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Abstract

Cooperative coevolution decomposes a large problem into its subcomponents and uses evolu-
tionary algorithms for solving them in order to gradually solve the large problem. This paper
uses cooperative coevolution framework for training recurrent neural networks for grammatical
inference problems. In the past, different encoding schemes were used to build subcomponents
from the neural network for the cooperative coevolution framework. This work proposes a new
encoding scheme for building subcomponents which is based on the functional properties of a
neuron and compares it with the best encoding scheme from literature. All subcomponents in
their respective cooperative coevolution framework employ the G3-PCX evolutionary algorithm.
The results show the the proposed encoding scheme for building subcomponents achieves better
performance, although, it has a lower level of modularity when compared to the CC framework
used from literature. The level of modularity of the proposed encoding scheme further enables
it to have smaller number of function evaluations in the initialisation stage when compared to
their previous counterparts. The approach is further used for long-term dependency problems
and demonstrates to learn from strings lengths of up to 500 time lags.

Key words: Cooperative coevolution, neuro-evolution, recurrent neural networks, grammatical
inference, and genetic algorithms.

1. Introduction

The ability of neural networks to approximate complex functions and model any open dy-
namical system has well been praised (Schaefer and Zimmermann, 2007; Hornik et al., 1989;
Scarselli and Tsoi, 1998; Giles et al., 1999). However, the search for its optimal training algo-
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rithm is still an open problem. Gradient descent based training paradigms are unable to guarantee
a good or acceptable solution in difficult problems and those involving long-term dependencies
(Bengio et al., 1994; Frasconi et al., 1993). Therefore, evolutionary algorithms(EA) have been
used in neural network training and design in order to achieve a better solution when compared to
traditional gradient descent based approaches (Yao, 1999). The paradigm of using evolutionary
computation for evolving neural networks is known as neuro-evolution.

Cooperative coevolution (CC) is an evolutionary computation framework which divides a
larger problem into smaller subcomponents and solves those subcomponents independently in
order to solve the larger problem. The CC framework has been used for function optimisation
and neural network training(Potter and Jong, 1994; Potter and De Jong, 2000; Garcia-Pedrajas
et al., 2003; Garcı́a-Pedrajas and Ortiz-Boyer, 2007). A major advantage of the CC framework
in neuro-evolution is that it provides a mechanism for encoding regions of network weights
into different subpopulations. In this way, state information in the network is preserved during
learning whereas in standard neuro-evolution, there is a tendency for internal state information
to be lost due to reproduction as the crossover operator affects weights of the entire network
encoded in a single population.

The CC framework has been used effectively in training recurrent neural networks in order
to preserve information associated with the recurrent state neurons. Pioneering work was done
in their deployment as enforced subpopulations (ESP) for training recurrent neural networks
in solving the double pole balancing problem without velocity information(Gomez and Mikku-
lainen, 1997; Gomez, 2003). A sophisticated version of ESP known as Evolino has been used to
evolve the LSTM network where it was shown that the framework outperformed gradient based
LSTM and learned tasks that were unlearn-able by Echo State Networks (Schmidhuber et al.,
2007). Recently, the same framework with a different encoding scheme has been used for train-
ing RNN for the double pole balancing problem without velocity information. The approach was
called cooperatively coevolved synapse (CoSyNE) and has shown better performance than ESP
and standard neuro-evolution methods (Gomez et al., 2008).

This work is motivated by the network encoding schemes used in ESP and CoSyNE. The
advantage of CoSyNE over ESP is that it achieves a higher level of modularity with a greater
number of subpopulations. However, this is costly as the number of function evaluations in-
creases with a greater number of subpopulations. In the initialisation state, CoSyNE requires
a higher number of function evaluations as it consists of a higher number of subcomponents in
comparison to ESP. This is one major weakness of the CoSyNE over ESP. There is a need for an
encoding scheme which can train RNN as well as CoSyNE and at the same time requires a lower
level of modularity. A smaller number of subcomponents would further reduce the number of
function evaluations in the initialisation stage. Note that in the initialisation stage, s × P number
of function evaluations are required, where s is the number of subcomponents and P is the size



of the subpopulations.
The neuron based subpopulation (NSP) encoding scheme for building subcomponents is pro-

posed which is based on the functional properties of a neuron. The performance of the NSP is
compared with CoSyNE.

In the past, most CC paradigms used outdated evolutionary algorithms when compared with
their recent counterparts. It has been argued that there is a need to use more recent and efficient
evolutionary algorithm in the subpopulations (Yang et al., 2008). Therefore, this work employs
the G3-PCX evolutionary algorithm (Deb et al., 2002) in the subpopulations of the CC frame-
works. This evolutionary algorithm has outperformed CMA-ES evolutionary strategy (Hansen
and Ostermeier, 2001) and other real-coded genetic algorithms for some function optimisation
problems shown in (Deb et al., 2002). Furthermore, it has also been used for training feedforward
neural networks in the past (CantuPaz and Kamath, 2005).

We choose a specific grammatical inference problem taken from (Blanco et al., 2001), in or-
der to demonstrate the effectiveness of the proposed scheme. We also use two different language
of average learning difficulty from the Tomita grammar (Tomita, 1982) as it has been a major
benchmark for training RNN’s on grammatical inference problems (Castao et al., 1995). We use
the Elman style first-order RNN (Elman, 1990; Manolios and Fanelli, 1994) in order to evalu-
ate the CC training paradigms. Furthermore, the proposed NSP CC framework is also used in
learning long term dependency problems generated by a finite state automata to learn from long
strings of up-to 500 time lags.

The rest of the paper is organised as follows. In Section 2, the general cooperative coevo-
lution framework and standard neuro-evolution with a survey of CC frameworks and encoding
schemes for training RNN is presented. Section 3 presents the encoding scheme in the proposed
neuron based subpopulation while in Section 4, grammatical inference and their usage for study-
ing fundamental properties of RNN are discussed. Section 5 presents the results and section 6
concludes the work with a discussion on future work.

2. Background

2.1. Neuro-Evolution and Cooperative Coevolution

Neuro-evolution has been popular for training neural networks as it employs evolutionary
algorithms which are meant to handle the global search problem. It can also be easily deployed
in any neural network optimisation problem without being constrained to a particular network
architecture. The neuro-evolution paradigm has been used for evolving feedforward and recur-
rent network architectures in the past (Yao, 1999; Delgado and Pegalajar, 2005; Blanco et al.,
2001; Sexton and Dorsey, 2000; CantuPaz and Kamath, 2005; Chandra and Omlin, 2007). The
optimisation strategy in neuro-evolution does not depend on the back-propagation of gradient in-
formation. This is handy when gradient information is difficult to obtain as in the case for learn-



ing long-term dependencies in recurrent neural networks through back-propagation through-time
(BPTT)(Bengio et al., 1994). It has been shown that evolutionary computation performs better
than gradient descent in terms of recognition of unseen data in some selected problems(Sexton
and Dorsey, 2000).

The application of RNN for finite state automata induction via evolutionary algorithms has
been explored in the past where Wright’s heuristic crossover was used in a genetic algorithm
which achieved better training performance than gradient based techniques (Blanco et al., 2001).
Standard neuro-evolution has also been used in evolving RNN for standard grammatical infer-
ence problems (Delgado and Pegalajar, 2005).

Cooperative coevolution decomposes a bigger problem into smaller subcomponents and em-
ploys standard evolutionary optimisation in solving those subcomponents in order to gradually
solve the bigger problem. The subcomponents are also known as species and are represented as
subpopulations. The subpopulations are evolved separately and the co-operation only takes place
for fitness evaluation for the respective individuals in each subpopulation. The CC framework
has been successfully applied to optimise high dimensional problems (Liu et al., 2001; Potter and
Jong, 1994; Sofge et al., 2002) with independent variables, non-separable or dependant variable
problems of high dimension (Yang et al., 2008) and multi-objective optimisation (Goh et al.,
2009). Moreover, the CC framework has also been used in real-world problems such as the
pedestrian detection system (Xu et al., 2006) and neural network based classifier systems (Zhu
and Guan, 2008). The use of CC framework in evolving recurrent neural networks is discussed
in the following subsection.

2.2. Network Encoding Schemes for Cooperative Coevolution

Rather than standard recurrent neuro-evolution, where the weights, biases, and context weights
were encoded in a single population, the CC framework decomposes the problem into subpopu-
lations and encodes the network in a way which would least affect the information gained in the
recurrent state neurons in the evolutionary search process.

There have been two major encoding schemes based on the CC framework for training recur-
rent neural networks. The first scheme proposes a neuron level encoding where the each neuron
in the hidden layer is used as a major reference point for each subpopulation in the CC frame-
work. Therefore, the number of hidden neurons is equal to the the number of subpopulations.
This encoding was used in Enforced Subpopulation (ESP) paradigms (Gomez and Mikkulainen,
1997; Gomez, 2003) where a particular neuron hi in the hidden layer would encode the following
weight links in its subpopulation:

1. The weights links connecting from the input layer to hi

2. The weight links connecting from hi to each context neurons

3. The weight links connected from hi to each output layer



4. The bias associated with hi

In this encoding scheme, the sizes of all individual subpopulations are the same for the entire
framework. This encoding is shown in Figure 1.

Figure 1: The ESP encoding scheme taken from (Gomez, 2003).

The second encoding scheme was presented in the cooperatively coevolved synapse neuro-
evolution (CoSyNE) algorithm. This encoding scheme decomposes the network into its lowest
level, where each weight link (synapse) in the network is part of a single subpopulation. There-
fore, the number of subpopulations depends on the number of weights and biases. The CoSyNE
demonstrated better performance than ESP on the two pole balancing problem without velocity
information (Gomez et al., 2008).

3. A New Encoding Scheme: Neuron Based Subpopulation (NSP)

In ESP, a single sub-population encodes the incoming, outgoing and recurrent connection
in reference to a hidden neuron. The NSP breaks down this encodings scheme into a lower
level and achieves a higher level of modularity. Each subcomponent in the NSP consists of
incoming weight links associated with a neuron in the hidden, state(recurrent), and output later.
The CoSyNE has a greater level of modularity than NSP as it has a separate subpopulation for
each weight and bias of the network. The CoSyNE has shown better performance than ESP
(Gomez et al., 2008), therefore, we use it for comparison with NSP.

The neuron based subpopulation (NSP) is motivated by the properties of a single neuron
which computes the weighted sum of incoming weight links associated with it. It does not
include the outgoing weight links in this computation unlike ESP. Each neuron in the hidden and
output layer is a reference point for a subpopulation. Each hidden neuron also acts as a reference
point for the context weight links connected to it. Therefore, each subpopulation for a layer is
composed of the following:



1. Hidden layer subpopulations: weight-links from each neuron in the hidden j(t) layer con-
nected to all inputi(t) neurons and the bias of hidden j(t), where t is time.

2. State (recurrent) neuron subpopulations: weight-links from each neuron in the hidden j(t)
layer connected to all hidden neurons in previous time step hidden j(t − 1)

3. Output layer subpopulations: weight-links from each neuron in the outputk(t) layer con-
nected to all hidden j(t) neurons and the bias of outputk(t)

The general CC framework for NSP in training RNN is summarised in Algorithm 1. Figure
2 shows a detailed diagram of the NSP encoding scheme.

Figure 2: The NSP encoding scheme. Each neuron in the hidden and output layer acts as a reference point to its
subcomponents given as subpopulations. The subpopulation for the context weights are also shown. The same encoding
scheme is used in the rest of the neurons in the hidden and output layer.

In Algorithm 1, a large problem of network evolution is decomposed in k subcomponents
where k is equal to the number of hidden neurons, plus the number of context neurons, plus the
number of output neurons. Each subpopulation contains all the weight links from the previous
layer connecting to a particular neuron. A Cycle is completed when all the subpopulations are
evolved for a fixed number of function evaluations or generations. At the end of each Cycle, the
best components of each subpopulation is cooperatively evaluated. The algorithm halts if the
termination condition is satisfied.

A major concern in the general paradigm is the cooperative evaluation of each subcomponent
in every subpopulation, especially in the initialisation and evaluation phases shown in Step 3 of
Algorithm 1. This is simply done by assigning random best fitness individuals for each subpopu-
lation in the initialisation phase. In order to evaluate the ith individual of the kth subcomponent,
the best individuals from the rest of the subpopulations would be combined with the chosen indi-
vidual and cooperatively evaluated. However, the fitness of the individual is not divided among
the rest of the subpopulation (Potter and De Jong, 2000).



Algorithm 1 The NSP CC Framework for Training RNN
Step 1) Decompose the problem into k subcomponents according to the number of Hidden,
State, and Output neurons
Step 2) Encode each subcomponent in a subpopulation in the following order:

1. Hidden layer subpopulations
2. State(recurrent) neuron subpopulations
3. Output layer subpopulations

Step 3) Initialise and cooperatively evaluate each subpopulation
for each Cycle until termination do

for each Subpopulation do
for n Generations do

i) Select and create new offspring
ii) Cooperatives Evaluate the new offspring
iii) Add new offspring’s to the subpopulation

end for
end for

end for
Get the best solution

Cooperative evaluation is done by combining or concatenating the chosen individual from
a subpopulation k with the best individuals from the rest of the subpopulations. Note that the
position of the particular subpopulation in the chromosome is retained during concatenation. The
final chromosome is encoded into the RNN and the training data is used to calculate the network
error which becomes the inverse of the fitness value. The goal of the evolutionary process is to
increase the fitness which tends to decreases the network error. In this way, the fitness of each
subcomponent in the network is evaluated until the Cycle is completed.

A major disadvantage in the encoding scheme used in ESP is that it assumes that the fitness
of the recurrent state neurons should be evaluated together with incoming and outgoing weight
links. The NSP evaluates the fitness of weights associated with recurrent state neurons inde-
pendently. It achieves a higher level of modularity than ESP and contains smaller number of
subpopulations than CoSyNE.

Other CC frameworks such as ESP and CoSyNE evaluates the fitness of each individual in
n trial runs and takes the average or best fitness. This is done only in the initialisation phase.
The NSP framework will use the fitness evaluation given in (Potter and De Jong, 2000) for
the initialisation of subpopulations since this initialisation methodology uses smaller function
evaluations than doing n trial runs. In order to show a favourable comparison with NSP, the
CoSyNE will use the same method for subpopulation initialisation.



4. Grammatical Inference for the Study of RNN

The knowledge acquired in recurrent neural networks corresponds well with the dynam-
ics of finite-state automata expressed as grammatical inference problems. They have also been
used to study knowledge representation in recurrent neural networks and it has been demon-
strated through knowledge extraction that RNNs can represent dynamical systems (Omlin and
Giles, 1996; C. W. Omlin and Giles, 1998; Watrous and Kuhn, 1992; Chandra and Omlin, 2006).
There is no feature extraction necessary in order for recurrent neural networks to learn these
languages. Therefore, grammatical inference is used as an appropriate test bed for the inves-
tigation of the performance of learning algorithms for recurrent neural networks. The Tomita
Grammar (Tomita, 1982) has been used as a benchmark in order to evaluate RNN training algo-
rithms and architecture(Castao et al., 1995). Recently, it has been used to show the performance
of real-time recurrent-learning algorithm (RTRL) in training a generalised recurrent network ar-
chitecture (Gabrijel and Dobnikar, 2003) and for optimisation of the RNN architecture during
training by an evolutionary algorithm (Delgado and del Carmen Pegalajar Jimnez, 2005).There
are seven language in the Tomita grammar. This work will use two languages from the Tomita
grammar (Tomita 3 and Tomita 4) given in (Gabrijel and Dobnikar, 2003). It has been shown
that the first-order RNN can learn and generalise the Tomita grammars well in comparison with
second-order RNNs (Miller and Giles, 1993). The goal of this paper is not to demonstrate the
ability of the RNN architecture to represent the Tomita grammar, but to show the comparative
performance of the proposed training paradigm in learning them. A formal definition on deter-
ministic and fuzzy finite-state automata is given as follows.

Definition 1: A deterministic finite-state automata (DFA) is defined as a 5-tuple M = (Q,Σ, δ, q1, F),
where Q is a finite number of states, Σ is the input alphabet, δ is the next state function δ :
Q × Σ → Q which defines which state q′ = δ(q, σ) is reached by an automaton after reading
symbol σ when in state q, q1 ∈ Q is the initial state of the automaton (before reading any string)
and F ⊆ Q is the set of accepting states of the automaton.

The language L(M) accepted by the automaton contains all the strings that bring the automaton
to an accepting state. The languages accepted by DFAs are called regular languages. Figure 3
shows the DFAs selected from the Tomita grammar which will be used for training the recurrent
network in this study.

Definition 2: A fuzzy finite-state automaton M is a 6-tuple,
M = (Σ,Q,R,Z, δ, ω), where Σ and Q are the input alphabet and the set of finite states, respec-
tively, R ∈ Q is the automaton’s fuzzy start state, Z is a finite output alphabet, δ : Σ×Q× [0, 1]→
Q is the fuzzy transition map, and ω : Q→ Z is the output map.



Figure 3: Deterministic Finite-State Automata from the Tomita grammar: Double circles in the figure show accepting
states while rejecting states are shown by single circles. State 1 is the automatons start state.

Figure 4: The fuzzy finite-state automata(a) and its equivalent deterministic acceptor(b) . The accepting states are labeled
with a degree of membership. State 1 is the automatons start state; accepting states are drawn with double circles.



A restricted type of fuzzy automata is considered whose initial state is not fuzzy, and ω is
a function from F to Z, where F is a non-fuzzy set of states, called finite states. Any fuzzy
automaton as described in Definition 1 is equivalent to a restricted fuzzy automaton. The trans-
formation of a fuzzy automaton to its corresponding deterministic acceptor is discussed in (Giles
et al., 1999). Figure 4 shows an example of a FFA with its corresponding deterministic acceptor
which is used for training recurrent neural networks. This FFA has been used by (Blanco et al.,
2001) to show that RNNs can be training by evolutionary algorithms.

5. Simulation and Analysis

This section presents a experimental study of the proposed neural based subpopulation (NSP)
and compares it with CoSyNE discussed in the previous sections. CoSyNE (Gomez et al., 2008)
has shown better performance than ESP and standard neuro-evolution. Therefore, it is suitable
to compare the performance of NSP with CoSyNE. The G3 PCX (Deb et al., 2002) evolutionary
algorithm was used in standard neuro-evolution and all the respective CC frameworks. The
Elman recurrent network (Elman, 1990) with one hidden layer was uses in all experiments. The
dynamics of the change of hidden state neuron activations in the Elman recurrent network is
given by Equation(1).

S i(t) = g

 K∑
k=1

VikS k(t − 1) +

J∑
j=1

Wi jI j(t − 1)

 (1)

where S k(t) and I j(t) represent the output of the context state and input neurons, respectively and
Vik and Wi j represent their corresponding weights. g(.) is a sigmoidal discriminant function.

The G3-PCX algorithm uses a population size of 100, a pool size of 2 kids and a family size
of 2 parents for all the respective CC frameworks. This set-up has been used in (Deb et al., 2002)
and has shown good results for general optimisation problems. The same configuration is also
used in the standard neuro-evolution for evolving the RNN. The subpopulations were initialised
with random real numbers in the range of [-5, 5] in all experiments.

The FFA shown in Figure 4 is used as a benchmark problem. We generate a training dataset
by presenting strings of increasing lengths of 1 to 7 to the FFA and record the corresponding
output for each sample. Note that for every string length, all the possible bits are generated.
Therefore, we have a training set of 255 samples. Similarly, we generate testing dataset with
string lengths of 8 to 14 using the same FFA.

The recurrent neural network topology for the FFA is as follows: 1) one neuron in the input
layer, 2) two output neurons in the output layer representing the 4 fuzzy output states of the
FFA. The RNN is trained until 100 percent of the training sample were correctly classified. The
training would halt if the number of function evaluation exceeds the maximum. The maximum
number of function evaluations for all the experiments in this paper is 50000.



The Tomita grammar was also used in order to show the comparative performance of the
respective encoding schemes. Tomita 3 and Tomita 4 were chosen since they are problems of
average difficulty in the Tomita grammar set. The training data was generated by presenting
250 strings of random length to the respective Tomita grammars given in Figure 3 and Figure 4.
The maximum string length was 30. The testing set contained 5000 strings. The RNN topology
for the Tomita grammar had one neuron in the input layer and two neurons in the output layer
representing the accepting and rejecting states.

The training dataset for Tomita 3 consisted of 53 negative and 197 positive strings while the
testing dataset consisted 1020 negative and 3080 positive strings, respectively. Similarly, the
training dataset for Tomita 4 consisted of 24 negative and 226 positive strings while the testing
dataset consisted 560 negative and 4440 positive strings, respectively.

Note that the results in the paper do not include the number of function evaluations done in
the initialisation state for each CC framework.

5.1. Number of generations in subpopulation

In NSP CC framework shown in Algorithm 1, each subpopulation is evolved for a fixed num-
ber of generations. We proceed our study after determining the optimal number of generations
needed for the subpopulation. Note that all subpopulations are meant to evolve for the same
number of n generations which must be fixed beforehand.

The FFA used in this experiment has 7 states and in order to make the problem more difficult,
we used only 3 neurons in the hidden layer of the RNN to represent 7 states.

The results are given in Table 1 which reports the number of function evaluations (FuncEval)
and the number of successful runs (Success) out 50 runs. The number of generations used for all
subpopulations is also shown. Note that in the NSP column; the rows with 1 and 5 generations
show similar results in terms of function evaluations. We choose 1 generation as the optimal as it
has a greater number of successful runs. The results show that the optimal performance is given
when the CC framework uses 1 generation of fixed evolution for all subpopulations for NSP and
CoSyNE. This is shown in bold in the first entry of Table 1 which reports the least number of
function evaluations with the best number of successful runs.

The results in Table 1 reveal that each subpopulation should be evolved for one generation
only for the entire Cycle.The neural network training paradigm is a non-separable optimisation
problem. The output of the neurons in the third layer are linked to the weights in the second layer
and also dependant on the weights in the first layer. Therefore, a deep greedy search for a large
number of generations is not helpful for each subcomponent. This is shown in Table 1 which
reports that only 1 generation used for each subpopulation is enough to provide good results.



Generations NSP CoSyNE
FuncEval Sucess FuncEval Sucess

1 5013 3662 48 8429 5030 49
3 4664 1564 46 9720 4718 48
5 5118 2434 43 12849 8263 45
7 6454 6915 48 18983 8828 47
9 6342 7479 47 17190 8057 46

11 6342 7479 47 21183 8963 44
13 6742 8193 39 20904 4264 46
15 6240 6606 46 22185 6899 46

Table 1: Results determine the optimal number of generations for all subpopulations in the NSP CC framework. The
optimal run is determined by the least number of function evaluations (FuncEval) and greater number of successful
(Success) runs in 50 experiments. Note that results from the unsuccessful runs are not included in the mean and the
standard deviation. All results included in the table give a 100 percent training and generalisation performance.The
best results are shown in bold. Note that the mean is reported and the number in the subscript represents the standard
deviation.

5.2. Comparison with other CC frameworks

In this section, we compare the performance of the NSP CC framework with CoSyNE. Note
that the original CoSyNE employed an older genetic algorithm in their subpopulation. In our
implementation, the G3-PCX is used. We use 1 generation for all subpopulations in the NSP and
CoSyNE CC frameworks taken from the results in Table 1.

At this stage, our experiments are not concerned in evolving the architecture while training
the network. We are only concerned in finding out on the performance of the respective CC
paradigms in training the weights and bias of the network. The CC framework has been used for
evolving the topology of the network during learning in the past. The ESP for instance uses the
“Burst Mutation” topology evolution scheme which adapts the number of hidden neurons with
respect to overall network error observed over a fixed number of fitness evaluations. The imple-
mentation of “Burst Mutation” as done in ESP can be further done for the NSP CC framework
in future experiments.

The main goal of this experiment was to observe the performance of the respective paradigms
in relation to a particular topology; i.e. fixed number of hidden neurons. Note that the number
of hidden neurons directly influences the difficulty of the learning problem. It is more difficult to
learn the problem if enough neurons are not present in the hidden layer.

Table 2 shows the relationship between the number number of function evaluations and the
number of hidden neurons used in NSP and CoSyNE. The RNN topology has one input neuron
and two output neurons. The results show that the number of function evaluations given in terms
of population size P increases as the size of the networks increases in terms of “Hidden” neurons
which directly influences the number of subcomponents represented by the subpopulations. Note
that the NSP uses fewer number of function evaluations shown in Table 2 as it has lesser number



of subpopulations when compared to CoSyNE. Therefore, the initialisation of subpopulations in
evaluating different subcomponent encoding schemes for the cooperative coevolution framework
is an important measure. Note that the size of each subpopulation in CoSyNE is 1.

The comparative results during evolution are given in Table 3 where the attribute “Hidden”
represents the number of hidden neurons. These results do not include the number of function
evaluation during the initialisation phase given in Table 2 for each CC framework.

The best performance of individual experiments in Table 3 are shown in bold. They show the
mean and standard deviation of the least number of function evaluations with respect to the most
number of successful runs in 50 experiments. A run was considered successful if the network
could learn 100 percent of the training data before the maximum number of function evaluation
is reached.

Hidden NSP CoSyNE
3 8P 23P
4 10P 34P
5 12P 47P
6 14P 62P
7 16P 79P

Table 2: A comparison of the NSP and CoSyNE based on the number of function evaluation required during initialisation.
This is for a RNN with one input neuron and two output neurons which is used in all our experiments. P is the size of the
population which is 100 in our experiments.

The comparative performance given in Table 3 shows that the proposed NSP CC framework
achieved better performance than the CoSyNE for 3-6 neurons in the hidden layer for the FFA
problem. The CoSyNE shows good performance for 7 neurons in the hidden layer and the NSP
scheme outperforms the rest of the experiments. The results for Tomita 3 also show that the NSP
has performed better or similar for the given number of neurons in the hidden layer. The RNN
training in Tomita 4 has also shown that the NSP has performed better than CoSyNE. Note that
the best or acceptable results are shown in bold. Note that the number of function evaluation in
the initialisation stage has not been included for both paradigms. If the results in Table 2 are
included, the NSP will further outperform the CoSyNE as it solves the same task with smaller
number of subcomponents. The results show that the NSP encoding suits grammatical inference
problems where one neuron is used in the input layer. Note that NSP has been effective in giving
the best performance of the most difficult situation, i.e the RNN had only 3 neurons in the hidden
layer for all three problems.

5.3. Learning Long Term Dependency

A major advantage of neuro-evolution is their ability to optimise the recurrent network with-
out acquiring gradient information as done with back-propagation through-time (BPTT). Stan-



NSP CoSyNE
Problem Hidden FuncEval Success FuncEval Success

FFA 3 4336 1574 47 8868 6852 46
4 5199 5944 50 6307 3557 48
5 3909 1038 50 5762 2488 50
6 4431 1866 50 6179 2862 49
7 6952 3201 50 6152 3397 50

Tomita 3 3 7252 4856 50 10869 6929 46
4 7362 2784 49 7306 2986 49
5 6062 2458 49 7484 6098 48
6 6632 1877 50 6764 2030 49
7 9206 4074 50 7615 1714 45

Tomita 4 3 2760 840 50 5892 5156 50
4 3126 1327 50 4254 1508 49
5 3120 1117 49 6446 4811 50
6 4756 3419 50 8846 5477 50
7 6589 3348 50 8219 5515 50

Table 3: A comparison of the NSP CC framework with CoSyNE. A total of 50 experiments with different random
initialisation were done.The best results are shown in bold.

dard RNN’s have major limitations in learning long term dependency problems, as outlined by
(Bengio et al., 1994; Frasconi et al., 1993) which suggest that simple RNN would have diffi-
culty to learn time lags greater than 10. It was noted that the error information is not-useful
for weight update in long term dependency problems. The strength of cooperative coevolution is
that they provide a mechanism for retaining the knowledge gained in state neuron from crossover
operator, and at the same time, it allows the RNN to learn a particular problem without the back-
propagation of errors.

In order to show the contribution of CC in learning long term lags, we generate training and
testing data of 500 and 5000 samples, respectively. We test the RNN to learn from random string
lengths of maximum length of: 100, 200, 300, 400 and 500, respectively. We train the RNN
on strings generated from the FFA in Figure 4. The results in Table 4 show that the NSP CC
paradigm has demonstrated to learn long-term dependency problems in reasonable time (FuncE-
val) and also provides good generalisation performance (Generalise).

5.4. Discussion

Note that the CC framework has been used for optimisation of dependant variables (non-
separable problems) and independent or separable problems, respectively. The use of the CC
framework for the non-separable problem was altered in order to improve its performance on
non-separable problems(Yang et al., 2008). The CC framework performs better in separable
problems as the general framework employs an independent subcomponent greedy search given



Length. FuncEval Generalise (%) Success/10
100 7407 1461 99.99 0.01 10
200 7008 1960 99.97 0.03 9
300 5778 1669 99.83 0.07 8
400 6055 1760 99.95 0.05 8
500 7078 1560 99.85 0.05 9

Table 4: Results showing the use of NSP CC paradigm in learning long-term dependency problem of respective string
lengths. Note that all successful runs gave a 100 percent training and generalisation performance.

a larger number of generations for each subpopulation.
The results in Table 1 reveal that optimal results are achieved when each subpopulation is

evolved for one generation only for the entire Cycle. This is because the neural network training
is a non-separable problem. Therefore, a deep greedy search for a large number of generations
is not helpful for each subcomponent as shown in the results.

The comparative performance given in Table 3 shows that the proposed NSP CC framework
shows better performance than CoSyNE. Note that these results are specific for grammatical
inference problems where one neuron is used in the input later for string input. The NSP encoding
schemes has shown to have the relevant ability to effectively form the required states in the RNN
during the learning process. The major advantage of the NSP is that is can represent the same
problem in smaller number of subcomponents than the CoSyNE and at the same time it provides
similar or better training performance. This advantage further enables the NSP to have fewer
function evaluations in the initialisation phase due to lesser subcomponents when compared to
CoSyNE. This is verified by the results in Table 2.

Furthermore, the general CC RNN framework has shown to learn long term dependency
problems according to the results in Table 4. This success is due to the non-gradient require-
ment of neuro-evolution in optimising the weights of the network. Therefore, the length of the
strings or time lags does not matter to neuro-evolution. Furthermore, the success of this experi-
ment shows that standard RNN’s without and enhancements in their architecture have the ability
to learn long term lags. Their failure to do so in the past was due to gradient based graining
algorithms and not to their architectural properties.

6. Conclusions and Future Work

The NSP CC framework has shown better properties than their previous counterparts for
grammatical inference problems in general. A major advantage of the NSP over CoSyNE is that
it requires a smaller number of function evaluations during the initialisation stage. Our results
show, that NSP, can achieve similar of better results in grammatical inference problems although
it has a lower level of modularity than CoSyNE.



The general paradigm has been successful for learning long term dependency problems and
shows that standard RNN’s have the architectural capability of learning problems of this nature.

Future work can examine the implementation of the NSP CC paradigm in evolving the
weights and the network architecture at the same time during training. A paradigm where the
different encoding schemes can be combined during training can also be explored. This would
be implemented by increasing the modularity by increasing the number of subcomponents as
the algorithm is progressing towards the final solution. Moreover, the need to reduce function
evaluation by some means of fitness sharing among subpopulations can also be examined.
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