precisely one of theseN/k subsets. Therefore the probability
of it being selectedin one tournament in a given round is
exactly the same as in any other tournament in the same round.
Further, the probability of it being selected in one round is
exactly the same as in any other rounds since allk rounds of
tournaments are independent. Therefore we only need to model
the selection probability ofp in one tournament of one round.
p could be selected if it is sampled in the tournament and no
better ranked programs are sampled in the same tournament;
its selection probability will depend on the number of other
programs having the same rank that are sampled in the same
tournament.

Let Ej be the event thatp ∈ Sj is selected in a round
of tournaments. The total number of ways of constructing a
tournament containing the programp, n − 1 other programs
in the sameSj, andk − n programs inS1, S2, ..., Sj−1 is4:

k
∑

n=1

(

|Sj | − 1
n − 1

)(
∑j−1

i=1 |Si|
k − n

)

(26)

As each of then programs from has an equal probability

to be chosen as the winner, and there are

(

N − 1
k − 1

)

ways

of constructing a tournament containingp, the probability of
Ej is:

P (Ej) =

∑k

n=1
1
n

(

|Sj | − 1
n − 1

)(
∑j−1

i=1 |Si|
k − n

)

(

N − 1
k − 1

) (27)

Since there areN/k tournaments in a round and the program
p has an equal probability to be selected in any one of theN/k
tournaments, the probability ofWj is:

P (Wj) =
P (Ej)

N/k
(28)

thus we obtain Equation 25.
Let Tj,c be the event thatp is selected at least once by the

end ofcth round. As the selection behaviour in any two rounds
are independent and identical, the probability ofTj,c is:

P (Tj,c) = 1 − (P (Ej))
c (29)

This equation together with Equation 25 will be used to
calculate the selection probability distribution measurefor the
round-replacement tournament selection.

C. Selection behaviour analysis

The loss of program diversity, the selection frequency, and
the selection probability distribution for the round-replacement
tournament selection are illustrated in Figures 12, 13, and14,
respectively.

In Figure 12, the trends of the total loss of diversity is
identical to the contribution from the not-selected individuals
because individuals are guaranteed to be sampled: precisely

4Assuming
(

a

b

)

= 0 if b > a.
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N = 40, Uniform FRD N = 2000, Reversed Quadratic FRD N = 400, Random FRD N = 2000, Quadratic FRD

total not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s 
lo

st
 (

%
)

0

20

40

60

80

100

total not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s 
lo

st
 (

%
)

0

20

40

60

80

100

total not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s 
lo

st
 (

%
)

0

20

40

60

80

100

total not-selected
tournament size

0 5 10 15 20

pr
og

ra
m

s 
lo

st
 (

%
)

0

20

40

60

80

100

Fig. 12. Loss of program diversity in the round-replacementtournament selection scheme on four populations with different FRDs. Note that tournament
size is discrete but the plots show curves to aid interpretation.
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Fig. 13. Selection frequency in the round-replacement tournament selection scheme on four populations with differentFRDs.

sampled once in a round andk times in total. Therefore, the
round-replacement tournament selection minimises the loss
of program diversity contributed by not-sampled individuals
while maintains the same tournament competition level as that
in standard tournament selection. Again there are no noticeable
differences between the loss of program diversity measureson
different sized populations with different FRDs.

In addition, comparing Figure 12 with Figure 4, we can
find that the total loss of program diversity with the round-
replacement tournament selection is significantly smallerthan
with the standard one for small tournament sizes (k < 4) in
all populations, but slightly larger for large tournament sizes
(k > 13)in the small-sized population (N = 40).

From Figure 13, the trends of the selection frequency across
each population are still very similar to the corresponding
ones in standard tournament selection (Figure 5). There is
a slight difference in the small-sized population (N = 40).
Surprisingly, we find that Figure 13 seems to be identical to
Figure 8 in the no-replacement tournament selection. In fact,
Equations 20 and 25 are mathematically equivalent. The proof
can be found in Appendix A.

While the selection frequency is the same in the no-
replacement and round-replacement tournament selections, the
selection probability distribution measure reveals the differ-
ences. Figure 14 shows that the round-replacement tournament
selection has some different behaviour from standard tourna-
ment selection (Figure 6) and also from the no-replacement
one (Figure 10), especially when the tournament size is 2. The

differences are related to the top ranked individuals, whose
selection probabilities reach 100% very quickly in the first
round.

From the simulation results, although every program can be
sampled in the round-replacement tournament selection, not
all of these “extra” sampled programs can win tournaments.
In addition, the number of extra programs which won the tour-
naments do not necessarily contribute to evolution. Therefore,
the overall contribution to the GP performance from these
extra sampled programs may be limited, and we will further
investigate this via empirical experiments in Section VIII.

Recall that the selection frequencies are identical between
the no-replacement and round-replacement tournament selec-
tions but the corresponding selection probability distributions
are different. This shows that selection frequency is not always
adequate for distinguishing selection behaviour in different
selection schemes.

VII. D ISCUSSION OFAWARENESS OFEVOLUTION

DYNAMICS

As mentioned in Section I, the evolutionary learning process
is dynamic and requires different parent selection pressure at
different learning stages. Standard tournament selectionis not
aware of the dynamic requests. This section discusses whether
the no-replacement and the round-replacement tournament
selections are aware of the evolution dynamics and are able
to tune parent selection pressure dynamically based on the
simulation results of the selection frequency measure (see



14

k = 2 k = 4 k = 7
N

=
4
0

,
U

ni
fo

rm
F

R
D

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

40

300.0
40

0.25

2030 rank

0.5

20

p
ro
b
ab

ili
ty

0.75

10tournaments 10

1.0

00

N
=

2
0
0
0

,
R

ev
e

rs
e

d
Q

ua
dr

a
tic

F
R

D

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

N
=

4
0
0

,
R

a
nd

om
F

R
D

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

40

300.0
400

0.25

20300 rank

0.5

200

p
ro
b
ab

ili
ty

0.75

10tournaments 100

1.0

00

N
=

2
0
0
0

,
Q

ua
dr

a
tic

F
R

D

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

40

300.0
2,000

0.25

201,500 rank

0.5

1,000

p
ro
b
ab

ili
ty

0.75

10tournaments 500

1.0

00

Fig. 14. Selection probability distribution in the round-replacement tournament selection scheme with tournament size 2, 4 and 7 on four different FRDs.
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Figures 8 and 13) and the selection probability distribution
measure (see Figures 10 and 14).

Overall, for the uniform and the random FRDs, the two
tournament selections favour better-ranked individuals for all
tournament sizes. For the reversed quadratic and the quadratic
FRDs, the two skewed FRDs aggravate selection bias quite
significantly.

In particular, for the reversed quadratic FRD, there are more
individuals of worse-ranked fitness that received selection
preference. The GP search will still wander around without
paying sufficient attention to the small number of outstanding
individuals. Ideally, in this situation, a good selection schema
should focus on the small number of good individuals to speed
up evolution. For the random FRD, only slight fluctuations and
differences can be found under very close inspection when
comparing with the uniform FRD. Ideally, in this situation,a
good selection scheme should be able to adjust the selection
pressure distinguishably according to the changes in the fitness
rank distribution. For instance, it should give a relatively
higher selection preference to an individual in a fitness bag
with smaller size in order to increase the chance of propagating
this genetic material and a relatively lower selection preference
to an individual in another fitness bag with larger size in
order to reduce the chance of the same. For the quadratic
FRD, the selection frequencies are strongly biased towards
individuals with better ranks. The population diversity will
be quickly lost, the convergence may speed up, and the
GP search may be confined in local optima. Ideally, in this
situation, a good selection scheme should slow down the
convergence. Unfortunately, neither the no-replacement nor
the round-replacement tournament selection can change parent
selection pressure to meet the expectations. They are the same
as standard tournament selection, being unable to know the
dynamic requests, thus fail to tune parent selection pressure
dynamically.

VIII. A NALYSES VIA EXPERIMENTS

To verify the findings in the simulation analysis, this section
further analyses the effect of the no-replacement and the
round-replacement tournament selections via experiments.

A. data sets

The experiments involve three different problem domains
with different difficulties: an Even-n-Parity problem (EvePar),
a Symbolic Regression problem (SymReg), and a Binary
Classification problem (BinCla). We chose these three type of
problems in particular because they have received considerable
attention as examples in the literature of GP.

1) EvePar: An even-n-parity problem has an input of a
string ofn Boolean values. It outputstrue if there are an even
number of true’s, and otherwisefalse. The most characteristic
aspect of this problem is the requirement to use all inputs inan
optimal solution and a random solution could lead to a score
of 50% accuracy [46]. Furthermore, optimal solutions could
be dense in the search space as an optimal solution generally
does not require a specific order of then inputs presented.
EvePar considers the case ofn = 6. Therefore, there are26

combinations of unique 6-bit length strings as fitness cases.

2) SymReg:SymReg is shown in Equation 30 and vi-
sualised in Figure 15. We generated 100 fitness cases by
choosing 100 values forx from [-5,5] with equal steps.

f(x) = exp(1 − x) × sin(2πx) + 50sin(x) (30)

−5 0 5
−200

−100

0

100

200

300

400

x

f(
x)

Fig. 15. The symbolic regression problem.

3) BinCla: BinCla involves determining whether examples
represent amalignantor abenignbreast cancer. The dataset is
the Wisconsin Diagnostic Breast Cancer dataset chosen from
the UCI Machine Learning repository [47]. BinCla consists
of 569 data examples, where 357 are benign and 212 are
malignant. It has 10 numeric measures (see Table I) computed
from a digitised image of a fine needle aspirate of a breast mass
and are designed to describe characteristics of the cell nuclei
present in the image. The mean, standard error, and “worst”
of these measures are computed, resulting in 30 features [47].
The whole original data set is split randomly and equally into
a training data set, a validation data set, and a test data set
with class labellings being evenly distributed across the three
data sets for each individual GP run.

B. function sets and terminal sets

The function set used for EvePar consists of the standard
Boolean operators{and, or, not} and if function. The if
function takes three arguments and returns its second argument
if the first argument istrue, and otherwise returns its third
argument. In order to increase the problem difficulty, we do
not include thexor function in the function set.

The function set used for SymReg includes the standard
arithmetic binary operators{+, -, *, / } and unary operators
{abs, sin, exp}. The / function returns zero if it is given
invalid arguments.

The function set used for BinCla includes the standard
arithmetic binary operators{+, -, *, / }. We hypothesised that
convergence might be quicker if using only the four arithmetic
operators, and more functions might lead to better results.
Therefore, the function set also includes unary operators{abs,
sqrt, sin} and if function. Thesqrt function automatically
converts a negative argument to a positive one before operating
on it. The if function takes three arguments and returns its
second argument if the first argument is positive, and returns
its third argument otherwise. Theif function allows a program
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to contain a different expression in different regions of the
feature space, and allows discontinuous programs, rather than
insisting on smooth functions.

The terminal set for EvePar consists ofn Boolean variables.
The terminal set for SymReg and BinCla includes a single
variablex and 30 terminals, respectively. Real valued constants
in the range [-5.0, 5.0] are also included in the terminal sets
for SymReg and BinCla. The probability mass assigned to the
whole range of constants when constructing programs is set
to 5%.

TABLE I
TEN FEATURES IN THE DATASET OFBINCLA

a radius f compactness
b texture g concavity
c perimeter h concave points
d area i symmetry
e smoothness j fractal dimension

C. fitness function

For even-n-parity problems, the standard fitness function
counts the number of wrong outputs (misses) for the2n

combinations ofn-bit strings and treats zero misses as the best
raw fitness [1]. There is an issue with this fitness function: the
worst program according to this fitness function is the one that
has2n misses. However, this program actually captures most
of the structure of the problem and can be easily converted to
a program of zero misses by adding anot function node to
the root of the program. Therefore, programs with a very large
number of misses are, in a sense, just as good as programs
with very few misses.

In this paper, we used a new fitness function for EvePar:

fitness =

{

m , if m < 2n−1

2n − m , otherwise
(31)

wherem is the number of misses.
The fitness function in SymReg is the root-mean-square

(RMS) error of the outputs of a program relative to the
expected outputs. Because neither class is weighted over the
other, the fitness function for BinCla is the classification error
rate on the training data set (the fraction of fitness cases that
are incorrectly classified by a program as a proportion of
the total number of fitness cases in the training data set). A
program classifies the fitness case asbenignif the output of the
program is positive, andmalignantotherwise. Note that class
imbalance design in fitness function for BinCla is beyond the
scope of this paper. All three problems have an ideal fitness
of zero.

D. genetic parameters and configuration

The genetic parameters are the same for all three problems.
The ramped half-and-half method is used to create new pro-
grams and the maximum depth of creation is four (counted
from zero). To prevent code bloat, the maximum size of a
program is set to 50 nodes during evolution based on some
initial experimental results. The standard subtree crossover

and mutation operators are used [1]. The crossover rate, the
mutation rate, and the copy rate are 85%, 10% and 5%
respectively. The best individual in the current generation is
explicitly copied into the next generation, ensuring that the
population does not lose its previous best solution5. A run is
terminated when the number of generations reaches the pre-
defined maximum of 101 (including the initial generation),
or the problem has been solved (there is a program with a
fitness of zero on the training data set), or the error rate on the
validation set starts increasing (for BinCla). Three tournament
sizes 2, 4, and 7 are used. Consequently, the population size
is set to 504 in order to have zero remainder at the end of
a round of tournaments in the round-replacement tournament
selection.

We ran experiments comparing three GP systems using
the standard, the no-replacement, and the round-replacement
tournament selections respectively for each of the three prob-
lems. In each experiment, we repeated the whole evolutionary
process 500 times independently. In each pair of the 500 runs,
an initial population is generated randomly and is providedto
all GP systems in order to reduce the performance variance
caused by different initial populations.

E. Experimental results and analysis

Table II compares the performances of the three GP systems.
The measure for EvePar is the failure rate, measuring the
fraction of runs that were not able to return the ideal solution.
The best value is zero percent, meaning every run is successful.
The measures for SymReg and BinCla are the averages of the
RMS error and the classification error rate on test data over
500 runs respectively, thus the smaller the value, the better the
performance. Note that the standard deviation is shown after
the± sign.

TABLE II
PERFORMANCE COMPARISON BETWEEN THE NO-REPLACEMENT,

ROUND-REPLACEMENT AND STANDARD TOURNAMENT SELECTION
SCHEMES.

Tournament Selection EvePar SymReg BinCla
Scheme Size Failure (%) RMS Error Test Error (%)

2 100 48.2± 5.2 9.2 ± 2.9
standard 4 80.6 37.6± 8.3 8.7 ± 2.7

7 82.4 40.9± 11.3 8.7 ± 2.7

no- 2 100 48.3± 5.2 9.2 ± 2.9
replacement 4 80.6 37.6± 8.4 8.7 ± 2.7

7 82.5 41.1± 11.2 8.7 ± 2.6

round- 2 99.6 47.4± 5.3 8.4 ± 2.7
replacement 4 79.4 38.3± 8.0 8.6 ± 2.6

7 77.6 40.6± 11.4 8.8 ± 2.7

The results demonstrate that the GP system using the no-
replacement tournament selection has the almost identical
performance as the GP system using standard tournament
selection. The results confirm that for most common and
reasonable tournament sizes and population sizes, the multi-
sampled issue seldom occurs, and is not critical in GP.

The results also show that the GP system using the round-
replacement tournament selection has some advantages over

5This is referred to as elitism [48].
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the GP system using standard tournament selection. In order
to provide statistically sound comparison results for the ad-
vantage of the round-replacement tournament selection, we
calculated the confidence intervals at 95% and 99% levels
(two-sided) for their differences in failure rates, in RMS errors,
and in error rates for EvePar, SymReg and BinCla respectively.

For EvePar, we used the formula

P̂1 − P̂2 ± Z

√

P̂1(1 − P̂1)/500 + P̂2(1 − P̂2)/500 (32)

where P̂1 is the failure rate using the round-replacement
tournament selection,̂P2 is the failure rate using standard
tournament selection, andZ is 1.96 for 95% confidence and
2.58 for 99% confidence. For SymReg and BinCla, we firstly
calculated the difference of the measures between a pair of
runs using the same initial population for each of the 500
pairs of runs, then used the formula

x̄ ± Z
s√
500

(33)

to calculate the confidence interval, wherex̄ is the average
difference over 500 values ands is the standard deviation.
If zero is not included in the confidence interval, then the
difference is statistically significant.

Table III shows the confidence intervals only at the 95%
level, since the statistical analysis results from the two levels
are consistent. Significant differences (either better or worse)
are shown in bold. According to the performance measures,
the round-replacement tournament selection is better thanthe
standard one when the confidence interval is less than zero.

TABLE III
CONFIDENCE INTERVALS FOR DIFFERENCES IN PERFORMANCE BETWEEN

THE ROUND-REPLACEMENT AND STANDARD TOURNAMENT SELECTION
SCHEMES AT95%LEVEL .

Tournament size EvePar SymReg BinCla

2 (-0.95, 0.15) (-1.48, -0.24) (-1.05, -0.43)
4 (-6.16, 3.76) (-0.22, 1.57) (-0.32, 0.24)
7 (-9.75, 0.15) (-1.47, 0.85) (-0.25, 0.32)

From the table, for tournament size 2 and for SymReg and
BinCla problems, the improvement of the round-replacement
tournament selection is statistically significant. However, prac-
tically the differences are small.

For tournament sizes 4 and 7, there are no statistically
significant differences between the round-replacement and
standard tournament selections. This is because only 1.8%
and 0.09% of the population are not-sampled respectively in
standard tournament selection (from Equation 8). There is little
impact on the overall performance from the slight differences
on the selection probability of the top-ranked programs.

We also compared the best performance of the round-
replacement tournament selection with the best performance
of the standard one for SymReg and BinCla; the differences
were not statistically significant either. The results confirm that
these extra sampled programs have limited contribution to the
overall search performance.

Sokolov and Whitley’s findings [49] suggested that per-
formance could be improved by addressing the not-sampled

issue in a Genetic Algorithm using a tournament size of 2.
Our experiments confirmed this in GP for some data sets
and showed that the improvement was statistically significant,
though not large. However, Sokolov and Whitley considered
only tournament size 2. Our experiments included larger
tournament sizes and showed that there was no statistically
significant improvement for the larger tournament sizes in GP.
Furthermore, the performance of larger tournament sizes with
standard tournament selection was as good as or better than the
performance of tournament size 2 with the round-replacement
tournament selection. Therefore, there is no advantage in
explicitly addressing the not-sampled issue.

The analysis results show that although the not-sampled
issue can be solved, overall the different selection behaviour
provided by the round-replacement tournament selection alone
appears to be unable to significantly improve a GP system for
the given tasks. The not-sampled issue does notseriouslyaffect
the selection performance in standard tournament selection.

IX. CONCLUSIONS

This paper clarified the impacts of multi-sampled and the
not-sampled issues in standard tournament selection. It used
the loss of program diversity, the selection frequency, and
the selection probability distribution on four populations with
different FRDs (fitness rank distributions) to simulate parent
selection behaviours in the no-replacement and the round-
replacement tournament selections, which are the solutions
to the multi-sampled and the not-sampled issues respectively.
Furthermore, it provided experimental analyses of the no-
replacement and the round-replacement tournament selections
in three problem domains with different difficulties. The
simulations and experimental analyses provided insight into
the parent selection in tournament selection and the outcomes
are as follows.

The multi-sampled issueseldomoccurs in standard tour-
nament selection when common and realistic tournament
sizes and population sizes are used. Therefore, although
the sampling-without-replacement strategy in no-replacement
tournament selection can solve the multi-sampled issue, there
is no significantly different selection behaviour between no-
replacement and standard tournament selection schemes. The
simulation and experimental results justify the common useof
the simple sampling-with-replacement scheme.

The not-sampled issue mainly occurs when smaller tour-
nament sizes are used in standard tournament selection. Our
round-replacement tournament selection using an alternative
sampling-without-replacement strategy can solve the issue
without altering other aspects in standard tournament selection.
The different selection behaviour in the round-replacement
tournament selection compared with the standard one leads
to better results only when tournament size 2 is used for
some problems (those that need low parent selection pressure
in order to find acceptable solutions). However, there is no
significant performance improvement for relatively large and
common tournament sizes such as 4 and 7. Solving the not-
sampled issue does not appear to significantly improve a GP
system: the not-sampled issue in standard tournament selection
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is not critical. Although this study is conducted in GP, the
results are expected to be applicable to other EAs as we did
not put any constraints on the representations of the individuals
in the population. However further investigation needs to be
carried out.

Overall, different sampling replacement strategies have lit-
tle impact on the parent selection pressure. Eliminating the
multi-sampled issue and the not-sampled issues dose not
significantly change the selection behaviour over standard
tournament selection and cannot tune the selection pressure
in dynamic evolution. In order to conduct effective parent se-
lection in GP, further research should be emphasised on tuning
parent selection pressure dynamically along evolution instead
of developing alternative sampling replacement strategies.

Since sometimes individuals can have almost, but not com-
pletely equal fitness values, selecting parents based purely on
the fitness values of the individuals in the population may
exaggerate selection pressure unnecessarily. In such cases,
another interesting direction for future work is to consider
fitness value intervals during selection.

This work has also found that similar FRDs with different
population sizes resulted in similar selection probability dis-
tributions. This indicate that population size itself might not
significantly influence the selection pressure, but this needs to
be further investigated in the future.
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APPENDIX A
PROOF OFEQUATIONS 20 AND 25 BEING EQUIVALENT

Proof: Equation 25 can be simplified to:

P (Wj) =
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n
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After applying the relation
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[50] (page 822), we can further simply the equa-

tion to
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which is the same as Equation 20.
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