Featherweight Ownership and Immutability Generic Java -
Technical Report

Yoav Zibin yoav.zibin@gmail.com

1 Introduction

This technical report contains proofs that were omitted from our paper entitled “Ownership and Immutability in
Generic Java”. Please read the paper first, and only then proceed to reading this technical report, because this
technical report is not self contained. We only include a summary of the syntax (Fig. 1), subtyping rules (Fig. 2),
expression typing rules (Fig. 3), and reduction rules (Fig. 4).

We begin with some definitions. A rule has the form R where A is the assumption and B is the conclusion.

If A is empty, we also call the rule an axiom. An instance of a rule/assumption/conclusion is any substitution of
variables in the rule. A derivation sequence is a sequence of elements (each element is an instance of a conclusion),
where the assumptions needed for each element appear as previous elements in the sequence.

An expression/type is called closed if it does not contain any free variables (such as wildcards, this, I, 0, or
This).

The length of a sequence % is written #(%),

To define fiype (e, £, T) and mrype (e, £, T), we use the auxiliary function substitute:

1 e=1
) error O(T) = This and z = error
substitute(e,C<MO, IP>,T) = . z= 4 This e=this
[z/This,M0/0,IP/I|T otherwise)
error otherwise

Formally, ftype (e, £,C<MO, IP>) = substitute(e,C<MO, IP>, fiype(£,C)), and similarly for mrype.
Given an expression e, we define K(e) to be the set of all ongoing constructors in e, i.e., all locations in
subexpressions e; return 1. Formally,

K(e")U{l} ife=(e’;return 1)

K(e") ife=(e".1)
K(e)=(K(e")UK(e") ife=(e’.f=e")

UK (e') ife = (new N(e/))

K(e")UK() ife=(e".m(e)))

A heap H is well-typed for K if it satisfies two conditions: (i) Each field location is a subtype (using K,['x)
of the declared field type, i.e., for every location 1, where H[1] = c<N0,NI>(¥) and fields(c) = £, and for every
field f;, we have that either v; = null or K,I'y - Ty (v;) < fiype(1, £;,C<NO,NT>). (ii) There is a linear order <7
over dom (H) such that for every location 1, 0y(1) = World or 8y(1) <7 1, and Iy (1) = Mutable or kg (1) <7 1.

2 Subtyping

First we prove some lemmas regarding subtyping.

Lemma 2.1. IfK,T't c<Mo, 1> < ¢’ <MO’, TP’ >, then

(i) MO’ # ? = MO = MO/,

(ii) (1P’ # Immut) or (IP’ = Immut] and (1 Ag M0’ or 1 ¢ K)) = K,I'1p < 1P’,
(iii) C is a subclass of C’,

(iv) K,I' FD<Mo, 1P> < D<MO’ , IP' > for any class D,

(v) K,I'-D<1,1p> < D<1, 1P’ > for any class D and MO’ =g 1.

FT ::= C<FO, IP> Field (and method return) Type.

T ::= C<MO, IP> Type.

N ::= C<NO,NI> Non-variable type (for objects).

NO :=World| 1 Non-variable Owner parameter (for objects).
FO::=1NO | This | 0 Field Owner parameter.

MO :=FO | ? Method Owner parameter (including generic wildcard).
NI ::=Mutable | | Immut] Non-variable Immutability parameter (for objects).
VI =NI| Immut | I Variable Immutability for new.

IP ::= ReadOnly | VI Immutability Parameter.

IG ::=ReadOnly | Immut | Mutable | Raw Immutability method Guard.

M::=<I extends IG>? FTm(T X) { returne; } Method declaration.

L::=class C<0,I> extends C'<0,I>{ FT f;M } cLass declaration.

vi=null |1 Values: either null or a location 1.

ell=v | X | e.f | ef=e¢e | e.m(e) | new C<FO,VI> (€) | e ;return 1 Expressions.

Figure 1: FOIGJ Syntax. The terminals are null, owner parameters (0, This, World), and immutability parame-
ters (I, ReadOnly, Mutable, Raw, Immut). Given a location 1, Immut] represents an immutable object with cooker 1.
The program source code cannot contain the grayed elements (locations are only created during execution/reduc-
tion in R-New of Fig. 4).

. o KTFs<t KTIF1<U class C<0,I> extends C'<0,I> “
K,T'F1<I(1) b KTkTr<T 52 KTks<u K,T I c<mMo, 1P> < ¢'<MO, IP> &9
S5 S6 7
K,I'FMutable < Raw &) K, I+ Raw < ReadOnly (59 K, I't+ Immut < ReadOnly 7
K,Th1p<1p s s 1€k S0
K, T c<Mo, 1P> < C<MO, IP > %) K, T'F c<vo,1P> < C<2,IP> 59 K, T'F Tmmut) < Raw (10
L ¢ K (s11) 1 ¢ K (812) 1 <o NO (S13)
K,I't Immut] < Immut K,I't ITmmut < Immutj K,I'F c<No, Immut> < C<NO, Immut] >

Figure 2: FOIGJ Subtyping Rules (K,I"F T < 77). Rule s13 shows the connection between cooker 1 and owner NO.

Proof. In this proof we omit K,I" - because the context K, I is clear. First note that due to s13, it is not the case
that 1p < 1p’. Therefore, we need parts (ii) and (iv)—(v), which connects 1p and 1P’ in other ways.

(i) All subtyping rules maintain the same owner parameter, except s9, thus if M0’ # 2, then the owner must be
preserved.

(ii) All subtyping rules maintain that 1p < 1p’ except s13. If 1 Ag MO’ then we cannot use s13. If 1 & K then
(from s12) Immut < 1pP’, and if the proof used s13 then c<M0, IP> < C<MO, Immut>, thus IP < Immut < IP’.

(iii) All rules maintain the same class, and s4 permits subclassing.

(iv) We create a new derivation sequence where instances of rule s4 are deleted, and all occurrences of C are
replaced with D.

(v) Similarly to part (iv), we delete s4 and s9, replace ¢ with D, and replace M0 and M0’ with 1. The only rule
where the owner matters is S13:

1/ <¢g MO’
K,I'Fc<vo’, Immut> < C<MO’, Immut 1>

and we have that M0’ <g 1, therefore 1’ <g 1. O

Lemma 2.2. If K,I" F c<Mo, 1p> < C’'<MO, 1P’ >, then for any class D and any owner parameter W such that w =
0 | World, we have that
K, Tk p<mo/olw, [1p/1]2> < D<[MO/O]wW, [IP" /1]Z>.

Proof. 1f 2 # 1 then obviously D<[M0/0]w, 2> = D<[M0/0]w, 2>. If 2 = T then we need to prove that K, T p<[Mo/0]w, 17> <
D<[MO/0]w, 1P’ >. Because MO <g World and W = 0 | World, then MO <g [M0O/0]W. Therefore, we can apply Lem. 2.1
part (v). O]

Ku{i},Tkre:T . mtype(L,build,c<Fo,vi>)=T—U0 K, ITFe:T7 KITHFT <T
K,TFe;return 1:1(1) (TRETURN) K,T'F new C<FO,VI> (&) : C<FO,VI>

(T-NEW)

K, TFe:c<mo,1p> fiype(e,£,C<MO, IP>) =T
KTIkef:T

(T-VAR) (T-NULL) (T-FIELD-ACCESS)

K,TFx:T(x) K., 'tnull:T
KTtFesf:T KTFe :rm KTF17<T K[JTI'Fe:cwo,1p>
(T-LOCATION) K, Tk 1P <Raw isTransitive(e,I",C<MO, IP>) MO £ ? (T-FIELD-ASSIGNMENT)
KTFef=e :1

K, TH1:T(1)

K, T'Fegp:c<Mo,1P> mtype(ep,m,C<MO,IP>) =T — 1" K ,T'Fe:T7 K, I'FT <T mguard(n,C) =16
K, TF1p<1IG 1G6=Raw= isTransitive(eg,l’,C<MO, IP>) mtype(n,C)=U—Vv O(T;) =2= O(U;) =? (T-INVOKE)
K, I'Feg.m(e) : 1"

Figure 3: FOIGJ Expression Typing Rules (K,I' e : T).

1 ¢dom(H) T Immut] if VI = Immut or (VI = Immutc and ¢ € K)
om =
VI otherwise (R-NEW)

Kt H,new C<NO,VI>(¥) — H[1 — C<NO,VI'>(null)],1.build (¥);return 1

KU{1}FH,e - H' e’ - H[1] = C<NO,NI> (V) fields(C) =T
K&+ H,e;return 1 — H' e’ ;return 1 ®-ch KFH,1.f; = H,v;

(R-FIELD-ACCESS)

H[1] = C<NO,NI> (V) fields(C) =F NI =Mutableorky(l) €K v =nullorl <g0y(v)
KFH,1.£f;=v — H[1 — c<vo, NI> ([v/ /vi]9) |, v

(R-FIELD-ASSIGNMENT)

H[1] = C<NO,NI>(...) mbody(m,C) =%.&’
K+FH,1.n(% — H,[v/%,1/this,1/This,N0/0,NT/1]e’

(R-RETURN) (R-INVOKE)

KFH,v;return 1 - H,1

Figure 4: FOIGJ Reduction Rules (K - H,e — H',¢’), excluding all congruence rules except R-cl.

Lemma 2.3. [fK, T c<Mo, 1P> < ¢’ <MO, IP' >, both types are closed, isTransitive(L,T',c’ <M0, 1P’ >) and 1P’ < Raw,
then 1P = 1P’.

Proof. If 1’ = Mutable then obviously Ip = Mutable. Otherwise IP’ = Immut; and 1 € K (because IP’ < Raw).
From definition of isTransitive(L,T",C’ <MO, 1P’ >), 1 £g M0, thus s13 cannot be applied, and that is the only applicable
rule where Immut] appears as a supertype (because si12 cannot be applied since 1 € K), thus 1p = 1p’. O

The next lemma shows that if ¢’ was reduced to e (therefore the type of e is a subtype of ¢’), then e can call
any method that e’ could. Phrased differently, if e’ satisfies a method’s guard then e would as well.

Lemma 2.4. [fK,I' c<Mo, 1p> < C’<MO, 1P’ >, and both types are closed, then

(i) K,I'- 1p" <Mutable = K,I'F 1P < Mutable,

(ii) K,'F 1P’ < Immut = K,I'F 1P < Immut,

(iii) isTransitive(1, T",c’ <M0, 1P’ >) and K,T' F 12" < Raw = K,T'F 1P < Raw,

(iv) if 16 = Raw = isTransitive(_L,T",C’ <M0, TP’ >), where IG = ReadOnly | Immut | Mutable | Raw, then K,I'F 1P’ <
16=K,I'F1pr <16

Proof. (i) Trivial because we must have that 1P’ = Ip = Mutable or (IP’ = 1P =T and I : Mutable € I).

(ii) If 1P’ # Immut then from Lem. 2.1 part (ii), we have K,I"F 1p < 1P/, and from transitivity 1p < 1p’ <
Immut = IP < Immut. Otherwise, IP’ = Immut1, and because TP’ < Immut, from s11 we must have that 1 ¢ K, and
from Lem. 2.1 part (ii), we proved K,T" 1p < 1P’

(iii) From Lem. 2.3 we know that 1p = 1P’ thus 1P < Raw.

(iv) Stems from parts (vi)—(viii) and the fact that for any 1P < ReadOnly. O]

If the cooker is not inside the owner, then subtypes are not over-approximation (i.e., they preserve the same
cooker).

Lemma 2.5. IfK,I' c<M0, IP> < C’<NO, Immut 1>, 1 Ag NO, and 1 € K, then 1P = Immut].

Proof. The only subtyping rule where the supertype has a cooker Immut; are rules si2 and s13, and they can’t
be applied because we assumed that 1 £g NO and 1 ¢ K. Thus only the reflexivity rule can be applied. Note
that rule K,I' - 1 <T'(1) cannot be applied because we assume that I'(1) is a method guard 16, and 16 # Immut)
because according to our syntax

IG = ReadOnly | Immut \ Mutable | Raw.

Next we prove a substitution lemma: substituting I, 0, or This, does not change the subtype relation.
Lemma 2.6. If K,T'F 1 < 1 then for every 1p,M0,M0" such that 1p < T'(1), we have that
K, T+ [1p/1,M0/0,M0" /This](T < T').

Proof. Let S denote the derivation sequence for K,I' T < 1/, and S; for 1P < I'(1). Let S’ be a new sequence
in which we do the substitution [1p/1,M0/0,M0’ /This| on every element in S, and let S” be the sequence starting
with Sy followed by §’. The last elementin Sis K,I'T < T/, therefore the last element in §’ and S” is what we need
to prove: K,I' - [1p/1,M0/0,M0" /This](T < T’). Next we show that S” is a legal derivation sequence by showing
that each element is a legal consequence of previous elements (by induction on the size of S’). Elements from S;
are of course legal. By induction we proved the first n — 1 elements are legal, and we now prove that element # is
legal (i.e., a legal consequence of previous elements). Let the corresponding element in S be U < U/, and element n
is [1p/1,M0/0,M0" /This](U < U'). (i) If the element is an instance of rules s5—s7 or s10-s12, then substitution did not
change the element. (ii) If the element is an instance of rule s1 then we replaced it with [1p/1](1 <T(1)) = 1P <
I'(1), which is the last element of S;. (iii) If the element is an instance of any other rule, then a simple application
of the induction hypothesis proves the element is legal. O

We now prove that substitution preserves subtyping.

Lemma 2.7. I[f K,.T'F1 <71, T and 7 are closed, then for (¢ = 1 and O(T ") # This) or e =1, O(T) =g 1, we
have that:

(i) K,T &= substitute(e,T,T”) < substitute(e, T’ T7),

(ii) K, T+ fiype(e, £,T) < fiype(e, £,1'),

(iii) let mtype(e, £,T) =T — Tq and fiype(e, £,1') =T — 1(, then K,T'+1; < T} for i =0,... . #(T).

Proof. From Lem. 2.1 part (i) and the fact that T and 1’ are closed (no wildcards), then O(T) = O(T'). Let T =
C<MO, IP> and T/ = C’ <MO, IP’ >.

Recall that fiype (e, £, C<MO, IP>) = substitute(e,C<MO, IP>, ftype(£,C)), and similarly for mtype. Therefore, parts
(i) and (iii) follow from part (i), and the fact that fiype(£,C) = fiype(£,c’) and mtype(m,C) = mtype(m,C’) (i.e., sub-
classing cannot change method signature or field type).

We now prove part (i). From the definition of substitute, and because (e = L and O(T ") # This) ore = 1, we
have that substitute(e,T,T”) = [e/This,M0/0, 1P /I]T".

Let T” = D<MO", IP">. Because K,I' - T < 1/, from Lem. 2.1 part (v),

K, TFp<1’,1p> < D<1’,IP'> if MO =g 1’ (1)

(note that 1’ can be MO or World). We need to prove that K, It substitute(e,T,T”) < substitute(e, T, 77), i.e., K,T' I
[e/This,M0/0,1P/I|T” < [e/This,M0/0, IR’ /I]T".

If 1" # I then from reflexivity K,I' - [e/This,M0/0]T” < [e/This,M0/0]T”.

Consider now the case that 1p" = 1. We need to show that

K, p<[e/This,M0/0]MO", 1P> < D<[e/This,M0/0]MO", TP’ > (2)
Because MO" = 0 | World | This and e = L or e = 1, we have that
MO =g [e/This,Mo/0]MO" (3)

From (1) and (3), we proved (2).

Lemma 2.8. [fK,I't c<vo, 1> < ¢’ <MO, TP’ >, and both types are closed, and

mtype(L,m,Cc’<M0, IP'>) =T" — U
mtype(L,m,c<M0, IP>) =T — U
mguard(m,C') = 16

KTk <16

IG = Raw = isTransitive(L,T",C’ <M0, TP’ >)

then (i) K, I'-1; <1';and K,T' - 17; <71}, and (ii) for any type ", if K, ' 1" < 1’; then K,I' 1" < T;.

Proof. Part (i) implies that T’ ; and T; are equivalent. Part (ii) follows directly from part (i) using transitivity rule s3.

Let mtype(m,C) = mtype(m,C') =FT — V, FT; = D<FO, IP">. Note that T; = [M0/0, 1P’ /1]FT; and T; = [MO/0, TP /I]FT;.
Therefore, if 1p" # I then T’; = T;, qed.

Thus, 1p" = 1, T'; = D<MO", IP’'>, T; = D<MO", IP>, where MO =g MO" (because FO is either 0 or World, but it
cannot be This). From Lem. 2.7 part (iii), T; < 17;.

If 16 = Readonly, then FOIGJ ensures that I does not appear in method parameters, i.e., we must have

that 1P" # 1. If 16 = Mutable, then IP’ = IP = Mutable (because 1P’ < 1G), thus T’; = T;,. If 16 = Immut,
then 1P’ < Immut (because 1P’ < 1G), thus from Lem. 2.4 part (ii), 1P < Immut, i.e., IP < 1P’ < 1P. If 1G = Raw,
then isTransitive(L,T,c’ <M0, 1P’ >), and 1P’ < Raw, thus from Lem. 2.3 we have that 1p’ = IP. O

3 Typing
We next prove that a closed expression has a closed type.
Lemma 3.1. IfK,T'Fe”: 7" and ¢” is closed and e” # null, then T” is closed.

Proof. Note that null can have any type T” (even an open type) according to rule T-nurt, therefore we require
that e” # null.
We prove by induction on the structure of e”.

Value e” = v Because e” # null, then v = 1, and the type of a location is always closed C<NO, NT>.
Value e” = e; return 1 Similarly, the type of a location is always closed.
Method parameter e” = x We assumed e” is closed, thus it does not contain parameters.

Object creation e” = new C<FO,VI>(e) From T-New, T” = C<F0,VI>, and because e” is closed then T must be
closed.

Field access e” = e.f Because K,I'-¢e” : 77, from T-FieLp-Access we have that T” = T and
K, T'Fe:c<Mo,1P> fiype(e,£,C<MO, IP>) =T

By induction, c<Mo0, P> is closed. Therefore T does not contains 0 nor I. Next we show it does not contain
This. Because ftype did not return error, then either the field did not contain This, or it was substituted.
Because e # this then e = 1, and This was substituted with 1.

Field assignment e” = e.£f = e’ Because K,I' - e” : T”, from T-FieLp-Assianment we have that 77 = 1/ and K, T -
e’ : 7’ By induction, T’ is closed.

Method invocation e” = ej.m(e) Because K,I'Fe”: T, from T-Invoxe we have that
K., TFeg:c<Mo,1P> mtype(eg,m,C<MO, IP>) =T — T"

By induction c<Mo, 1P> is closed, and similar reasoning to field access concludes that T" is closed.

4 Heap

We now prove that if the heap is well-typed for K, then it is well-typed for any subset of K.
Lemma 4.1. Given a heap H that is well-typed for K, then for any S C K, the heap H is well-typed for S.

Proof. This is not trivial, because decreasing K changes the subtyping relation by turning raw objects into im-
mutable. Recall that a well-typed heap H satisfies: (i) there is a linear order <7 over dom (H) such that for every
location 1, (1) = world or 8(1) <7 1, and I(1) = mutable or k(1) <7 1, and (ii) each non-null field location is a
subtype of the declared field type.

First, note that the same linear order <7 satisfies (i) for H is well-typed for S. Suppose to the contrary that
H is not well-typed for S, i.e., there is some field location 1.f of type T that points to an object o of type T",
and S, 'y t/ 7" < 1. Because H is well-typed for K, we have that K,I'y - " < 1. Consider the derivation
sequence for K,I'y - 7" < 1. We will take this sequence and transform it into a proof that S,I'y F " < T, which
will lead to contradiction. Specifically, we replace every usage of rule si0 (K,I'y F Immut < Raw) with a proof
that K,I'y I Immut; < ReadOnly (using either sio or si1). We first claim that this is a valid sequence in S,I'y:
rules s1—s9 and s13 do not use K and therefore are identical, rule si0 was removed, and rules s11—s12 is valid
because S C K. We now claim that these sequence proves that S, 'y - 1" < T, i.e., that each element in the sequence
has previous elements that fulfill the assumptions of the rule. Consider an element we removed Immut; < Raw. Note
that Raw does not appear in T = C<MO, IP> because it can only appear in a method guard. The only rule where Raw
appears as a subtype is s6, and by using transitivity (s3), we have that the only conclusion is that Immut ;| < ReadOnly,
and we added that conclusion. O

Next we prove that owner-as-dominator holds in any well-typed heap.

Lemma 4.2. If heap H is well-typed for K, then for every location 1 € dom (H), 1 — C<NO,NI> (v), then either v; =
null or 1 =g 0(v;).

Proof. Recall that heap H is well-typed for K if it satisfies two conditions: (i) Each field location is a subtype
(using K, T'y) of the declared field type, i.e., for every location 1, where H[1] = c<NO, NI> (¥) and fields(C) = £, and
for every field £;, we have that either v; = null or K,I'y - T'y(v;) < ftype(1, £;,C<N0,NI>). (ii) There is a linear
order =T over dom (H) such that for every location 1, 8y (1) = world or (1) <T 1, and Iy (1) = Mmutable or
ke (1) <7 1. From part (ii), we have that the relation <g is a tree order.

Consider some v; # null, and we will prove that 1 <g 0(v;). Let

Hl[v;]

fields(C)

frype(£i,C)

ftype(1, £;,C<NO, NI>)

<NO',NI'>(...)

cr
£
= C"<FO, IP>
="

<NO",NI">

We need to prove that 1 <¢ NO’. Because the heap is well-typed for K, then K,I'y F ¢’ <N0’ ,NI’> < C"<NO",NI">.
From Lem. 2.1 part (i), we have that N0’ = No". According to the syntax, FO = World | This | 0 (the owner of a field
cannot be 1 of course because the class declarations cannot use locations). By definition of fype(1, £;,C<NO, NI>),
then NO" = world | 1 | 8(1), respectively. Thus we proved that

NO’ =NO" =TWorld |1]6(1)

Therefore, because 1 <g World and 1 <g 1 and 1 <g 0(1), we proved that 1 <g NO'. O

5 Reduction

We consider only expressions that when reduced using the erased operational semantics, do not result in null-
pointer exceptions. Null-pointer exceptions can be handled by adding special reduction rules that return error,
but we prefer to leave the reduction process “stuck”.

First we prove that a closed expression reduces in one step to another closed expression.

Lemma 5.1. If e is closed and K - H,e — H' &', then &' is closed.

Proof. Rules R-NEw, R-FiELD-Acckss, and R-FiELp-assioament result in a value, which is closed. Rule r-invoxke results
in an expression, but all free variables %,this, This,0, I are substituted with locations, Immut, Immuty, Or Mutable.
The proof of the congruence rules uses the induction hypothesis. [

Lemma 5.2. If K+ H,e — H”,e” then (i) Ty C Ty, (ii) K,Ty e’ : 7' = K, Tpp €'+ 7, and (iii) K,Ty F 1T <
T'=KIgykr<T1.

Proof. Trivial. (i) None of the reduction rules removes locations or changes the type of a location, therefore H”
only includes additional locations. Parts (ii) and (iii) are trivial from (i). O]

Theorem 5.3. (Progress and Preservation) For every closed expression e # v, K, and H, if K,I'y e : Tand H is
well-typed for K\ UK (e), then there exists H' ;' 7" such that (i) K+ H,e — H',&/, (ii) K,.Upp ¢’ : T/, and K, Ty +
1 <1, (iii) H' is well-typed for KUK (&), (iv) T, T’, and & are closed.

Proof. Part (iv) is proved from Lem. 5.1 (we know that ¢ is closed) and from Lem. 3.1 (we know that 7" and T are
closed).

We assume that there are no null-pointer exceptions, i.e., that for field access, assignment and method invoca-
tion, the receiver is never null.

It is easy to examine the reduction rules and verify there is always at most one applicable reduction rule.
We will split the proof into three stages: (i) progress: there is exactly one applicable reduction rule (Lem. 5.4),
(i) preservation: K, Ty & :Tand K, T T < 17 (Lem. 5.6), and (iii) H' is well-typed for KUK (e) (Lem. 5.7).

O

Lemma 5.4. (Progress) For every closed expression e” # v, H, and K, if K,I'y - ¢e” : T” and and H is well-typed
for KUK(e”), then there exists H',& such that K- H,e” — H' 2.

Proof. We prove by examining the structure of ¢”. Because it is closed and not a value, then according to our
syntax, it must have one of the following forms:

e.f|e.f=¢e]|em(g) | new C<FO,VI>(e) | e;return 1

If the subexpressions are not all values, then we can always apply (exactly) one of the congruence rules. For
example, if e” = (e;return 1) and e is not a value, then by induction we can apply Rr-ci.
Therefore, ¢” has one of the following forms:

v.f | v.f =v | v.n(¥) | new C<FO,VI>(¥) | v;return 1

Because we assumed we do not have null pointer exceptions (in field access, assignment or method invocation),
then e” has one of the following forms:

1.f | lf=v | 1l.m (V) | new C<FO,VI> (V) | v;return 1

We will next examine the matching five reduction rules (R-FiELp-AccEss, R-FIELD-ASSIGNMENT, R-INVOKE, R-NEW, R-RETURN)
and show that their assumptions hold.

Rule R-FieLp-AccEss B
H[1] = C<NO,NI> (V) fields(C) =
KFH,1.f;— H,v;

We assumed that K,I'y F 1.f; : T, therefore from T-FieLp-AccEss:
K, Tyt 1:c<M0,1P> fiype(1,£;,C<MO, IP>) = T”
From the definitions of fiype and fields, we know that £; € fields(C).
Rule R-FIELD-ASSIGNMENT

H[1] = C<NO,NI>(V) fields(c) =% NI =Mutableork(l) €K v =nullorl=g0(v)

KFH1.£; =+ — H[1— c<no, NI> ([v /v]%) |, v/

Because H is well-typed for K, then from Lem. 4.2, we have that v/ = null or 1 <g 8(v').

We assumed that K, Ty F 1.£; = v/ : T/, therefore from T-FieLp-AssIGNMENT:
KTIyki1f:1 K,I'gk1l:c<no, N> K, I'yghk NI <Raw

Similarly to field access, because K,I'y I 1.£; : T, then £; € fields(C). From our syntax NI is either Mutable or
Immuty,. We want to show that NI = Mutable or k(1) € K. Therefore we need to show that if NI = Immuty/
then 1’ € K. Because K,Ty I NI < Raw, it must be from s10 and therefore 1’ € K.

Rule R-InvokE
H[1] = C<NO,NI>(...) mbody(m,C)=x%.e/

KFH,1.n(% — H,[¥/%,1/this,1/This,N0/0,N1/1]e’

We assumed that K,I'y - 1.m (%) : T”, therefore from T-Invoke we know that
mtype(1,m,C<NO,NI>) =T — T"
Therefore mbody(m,C) is defined.
Rule R-New

Immut if VI = Immut or (VI = Immute and c € K .
! _ (c ZK) H' = H[1 — c<no, V1’ > (null)]
VI otherwise

1¢dom(H) vi'= {

K F H,new C<NO,VI>(¥) — H',1.build (¥); return 1
We assumed that K,I'y F new C<NO,VI> (V) : T”, therefore from T-New we know that
mtype(L,build,C<NO,NI>) =T — U
Thus there is a constructor with #(v) of arguments.
Rule r-rerurn Trivial because there are no assumptions for v; return 1

O

We prove preservation (Lem. 5.6) for method invocation by using Lem. 5.5 that uses induction on the size of
the method body.

Lemma 5.5. (Invocation Substitution) For every heap H that is well-typed for K, location 1 € dom(H), values ¥,
types U, and guard 1G, where

HI1] = c<vo, NI>
K., Tybknt<ic
KTytv:u
K, Ty U <[1/This,NI/1,N0/0]U

“)

Then, for any ¢” such that 0,T't-¢” : 5, T = {1:16,%:U,this : C<0, 1>}, then
K,Ty - [1/This,NI/1,N0/0,%/%,1/this]e”: s
K, Tyt s <[1/This,NI/1,N0/0]s
Proof. We will prove by induction on the structure of e”.
e” = (e;return 1) Impossible because I" does not contain locations.
e” = (v) I does not contain locations. Therefore, v = null, and we can choose s’ = [1/This,NI/1,§0/0]s.
e” = (this) Then s = c<0, I>, and
[1/This,NI/I,NO/0,¥/%,1/this]e” =1
[1/This,NI/I,NO/0]S = C<NO,NI>
s’ = c<wo, NT>
KTytk1: s’
K. Tyt s <c<no,NI>

e” = (x;) Then s =u;. We assumed that

K, ITygkv;: U;
K, Ty U} <[1/This,NT/1,N0/0]U;

Therefore,

[L/This,NI/I,NO/0,%/%,1/this]e” =v;

s'=u;
S=1U;
KTykvi:s

K, Tyt s <[1/This,NI/1,N0/0]s
e” = (new D<FO,VI>(e)) We assumed that K,I'yy - new D<F0,VI>(g) : S. From T-xew, S = D<FO, VI> and
mtype(L, build,D<F0,VI>) =T = U 0T'Fe: T OTFT<T @)
By induction on ¢;, we have that

K,T'y b [1/This,N1/1,N0/0,%/%,1/this]e; : V;

K, Tyt v; <[1/This,N1/1,N0/0]T} ©
From Lem. 2.6 and (5), we have that
K,Ty +[1/This,N1/1,80/0]T; < [1/This,NI/1,N0/0]T; (7
From transitivity, (6), and (7), we have
K,y Fv; <[1/This,NI/I,NO/0O]T; 8)
From definition of mrype we have
mtype(L,build,[1/This,NI/I,NO/O|D<FO,VI>) = [1/This,NI/I,N0/0](T — U))

From 1-new, (8), and (9),

K, Ty [1/This,NI/1,N0/0,%/%,1/this]new D<FO,VI>(g) : [1/This,NI/I,NO/O|D<FO,VI>

e” = (e . f) From T-FieLp-AccEss,

0,'t e :D<MO, IP>
O.TFe.t:5
s = ftype(e, £,D<MO, IP>)
Recall that s = fiype(e, £,D<M0, IP>) = substitute(e,D<MO, IP>, fiype(£,D)). Note that e is not a location, and thus

if £ is this-owned, then e = this. Consider first the case that f is this-owned, thus e = this. Let ftype(f,D) =
FT, and O(FT) = This. We assumed that 0,I' - this.f : 5. Then, s = FT. We need to show that

K, Tyt [1/This,NI/1,N0/0,%/%,1/this|this.f: ¢
K, Tyt s <[1/This,NI/1,N0/0]FT
From T-FieLp-Access
K,Tyb1.f:[1/This,NI/I,NO/O]FT
,i.e., s =[1/This,NT/1,N0/0]FT.
Now suppose that £ is not this-owned. Therefore, s = [1P/1,M0/0]FT. We need to show that
K,T'y t [1/This,NI/1,N0/0,%/%,1/this]e.f: s’

10
K, Tyt s <[1/This,N1/1,N0/0]s s = [1P/1,M0/0]FT (10)

From the induction on e, we have that

K,I'y b [1/This,NI/I,N0/0,¥/%,1/this]le:S”
K,I'y s <[1/This,NI/I,NO/O]D<MO, IP>

1)

From (11), O(s”) = [1/This,N0/0]M0. From (10) and (11), and Lem. 2.2, we have that

s’ = frype(L,£,5”) = [I(s”)/1,0(s”) /o]rT < [([v1/1]1P)/1, ([1/This,N0/0]MO) /O]FT =
= [1/This,N1/1,N0/0]([1P/1,M0/0]FT)

e” = (e.f=e’) The challenge in field assignment is that (by induction) the type of the substitution of e changed
covariantly (i.e., it is a subtype of the substitution of the type), and ¢’ also changed covariantly. However, we
will prove that because (e) is Raw, and e is either this or this-owned, then e is invariant.

We assumed that 0, F e. f=¢’ : 5. From T-FieLp-Assionment, we know that

0.l'+ef:T7 OTFe:s OTFs<T 0,IFe:DwMO,IP>

12
0, 1P <Raw isTransitive(e,’,D<MO, IP>) MO #£ 2 (12)
We wish to prove all the assumptions in (12) after substituting [1/This,NI/I,N0/0,%/%,1/this].
By induction on ¢’ we have that
K,Tyt [1/This,NI/1,N0/0,%/%,1/this]e’ : &’ 13)
K, Tyt s <[1/This,NI/1,N0/0]s
By induction on e.f we have that
K, Tyt [1/This,NI/1,N0/0,%/%,1/this]e.f: T (14

K, Tyt 1 <[1/This,NI/1,N0/0]T

From the proof of field access above, we see that the class of T’ and T is the same. By induction on e we have

that
K,I'y b [1/This,NI/I,NO/0,¥/%,1/this]e : D" <MO’, IP' > 15)
K,T'y bp’<mo’,1p’> < [1/This,NI/I,N0/0]D<MO, IP>
Because MO # ?, from Lem. 2.1 part (i), we have that M0’ = Mo.
We now prove that the following holds:
K, 'y F [n1/1]1P <Ra
- [NI/1]1P < Raw (16)

isTransitive([1/this]e,I, [1/This,NI/I,N0/0]D<MO, IP>)
From (12), 0,I" - 1p < Raw. From our syntax, and because I" does not contain locations:
IP = ReadOnly | Immut | Mutable | I

If P = Mutable then we proved (16). Therefore, it must be that 1p = 1 (thus [NI/1]1p =NI) and I'(1) = 16 <
Raw. From (4) (K,Ty F N1 < 16), we proved the first part of (16) that K, Ty - [N1/1]1P < Raw. If 16 = Mutable
then, NI = Mutable, which proved (16). Therefore 16 = Raw, and from the definition of isTransitive we have
that e=this or MO = This. If e = this then isTransitive(1,...), which proved (16). Thus MO = This, and

D<MO, IP> = D<This, I> an
[1/This,NI/1,NO/0]D<MO, IP> = D<1,NI>

From (4), H[1] = c<No,NI>. If NI = Mutable then we proved (16). Otherwise NI = Immuty. Because H is
well-typed for K, 1/ <7 1, thus 1’ £ 1, proving (16) (because if a <g b then b <7 a).

(i) If e = this. Let fiype(£,D0) =FT. We assumed in (12) that @,I'F this.f : T. Then, T = FT. From T-FieLp-Access

K,I'yt1.£:[1/This,NI/I,NO/OJFT

10

e

Lt}

From definition of isTransitive, we have that isTransitive(1, ...) holds. From (12) (0,T' F s < T) and Lem. 2.6,
we have

K,Ty + [1/This,NI/1I,N0/0]s < [1/This,NI/I,NO/O|T (18)
From (13), (18), and transitivity, we have
K,TyFs' <[1/This,N1/1,N0/0]FT (19)
To summarize, from (19), (16) (K,I'y - NI < Raw), we have that

K, Tyt 1.£:[1/This,N1/1,80/0]FT K, Tyke':s’ K, Tyt s <[1/This,NI/1,N0/0]FT

(20)
K.,TyF1:cwno,n1> K, Ty bENI<Raw isTransitive(l,...)
Therefore, from (20), and T-FieLp-Assionment, we proved that
KTyt1l.£=e':¢
K, Tyt s <[1/This,NI/1,N0/0]FT
(ii) If e # this, then from (16), we have
isTransitive(L,T",[1/This,NI/I,NO/0|D<MO, IP>) (21)

From (15) and (21) and Lem. 2.3, we have that 1>’ = [N1/1]1P. To summarize, from (13), (14), (18), (21),

K,I'y b [1/This,NI/1I,N0/0,¥/%,1/this]e.f : [1/This,NI/I,NO/O|T
K,Ty b [1/This,N1/1,N0/0,%/%,1/thisle’ : 8
K, Tyt s <[1/This,NT/1,N0/0]S
K, Tyt [1/This,N1/1,N0/0]s < [1/This,NI/I,NO/O|T (22)
K,T'y b [1/This,NI/I,N0/0,¥/%,1/this]e : D’ <MO, IP' >
K, Ty F1p’ <Raw
isTransitive(L,I",D’ <MO, IP">) MO # ?

Thus, from (22), and T-FieLp-Assionment, we proved that

K.Tytk e.f=¢': ¢
K,Ty s <[1/This,NI/1,N0/0]S

= (ep.m(e)) The proof is similar in spirit to field assignment: the challenge is that both ey and e; change

covariantly. Let 16’ be the guard of m. If 16’ = ReadOnly then the parameters of m cannot include 1. If 16" =
Mutable | Immut, then I remains with the same bound. The challenge is when IG’ = Raw, then we use either
the fact the e is either this or this-owned, to prove that e is invariant (like in field assignment).

With respect to wildcards, if the receiver e has a wildcard, then after the covariant change it might no longer
be the case. Therefore we require that the owner of method parameters in this case must be World. (it cannot
be 0 nor This).

From T-InvokE,

0,I'teg:D<Mo, IP> mtype(eg,m,D<M0, IP>) =T —uw O,'Fe:T7 O,T'FT <T mguard(m,D) = IG’
0.I'F1p <IG’' IG’' =Raw=> isTransitive(eq,I',D<M0,I1P>) mitype(m,D) =T —=v O(T)=?=0(0) =2

@,FFeo.m(@) W
(23)

By induction on ¢(, we have that

K,I'y b [1/This,NI/I,N0/0,¥/%,1/this]eg : D’ <MO’, IP' >

24
K,[y D’ <m0, 1P’ > < [1/This,NI/1,N0/0|D<MO, IP> 24

11

Note that, in contrast with field assignment, here we might have M0 = 2, and then Mo’ # M0. However, from
Lem. 2.1 part (i),
MO # ? = MO’ = [1/This,NO/OJMO (25)

By induction on e;, we have that

K,T'yt[1/This,NI/1,N0/0,%/%,1/this]e; : S}

K,Ty b s} <[1/This,N1/1,N0/0]T"; (26)
From (26) and (23) and Lem. 2.6, we have
K.T'y b [1/This,NI/1,N0/0]T’; < [1/This,NI/I,N0/O]T; 27
From transitivity, (26), and (27),
K,Ty b s; <[1/This,NI/1,N0/0]T; (28)
Because method overriding maintains the same signature, we have that
mtype(m,D’) = mtype(n,D) =T — v (29)
From definition of mrype, (29), and because e does not contain locations, we have that
mtype(eg,m,D<MO, IP>) =T — W = [M0/0,1P/1|(T — V) 30)
mtype([1/this]eg,m,D’ <M0’, TP’ >) = [1/This,M0’ /0, TP’ /T1](T — V)
We will always prove that the parameters are invariant, i.e.,
mtype([1/this|eg,m,D’ <MO’ , IP'>) = [1/This,NI/I,NO/O|T; — W’ 31
We will also prove that
K,T'yb1p’ <16' 16’ =Raw = isTransitive([1/this]eg,[',D’ <MO’, IR’ >) (32)
Because there are no wildcards after substitution, from (31) and (32), we will have that
K, Tyt [1/This,NI/1,N0/0,%/%,1/this]eg.m(8) : W
K,Tytw <[1/This,NI/1,N0/0]W
Next we prove (31) just for the owner parameter, i.e., we want to show that (from (30) and (31))
O([1/This,M0" /0]U;) = O([1/This,NO/0O]T;) (33)
From (30),
O(1i) = O([ro/0]ui) (34)

If O(u;) = This, then both sides of (33) are 1. If O(u;) # 0, then both sides of (33) are O(u;). The last case is
that O(u;) = o. From (23), we have
O(1)) =2=0(v;) =2 (35)

On the one hand, if M0 = 2, then O(T;) = 2, thus O(U;) = 2, and both sides of (33) are 2. On the other hand,
if Mo # 2, then from (25)
MO’ = [1/This,N0/0JMO

which proves (33).

From (33), in order to prove (31), we just need to show it for the immutability parameter, i.e., (from (30))

I([rer /1)u;) = I([wr /1) ([12/1]0;)) (36)

12

Recall the following: From (24), we know that K, 'y D’ <M0’ , 1P’ > < [1/This,NI/I,N0/0]D<MO, IP>. From (23),0,'F
1P <16'. From (4), K. IT'yFNi1<1cand1:1c€T.

We will split the proof by the four possible values of 16’ = ReadOnly | Mutable | Immut | Raw. For each case
we need to prove (32) and (36).

(i) IG’ = ReadOnly Because any immutability is a subtype of ReadOnly, we proved (32). Furthermore, when
IG’ = ReadOnly the signature of parameters cannot contain I, i.e., I(U;) # I, which proved (36).

(ii) I’ =Mutable From (23), 0,I" 1p < Mutable, thus either IP = Mutable or (IG = Mutable and 1p = 1). If
1p = I, then from (4), K,I'y NI < Mutable, thus NI =Mutable. Thus, K,y F [NI/1]1P <Mutable. Therefore,
from (24) and Lem. 2.4 part (i), we have that K,I'y |- 1P’ < Mutable, which proved (32).

We showed that if 1P = 1, then NI = Mutable and IP’ = Mutable, proving (36). We also showed that if
IP = Mutable then IP’ = Mutable, proving (36).

(iii) 16’ = Immut Exactly like part (ii), but we use Lem. 2.4 part (ii) instead of part (i), and (Immut » where 1’ ¢
K) instead of Mutable.

(iv) IG’ = Raw Exactly like in field assignment, we prove that:

K,I'y - [N1/1]1P < Raw

37
isTransitive([1/this]e,T',[1/This,NI/1I,N0/0]D<MO, IP>) 37)

If e = this, then D = C, 1P = I (because 0,I" - this : D<0,I>) and 1P’ = NI (because K,I'y F 1 : D<NO, NI>),

therefore,
I([v/1)v;) = I([v1/1)([2/1]U7))

which proved (36). Furthermore, because 0,I" - 1p < Raw (and 1P = 1), we know that 16 < Raw. Thus
from (4), K,T'y b N1 < Raw. Finally because this was replaced with 1, and isTransitive(1,...) always holds,
then we proved (32).

If e # this, then from (37), we have that isTransitive(L,T', [1/This,NI/1,N0/0]D<MO, IP>), thus from definition
of isTransitive we have that M0 # 2. From Lem. 2.4 part (iii) and (24), we know that 1p’ = [NI/I]1P, which
proved (36). Combined with (37), we have that K,T'yy - 1p* < Raw. From (25), we have M0’ = [1/This,No/0]MoO.
Therefore, D’ <M0’, TP’ > = [1/This,NI/I,N0/0|D<MO, IP>, which proved (32).

O

Lemma 5.6. (Subtype preservation) For every closed expression e’ # v, H, and K, if K.I'yFe” : 77 and K -
H,e” — H' & and H is well-typed for KUK (e”), then K, Tgp =& :Tand K, Tpp T <17

Proof. We prove by examining all possible reduction rules.
Congruence for field access Consider the congruence rule for field access

KFH,e - H ¢
KFH,e.f - H' &t

We assumed that K,I'y e.f : 77 and by induction K,y Fe: T, K,Tp b e’ : T and K, Ty =1/ < T. Let T =
C<MO, TP>. Because e # this (cause e is closed) and e # 1 (cause a location cannot be reduced further), then
field £ is not this-owned, and T” = fiype(L, £, T).

Because K,y 1/ < T, from Lem. 2.1 part (iii), then ' is a subtype of c. Therefore fields(C’) must contain
the same field £ which is not this-owned. Thus, K, Ty b & : T, where T = fiype(L, £,7’). The last thing we
need to prove is that K,y T < 177, which follows from Lem. 2.7.

Congruence for method receiver Consider the congruence rule for method receiver

KtH,eg— H e
KFH,eg.n(s) — H' e.m(e)

Similarly to field access, because e is not a location, then none of the parameters or return type of method m
is this-owned. Proving that K, I'yr = T < T” (i.e., the return type is preserved) is done similarly to field

13

access, by noting that method overriding maintains the same return type. (The return type could also change
covariantly and the proof would still hold.) However, proving that K, 'y | & : T is more challenging because:
(i) we need to show that e, satisfies the guard, and (ii) the type of method parameters after substitution can
change covariantly (as opposed to FGJ, which is invariant).

We will first prove that e, satisfies the guard. We assumed that K,I'yy - eg.m(2) : T” and by induction K, 'y F
eo: T, K, Iy e 7 and K, T’y - 7' < 1. From T-Invoke, we know that

K, Thykeg:c<o,1p> mguard(n,C) =16 K, Tyk1p <16 IG= Raw = isTransitive(ep,’,C<MO, IP>)

Because e is neither this nor 1 (because it was reduced), then 16 = Raw = isTransitive(_L,T,c<MO, IP>).
Let 7' = c' <m0, 1P’ > and mguard(m,c’) = 16’. Because K,y = 1/ < 7, from Lem. 2.1 part (iii), then c’
is a subtype of c. From the restriction on method overriding with guards, 16 < 16’. From Lem. 2.4 part (iv),
we have that 1p’ < 16. From transitivity, 1p’ < IG’.

Next we show that 16 = Raw = isTransitive(e(,,I",C’ <M0, TP’ >). If 16 = Raw then we showed that isTransitive(L,T",c<M0, IP>).
From Lem. 2.3 we have that 1p’ = 1P, thus IG = Raw = isTransitive(eE),F, C’'<MO, IP'>).

Let
mtype(ep,m,C<MO, IP>) =T — v
mtype(e(,m,C’ <MO, TP’ >) = T7 — v’
KTygke:0o"
Because K,I'y - U™ < T, from Lem. 2.8, we have that K,I'y - T" < T”.
Therefore, all the assumptions in T-Invoke are fulfilled (the requirement for wildcards is fulfilled because all
types are closed), and we proved that K, T’y & : T.
Congruence for method argument Trivial.
Congruence for new instance Trivial.

Congruence for the rvalue of field assignment Trivial.

Congruence for the receiver of field assignment Consider the congruence rule for the receiver of field assign-
ment
K+H,e - H ¢
KFH,e.f=e" — H' e’ .f=e"

We assumed that K,I'y - e.f=e" : T and by induction K,Ty Fe: T, K,Tp b e’ : 7 and KTy T/ < T. We
will show that K, 'y - e.f=e" : 7. From T-FieLD-ASSIGNMENT:

KTpytetf:F KTIpyke:tm KIyk1"<r KTIyhke:co,1p> K,I'yt1p<Raw isTransitive(e,'y,C<MO, IP>)
‘We need to show that:
K.Tytée.f:7r KTykt<e K,Tyke:cr<mo,1p'> K,Tyh 10’ <Raw isTransitive(e,['y,C’ <MO, TP">)

Because e was reduced, we know it is not a location, so isTransitive(_L,T'y,Cc<M0, IP>). From Lem. 2.3, we
have that 1p = 1p’. Therefore F’ = F (because ftype(£,C) = ftype(£,C’)), and isTransitive(e, Ty, C’ <MO, TP' >).

Congruence for return r-c1 Consider the congruence rule for e; return 1

KU{1}FH,e > H' ¢
K& H,e;return 1 — H' e’ ;return 1

We assumed that

>

K. I'yte;return 1:T° &” =e;return 1 ¢ —e’;return 1

Ku{i},Tyte:1 KU{1},Tpre:T KuU{1},Tyrt1<T

We need to prove that K, Ty & :Tand K, Ty T < 17,

14

According to T-RETURN:
KU{l},FH/ Fe it
K. Ty be’;return 1: g (1)
Because KU{1},T', ¢’ : T/, we proved that K, T’y - e’ jreturn 1: T (1),ie, K,Ipp e 1.
We still need to prove that K,I'yyy T < 17, Because T = I'yr(1) and T° =I'y(1) then T = 17, and from
reflexivity (s2) we have K, Tgr =T < 17,

Rule R-reTUrn Trivial

Rule r-New According to R-New

Immuty if VI = Immut or (VI = Immutc and K _
1¢dom(H) vi'= L o (e c#K) H' = H[1+ c<NO, VI’ > (null)]
VI otherwise

K& H,new C<NO,VI>(¥) — H',1.build () ;return 1

We assumed that
K, I'yke”:17 e’ =new C<NO,VI> (V) e = 1.build (V) ;return 1

We need to prove that K, Ty Fé:Tand K, T 1 < 17

From T-New
mtype(L, build,c<no,vi>)=U—2z K,ITykv:Vv KIygkFv<T
K, Ty F new C<NO, VI> (%) : C<NO,VI>

(38)

Thus, T” = c<NO, VI>. From T-return, T = C<NO, VI’ >. Because 1 € K, then K, Iz - Immut] < Immut, thus K, Ty F
T<T.
We still need to prove that K, I'y = & : T, and from T-rerurny we need to prove that

Ku{1},Ty F1.build(¥) : 2

Because 1 is a new location, all the equations in (38) are still true if we replace I'y with I'yr. From T-invoke,
and because the guard of build is Raw:

KU{1},TgbE1:T moype(l,build,) =w—2’ KU{1},Tptv:¥ KU{1},Typtv<ia
KU{1},T'y Fvi’ <Raw isTransitive(1,T,T)
KUu{1},T'y F1.0uild(¥) : 2’

Assumption isTransitive(1,I",T) holds because 1 is a location. Because 1 € KU {1} and v1 is either Mutable or
Immut Or Immuty/, then this assumption holds KU {1},I'y F vI’ < Raw. The only assumption left to prove is
that KU{1},Ty vV <. From (38) we have that KU {1},T'yy -V <T. If vI = Mutable then U =T. Otherwise
VI = Immut, T = C<NO,Immut 1VI>, and we have that

mtype(build,C) =FT — 2"

mtype(1,build,C<NO, Immut (VI>) =W — 2’

mtype(L,build,C<NO, Inmut >) =T — 2

W; = [NO/O, Immut 1 /I]FT;

U; = [N0/0, Immut /I]FT;

Ku{i},T'yFv; <y

0 or World, thus, 8(w;) is either NO or World. Finally note that 1 <g No (because 1+ C<NO, .. .>), and we always
have that N0 <g World, thus 1 <g World. According to subtyping rule si3, we have that KU {1},T'ys b U; <,
and from transitivity v; < U; < W;.

We want to prove that KU {1}, Ty = v; <w;. If I(FT;) # I then w; = U;. Because O(FT;) # This, then it is either

Rule R-FieLp-Access According to R-FIELD-AccEss

H[1] = Cc<NO,NI> (%) fields(c) =
K}_H,l.fi—)H,vi

We assumed that K,I'y - 1.f; : 7, and we need to prove that K,T'y Fv; : Tand K,T'g - T < 1”. If v; = null
then we can choose T = T, otherwise v; 7 null, and because the heap is well-typed for K, then K, 'y HT <17,

15

Rule R-FieLp-Assicament According to R-FIELD-ASSIGNMENT

KFH,l.fi=v' —H v

We assumed that K,T'y I 1.f; = v’ : T, and we need to prove that K, Iy v/ : Tand K, Ty =T < 1. Because

we did not add any new locations, we have I'y = I'yy. From T-FieLp-Assionment, we have that K, T'y v’ @ 17,
e, T=1".

Rule r-Invoke According to R-INvoke

HI1] = C<NO,NI>(...) mbody(m,C) = %.¢/
K+ H,1.n% — H,[¥/%,1/this,1/This,N0/0,NT/T]e/

We assumed that
KTghke’:T™ & =1.n(¥ &= [7/%,1/this,1/This,N0/0,N1/1]e’

From T-Invoke we have that

mitype(1,m,C<NO,NI>) =T = 71" K Tpkv:7 KTyF1T<T mguard(n,c)=16 K,IyFn1<ic
We know the method m was typed-checked in ¢, i.e.,

I'={1:16,x:0U,this:C<0, I>}
mtype(m,C) =T — FT
0.TFe s
0,I'+s<FT

From the definition of mrype:

mtype(1,m, C<NO, NI>) = substitute(1,C<NO, NI>, mtype(m,C))
T” = [NO/O,NI/I,1/This]FT
T; = [NO/O,NI/1,1/This]y;

We need to prove that K,I'y & : T and K,T'y - T < 77, which follows immediately from Lem. 5.5.

O

EL)

Lemma 5.7. (Well-typed heap preservation) For every closed expression e” # v, K, and H, if K,.Tyke”: T
and K = H,e” — H' & and H is well-typed for KUK (), then H' is well-typed for K UK (2).

Proof. Recall that a well-typed heap H satisfies: (i) there is a linear order <" over dom (H) such that for every
location 1, ©(1) = wWorld or 8(1) <7 1, and I(1) = Mutable or k(1) <7 1, and (ii) each non-null field location is a
subtype of the declared field type. Recall also that from the definition of a heap H, every location 1 in H has the
form: (iii) 1 — C<NO,NI> (V).

Consider the congruence rules, such as

K+H,e - H ¢
KFH,e.f - H' ¢ f

By the induction hypothesis H’ is well-typed K UK (&).
The only rule that changes K is R-c1:

KU{1}FH',e > H” e’
K&+ H,e;return 1 — H” e’ ;return 1

By induction H” is well-typed for (KU{1})UK (e’). We need to prove that H” is well-typed for KUK (e’ ; return 1).
By definition of K(...), we have that KUK (e’ ; return 1) = KU{1}UK(e’).

16

Rules R-FieLp-Access and R-Invoke do not change the heap.

Rule r-return does not change the heap nor K, however K(&) = K(e”) \ {1}, According to Lem. 4.1, the
resulting heap H’ is well-typed for K UK(&).

Rule r-New creates a new object with null fields:

. 1¢dom(H) H'=H[1+sCcw0,VI’>(null)]
VI otherwise

o — {Immutl if vI = Immut or (VI = Immutc and c € K)
The fields of the new object are all null, thus fulfilling demand (ii).

We extend the linear order <7 by adding the new location 1 at the end. Its owner N0 is either World or an
existing object 1/, and either VI = Mutable or VI = Immuts (where 1’ is either an existing location or 1), thus
fulfilling demand (i).

Note that e” = new C<NO,VI>(¥), and because e” is closed, then we have that NO and vI do not contain 0,
I, nor This. And if VI = Immut then it is substituted with Immutj, thus fulfilling demand (iii). Finally, note
that ¢ = (1.build(¥);return 1), i.e., K(&) = K(e”)U{1}. However, because 1 is a new location, it does not
change existing subtype relations (it does not affect existing objects that do not refer to 1). Therefore, H' is
well-typed for KUK(2).

Finally, in rule R-FieLp-Assionment, e’ = 1.f; =v/, & =v',and H' = H[l —> C<NO, NI> ([v//vi]V)] Note that K(e”) =
K (&) = {}, thus a if H' is well typed then it is well-typed for K UK (2). Because the typing rule T-FieLp-AsSIGNMENT
require that:

KTIgkFif:1 KIgkv :1 KTITgktrm <7
then the heap H' is well-typed for K UK (&). O

17

What follows is our camera-ready SPLASH2010 (formerly known as OOPSLA) main technical track paper.

Ownership and Immutability in Generic Java

Yoav Zibin Alex Potanin Paley Li

VictoriaUniversity of Wellington
Wellington, New Zealand

yoav]alex|lipale@ecs.vuw.ac.nz

Abstract

The Java language lacks the important notions of ownership
(an object owns its representation to prevent unwanted alias-
ing) and immutability (the division into mutable, immutable,
and readonly dataand references). Programmersare proneto
design errors, such as representation exposure or violation
of immutability contracts. This paper presents Ownership
Immutability Generic Java (OIGJ), a backward-compatible
purely-static language extension supporting ownership and
immutability. We formally defined a core calculus for OIGJ,
based on Featherweight Java, and proved it sound. We also
implemented OIGJ and performed case studies on 33,000
lines of code.

Creation of immutable cyclic structures requires a “ cook-
ing phase” in which the structure is mutated but the outside
world cannot observe this mutation. OIGJ uses ownership
information to facilitate creation of immutable cyclic struc-
tures, by safely prolonging the cooking phase even after the
constructor finishes.

OIGJis easy for a programmer to use, and it is easy to
implement (flow-insensitive, adding only 14 rulesto those of
Java). Yet, OIGJis more expressive than previous ownership
languages, in the sense that it can type-check more good
code. OIGJ can express the factory and visitor patterns, and
OIGJ can type-check Sun’s java.util collections (except
for the clone method) without refactoring and with only a
small number of annotations. Previous work required major
refactoring of existing code in order to fit its ownership
restrictions. Forcing refactoring of well-designed code is
undesirable becauseit costs programmer effort, degradesthe
design, and hinders adoption in the mainstream community.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features, D.1.5
[Programming Techniques]: Object-oriented Programming

General Terms Experimentation, Languages, Theory

Permission to make digital or hard copies of all or part of this work for personal or
classroom useis granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or afee.

OOPSLA/SPLASH’10, October 17-21, 2010, Reno/Tahoe, Nevada, USA.
Copyright (©) 2010 ACM 978-1-4503-0203-6/10/10. .. $10.00

Mahmood Ali

Massachusetts I nstitute of Technology
Cambridge, MA, USA

mali@csail.mit.edu

Michadl D. Ernst

University of Washington
Seattle, WA, USA

mernst@cs.washington.edu

1. Introduction

This paper presents Ownership Immutability Generic Java
(OIGJ), a simple and practical language extension that ex-
presses both ownership and immutability information. OIGJ
is purely static, without any run-time representation. This
enables executing the resulting code on any JVM without
run-time penalty. Our ideas, though demonstrated using Java,
are applicableto any statically typed language with generics,
such as C++, C#, Scala, and Eiffel.

OIGJ follows the owner-as-dominator discipline [1, 11,
32] where an object cannot leak beyond its owner: outside
objects cannot accessit. If an object ownsits representation,
then there are no aliases to its internal state. For example, a
LinkedList should own al its Entry objects (but not its ele-
ments); entries should not be exposed to clients, and entries
from different lists must not be mixed.

The keyword private does not offer such strong protec-
tion as ownership, because a careless programmer might
write a public method that exposes a private object (ak.a.
representation exposure). Phrased differently, the name-
based protection used in Java hides the variable but not the
object, as opposed to ownership that ensures proper encap-
sulation. The key idea in ownership is that representation
objects are nested and encapsulated inside the objects to
which they belong. Because this nesting is transitive, this
kind of ownership is also called deep ownership [12].

OIGJ is based on our previous type systems for owner-
ship (OGJ[32]) and immutability (1IGJ[39]). Although own-
ership and immutability may seem like two unrelated con-
cepts, a design involving both enhances the expressiveness
of each individual concept. On the one hand, immutabil-
ity enhances ownership by relaxing owner-as-dominator to
owner-as-modifier [23], i.e., it constrains modification in-
stead of aliasing. On the other hand, the benefits of adding
ownership on top of immutability have not been investigated
before. One such benefit is easier creation of immutable
cyclic data-structures by using ownership information.

Constructing an immutable object must be done with
care. An object beginsin the raw (not fully initialized) state
and transitions to the cooked state [6] when initialization
is complete. For an immutable object, field assignment is
allowed only when the object is raw, i.e., the object cannot

be modified after it is cooked. An immutable object should
not be visible to the outside world in its raw state because
it would seem to be mutating. The challenge in building an
immutabl e cyclic data-structureis that many objects must be
raw simultaneously to create the cyclic structure. Previous
work restricted cooking an object to the constructor, i.e., an
object becomes cooked when its constructor finishes.
Our key observationisthat an object can be cooked when
its owner’s constructor finishes. More precisely, in OIGJ, a
programmer can choose between cooking an object until
its constructor finishes, or until its owner becomes cooked.
Because the object is encapsulated within its owner, the
outside world will not see this cooking phase. By adding
ownership information, we can prolong the cooking time to
make it easier to create complex data-structures.
Consider building an immutable LinkedList (Sun’'s im-
plementation is similar):
LinkedList (Collection<E> c) {
this();
Entry<E> succ = this.header, pred = succ.prev;
for (Ee : ¢)
{ Entry<E> entry = new Entry<E>(e,succ,pred);
/I ltis illegal to change an entry after it is cooked.
pred.next = entry; pred = entry; }
succ.prev = pred;
}
Animmutable list containsimmutable entries, i.e., the fields
next and prev cannot be changed after an entry is cooked. In
IGJ and previous work on immutability, an object becomes
cooked after its constructor finishes. Because next and prev
are changed after that time, this code isillegal. In contrast,
in OIGJ, this code type-checks if we specify that the list
(the this object) owns dl its entries (the entries are the
list’s representation). The entries will become cooked when
their owner’s (thelist’s) constructor finishes, thus permitting
the underlined assignments during the list’s construction.
Therefore, there was no need to refactor the constructor of
LinkedList for the benefit of OIGJtype-checking.
Informally, OIGJ provides the following ownership and
immutability guarantees. Let 6(0) denote the owner of o and
let < denotethe ownershiptree, i.e., thetransitive, reflexive
closure of 0 <g 6(0). Phrased differently, 6(0) is the parent
of o in the tree, and the top (biggest) node in the tree is the
root world. We say that 01 isinside oz iff 01 <g 02, anditis
strictly inside if 01 # 02.
Owner ship guarantee: Anobject o’ can point to object o
iff o’ <¢ 6(0), i.e., 0isowned by o’ or by one of its owners.
Immutability guarantee: An immutable object cannot
be changed after it is cooked.

Contributions The main contributions of this paper are:

Simplify owner ship concepts OIGJ expresses ownership
concepts without introducing new mechanisms, by us-
ing Java's underlying generic mechanisms. Specificaly,

owner-polymorphic methods and scoped regions [36] are
implemented using generic methods, and existential own-
ers [37] are implemented using generic wildcards. By
contrast, previous work used new mechanisms that are
orthogonal to generics.

No refactoring of existing code Java's collection classes
(java.util) are properly encapsulated. We have imple-
mented OIGJ, and verified the encapsulation by run-
ning the OIGJ type-checker without changing the source
code (except for the clone method). Verifying Sun’'s
LinkedList requires only 3 ownership annotations (see
Sec. 4). Previous approaches to ownership or immutabil-
ity required major refactoring of this codebase.

Flexibility As illustrated by our case study, OIGJ is more
flexible and practical than previous type systems. For ex-
ample, OlGJ can type-check the factory and visitor design
patterns (see Sec. 2), but other ownership languages can-
not [25]. Another advantage of OIGJ is that it uses own-
ership information to facilitate creating immutable cyclic
structures by prolonging their cooking phase.

Formalization We define a Featherweight OIGJ (FOIGJ)
calculus to formalize the concepts of raw/cooked objects
and wildcards as owner parameters. We prove FOIGJ is
sound and show our ownership and immutability guaran-
tees.

Outline. Sec. 2 presents the OIGJ language. Sec. 3 de-
fines the OIGJ formalization. Sec. 4 discusses the OIGJ im-
plementation and the collections case study. Sec. 5 compares
OIGJto related work, and Sec. 6 concludes.

2. OIGJ Language

This section presents the OIGJ language extension that ex-
presses both ownership and immutability information. We
first describe the OIGJ syntax (Sec. 2.1). We then proceed
with aLinkedList class example (Sec. 2.2), followed by the
OIGJ typing rules (Sec. 2.3). We conclude with the factory
(Sec. 2.4) and visitor (Sec. 2.5) design patternsin OIGJ.

21 OIGJ syntax

OIGJ introduces two new type parameters to each type,
called the owner parameter and the immutability parame-
ter. For simplicity of presentation, in the rest of this paper
we assume that the special type parameters are at the begin-
ning of thelist of type parameters. We stress that genericsin
Java are erased during compilation to bytecode and do not
exist a run time, therefore Ol GJ does not incur any run-time
overhead (nor does it support run-time casts).

InOIGJ, all classes are subtypes of the parameterized root
type object<0, I> that declares an owner and an immutabil-
ity parameter. In OIGJ, the first parameter is the owner (O),
and the second is the immutability (1). All subclasses must
invariantly preservetheir owner and immutability parameter.
The owner and immutability parameters form two separate

@
(@ (b)

Figure 1. The type hierarchy of (a) ownership and (b) im-
mutability parameters. world means the entire world can
access the object, whereas This means that this owns the
object and no one else can access it. The meaning of
Mutable/Immut iS Obvious. A Readonly reference pointsto a
mutable or immutable object, and therefore cannot be used

to mutate the object. raw represents an object under construc-
tion whose fields can be assigned.

hierarchies, which are shown in Fig. 1. These parameters
cannot be extended, and they have no subtype relation with
any other types. The subtyping relationisdenoted by <, e.g.,
Mutable < ReadOnly. Subtypingisinvariant in the owner pa-
rameter and covariant in the immutability parameter. (See
also paragraph Subtype relation in Sec. 2.3.)

Note that the owner parameter o is a type, whereas the
owner of an object is an object. For example, if the owner
parameter is This, then the owner is the object this. There-
fore, the owner parameter (which is atype) at compile time
corresponds to an owner (which is an object) at run time.
(See also paragraph Owner vs. Owner-parameter below.)

OIGJ syntax borrows from conditional Java (cJ) [19],
where a programmer can write method guards. A guard of
the form <X extends Y>? METHOD DECLARATION has a dual
meaning: (i) the method is applicable only if the type ar-
gument that substitutes x extends v, and (ii) the bound of
X inside METHOD_DECLARATION changes to y. The guards are
used to express the immutability of this: a method receiver
or a constructor result. For example, a method guarded with
<I extends Mutable>? meansthat (i) the method is applica-
ble only if the receiver is mutable and therefore (ii) this can
be mutated inside the method.

Classdefinition example Fig. 2 showsan exampleof OIGJ
syntax. A class definition declares the owner and immutabil-
ity parameters (line 1); by convention we aways denote
them by o and 1 and they always extend wor1d and Readonly.
If the extends clause is missing from a class declaration,
then we assume it extends object<0, I>.

I mmutability example Lines 2—4 show different kinds of
immutability in OIGJ: immutable, mutable, and readonly.
A readonly and an immutable reference may seem similar
because neither can be used to mutate the referent. However,
line 4 shows the difference between the two: a readonly
reference may point to a mutable object. Phrased differently,
areadonly reference may not mutate its referent, though the
referent may be changed via an aliasing mutable reference.

liclass Foo<O extends World,I extends ReadOnly> {

2: /I An immutable reference to an immutable date.
Date<O,Immut> imD = new Date<O, Immut> () ;

3: // A mutable reference to a mutable date.

Date<O,Mutable> mutD = new Date<O,Mutable>();

4: /I A readonly reference to any date. Both rob and imD cannot
mutate their referent, however the referent of rob might be
mutated by an alias, whereas the referent of imD is immutable.
Date<O,ReadOnly> roD = ... ? imD : mutD;

5: /] A date with the same owner and immutability as this.
Date<Q,I> sameD;

6: // A date owned by this; it cannot leak.

Date<This, I> ownedD;

7: 1/ Anyone can access this date.
Date<World, I> publicD;

8: /| Can be called on any receiver; cannot mutate this. The
method guard “<. ..>2" is part of ¢J’s syntax [19].
<I extends ReadOnly>? int readonlyMethod() {...}

9: // Can be called only on mutable receivers; can mutate this.
<I extends Mutable>? void mutatingMethod() {...}

10: // Constructor that can create (im)mutable objects.

<I extends Raw>? Foo(Date<0,I> d) {

11: this.sameD = d;

12: thig.ownedD = new Date<This,I>();

13: /[lllegal, because sameD came from the outside.
/l this.sameD.setTime(...);

14: /[OK, because Raw is transitive for owned fields.
this.ownedD.setTime(...);

15:}}

Figure 2. Anexample of OIGJ syntax.

Java s type arguments are invariant (neither covariant nor
contravariant), to avoid a type loophole [20], so line 4 isil-
legal in Java. Line 4 is lega in OIGJ, because OIGJ safely
allows covariant changes in the immutability parameter (but
not in the owner parameter). OIGJ restricts Java by having
additional typing rules, while at the same time OlGJ a so re-
laxes Java's subtyping relation. Therefore, neither OIGJ nor
Java subsumes the other, i.e., alegal OIGJ program may be
illegal in Java (and vice versa). However, because generics
are erased during compilation, the resulting bytecode can be
executed on any VM.

The immutability of samed (line 5) depends on the im-
mutability of this, i.e., sameD is(im)mutablein an (im)mutable
Foo object. Similarly, the owner of sameD is the same as the
owner of this.

Ownership example Lines5-7 show three different owner
parameters: o, This, and world. The owner parameter is in-
variant, i.e., the subtype relation preserves the owner param-
eter. For instance, the types on lines 5-7 have no subtype
relation with each other because they have different owner
parameters.

Reference ownedp cannot leak outside of this, whereas
references sameD and publich can potentially be accessed by

anyonewith accessto this. Although sameD and publicb can
be accessed by the same objects, they cannot be stored in the
same places: publicD can be stored anywhere on the heap
(even in a static public variable) whereas samed can only be
stored inside its owner.

Weuse O(...) to denotethe function that takes atype or a
reference, and returnsits owner parameter; e.g., O(ownedd) =
This. Similarly, function I(...) returns the immutability pa-
rameter; e.g., | (ownedp) = 1. We say that an object o iSthis-
owned (i.e., owned by this) if O(o) = This; €.g., ownedD IS
this-owned, but sameD is not. OIGJ prevents leaking this-
owned objects by requiring that this-owned fields (and
methods with this-owned arguments or return-type) can
only be used via this. For example, this.ownedD is legal,
but foo.ownedp isillegal.

Owner vs. owner-parameter Now we explain the connec-
tion between the owner parameter O(0), which is a generic
type parameter at compile time, and theowner 6(0), whichis
an object at run time. This isan owner parameter that repre-
sents an owner that is the current this object, and world rep-
resents the root of the ownership tree (we treat world both
as a type parameter and as an object that is the root of the
ownership tree). Formally, if O(0) = This then 6(0) = this,
if O(0) = o then 6(0) = B(this), and if O(0) = world then
0(0) = world. Two references (in the same class) with the
same owner parameter (at compile time) will point to ob-
jects with the same owner (at runtime), i.e., O(01) = O(02)
implies6(01) = 6(02).

Finally, recall the Ownership guarantee: o’ can point
to o iff 0’ <¢ 6(0). By definition of <g, we have that for
al o: (i) 0 =g 0, (ii) 0 <g 6(0), and (iii) 0 <g World. By part
(iii), if ©(0) = world then anyone can point to 0. On lines 5—
7, we see that this can point t0 ownedD, sameD, publich,
whose owner parameters are This, 0, World, and whose own-
ers are this, 6(this), world. This conforms with the own-
ership guarantee according to parts (i), (ii), and (iii), respec-
tively. More complicated pointing patterns can occur by us-
ing multiple owner parameters, e.g., an entry in a list can
point to an element owned by the list's owner, such as in
List<This, I,Date<0,I>>.

There is a similar connection between the immutability
type parameter (at compiletime) and the object’simmutabil -
ity (at run time). Immutability parameter Mutable OF Immut
implies the object is mutable or immutable (respectively),
Readonly implies the referenced object may be either mu-
table or immutable and thus the object cannot be mutated
through the read-only reference. raw implies the object is
till raw and thus can still be mutated, but it might become
immutable after it is cooked.

Method guard example Lines8 and 9 show areadonly and
amutating method. These methods are guarded with <. . .>2.
Conditional Java (cJ) [19] extends Java with such guards
(ak.a. conditional type expressions). Note that cJ changed
Java's syntax by using the question mark intheguard <. . . >2.

The exposition in this paper uses cJ for convenience. How-
ever, our implementation of OIGJ (Sec. 4) uses type anno-
tations [15] without changing Java's syntax, for conciseness
and compatibility with existing tools and code bases.

A guard such as <T extends U>? METHOD_DECLARATION
has a dua purpose: (i) the method is included only if T
extends U, and (ii) the bound of T is U inside the method.
In our example, the guard on line 9 means that (i) this
method can only be called on a mutable receiver, and
(i) inside the method the bound of 1 changes to mutable.
For instance, (i) only a mutable Foo object can be a re-
celver of mutatingMethod, and (ii) field samep is mutable
in mutatingMethod. ¢J also ensures that the condition of an
overridingmethod is equival ent or weaker than the condition
of the overridden method.

1GJ [39] used declaration annotations to denote the im-
mutability of this. In this paper, OlGJ uses cJ to reduce the
number of typing rules and handle inner classes more flex-
ibly.l OIGJ does not use the full power of cJ: it only uses
guards with immutability parameters. Moreover, we modi-
fied cJto treat guards over constructorsin a special way de-
scribed in the Object creation rule of Fig. 4.

To summarize, on lines 8-10 we see three guards that
changethe bound of 1 to Readonly, Mutable, and Raw, respec-
tively. Because the bound of 1 is aready declared on line 1
asRreadonly, the guard on line 8 can be removed.

Constructor example The constructor on line 10isguarded
with raw, and therefore can create both mutable and im-
mutable objects, because all objects start their life cycle as
raw. Thisconstructor illustratestheinterplay between owner-
ship and immutability, which makes OIGJ more expressive
than previous work on immutability. OIGJ uses ownership
information to prolong the cooking phase for owned objects:
the cooking phase of this-owned fields (ownedp) is longer
than that of non-owned fields (sameD). This property is crit-
ical to type-check the collection classes, as Sec. 2.2 will
show.
Consider the following code:

class Bar<O extends World,I extends ReadOnly>

{ Date<O, Immut> d = new Date<O, Immut> () ;
Foo<0, Immut> foo = new Foo<O,Immut>(d); }
Recall our Immutability guarantee: an immutable object
cannot be changed after it is cooked. A This-owned object is
cooked when its owner is cooked (e.g., foo.ownedD). Any
other object is cooked when its constructor finishes (e.g.,
d and foo). The intuition is that ownedp cannot leak and so
the outside world cannot observe this longer cooking phase,
whereasd isvisible to the world after its constructor finishes
and must not be mutated further. The constructor on lines 10—
15 shows this difference between the assignments to samebd

10ur implementation uses type annotations to denote immutability of
this. A type annotation @Mutable on the receiver is similar toacl <I
extends Mutablex>? construct, but it separates the distinct roles of the
receiver and the result in inner class constructors.

(line 11) and to ownedp (line 12): sameD can come from the
outside world, whereas ownedp must be created inside this.
Thus, sameD cannot be further mutated (line 13) whereas
ownedD can be mutated (line 14) until its owner is cooked.
An object in araw method, whose immutability parame-
ter is 1, is still considered raw (thus the modified body can
till assign to its fields or call other raw methods) iff the ob-
ject is this or this-owned. Informally, we say that raw iS
transitive only for this or this-owned objects. For exam-

ple, the receiver of the method call sameD.setTime(...) IS
not this nor this-owned, and therefore the call on line 13
is illegal; however, the receiver of ownedD.setTime(...) IS

this-owned, and therefore the call online 14 islegal.

2.2 LinkedList example

Fig. 3 shows an implementation of LinkedList in OIGJ
that is similar in spirit to Sun’s implementation. We explain
this example in three stages: (i) we first explain the data-
structure, i.e., the fields of alist and its entries (lines 1-6),
(i) then we discuss the raw constructors that enable creation
of immutable lists (lines 7-24), and (iii) finally we dive into
the complexities of inner classes and iterators (lines 27-53).

LinkedList data-structure A linked list has a header field
(line 6) pointing to the first entry. Each entry has an element
and pointersto thenext and prev entries (line 3). We explain
first the immutability and then the ownership of each field.

Recall that we implicitly assumethat o extendsworid and
that *1 extendsreadonly onlines 1, 5, 35 and 49.

An (imymutable list contains (imymutable entries, i.e.,
the entire data-structure is either mutable or immutable as
a whole. Hence, al the fields have the same immutability
1. The underlying generic type system propagates the im-
mutability information without the need for special typing
rules.

Next consider the ownership of the fields of LinkedList
and Entry. This on line 6 expressesthat the referenceheader
points to an Entry owned by this, i.e., the entry is encapsu-
lated and cannot be aliased outside of this. 0 on line 3 ex-
presses that the owner of next is the same as the owner of
the entry, i.e., a linked-list owns all its entries. Note how
the generics mechanism propagates the owner parameter,
e.g., thetypeof this.header.next .next iSEntry<This, I,E>.
Thus, the owner of all entriesisthe this object, i.e., thelist.

Finaly, note that the field element has no immutability
nor owner parameters, because they will be specified by the
client that instantiates the list type, e.g.,
LinkedList<This,Mutable,Date<World,ReadOnly>>

Immutableobject creation A constructor that ismaking an
immutable object must be able to set the fields of the object.
It is not acceptable to mark such constructors as Mutable,
whichwould permit arbitrary side effects, possibly including
making mutable aliases to this. OIGJ uses a fourth kind of
immutability, Raw, to permit constructors to perform limited
side effects without permitting modification of immutable

1
2
3
4
5
6
7
8
9

10
11:
12:
13
14
15:
16:
17:
18:
19:
20:
21:
22:
23
24
25:
26:
27
28:
29:
30
3L
32:
33
34
35:
36:
37
38:
39:
40:
41:
42:
43:
44:
45:
46:
A7:
48:
49:
50
51
52
53

)

class Entry<0,I,E>

E element;
Entry<0O,I,E> next, prev;

class LinkedList<0,I,E> {

)

Entry<This, I,E> header;
<I extends Raw>? LinkedList() {
this.header = new Entry<This,I,E>();

header.next = header.prev = header;
}
<I extends Raw>? LinkedList (
Collection<?,ReadOnly,E> c) {
this.addAll (c);

this();
}
<I extends Raw>? void addall (
Collection<?,ReadOnly,E> c) {
Entry<This,I,E> succ = this.header,

pred = succ.prev;
(Ee : c) {
Entry<This, I,E> en=new Entry<This,I,E>();

for

en.element=e; en.next=succ; en.prev=pred;
pred.next = en; pred = en; }

succ.prev = pred;
}
int size() {...}
I iterator is a generic method; this is not a ¢J guard:
<ItrI extends ReadOnly> Iterator<QO,ItrI,I,E>

iterator() {

return this.new ListItr<ItrI>();
void remove (Entry<This,Mutable,E> e) {
e.prev.next = e.next;
e.next.prev = e.prev;
class ListItr<ItrI> implements
Iterator<0,ItrI,I,E> {
Entry<This,I,E> current;
<Itrl extends Raw>? ListItr() {
this.current = LinkedList.this.header;
<Itrl extends Mutable>? E next()
this.current = this.current.next;

return this.current.element;

}

<I extends Mutable>? void remove() {

LinkedList.this.remove (this.current) ;

}
}

interface Iterator<0,ItrI,CollectionI,E> {

)

boolean hasNext () ;
<ItrI extends Mutable>? E next();
<Collectionl extends Mutable>? void remove() ;

Figure3. LinkedList<0,I,E>inOIGJ

objects. Raw represents a partially-initialized raw object that
can still be arbitrarily mutated, but after it is cooked (fully
initialized), then the object might become immutable. The
constructors on lines 7 and 11 are guarded with raw, and
therefore can create both mutable and immutablelists.

Objects must not be captured in their raw state to prevent
further mutation after the object is cooked. If a programmer
could declare a field, such as pate<0,Raws, then araw date
could be stored there, and later it could be used to mutate a
cooked immutable date. Therefore, a programmer can write
the raw type only after the extends keyword, but not in any
other way. As a consequence, in a Raw constructor, this can
only escape asReadOnly.

Recall that an object becomes cooked either when its
constructor finishes or when its owner is cooked. The entries
of the list (line 6) are this-owned. Indeed, the entries are
mutated after their constructor finished, but before the list
is cooked, on lines 9, 22, and 23. This shows the power
of combining immutability and ownership: we are able to
createimmutablelistsonly by using thefact that thelist owns
its entries. If those entries were not owned by the list, then
this mutation of entriesmight be visible to the outside world,
thus breaking the guarantee that an immutable object never
changes. By enforcing ownership, OIGJ ensures that such
illegal mutations cannot occur.

OIGJ requires that all access and assignment to a this-
owned field must be doneviathis. For example, see header,
on lines 8, 9, 17, and 39. In contrast, fields next and prev
(which are not this-owned) do not have such a restriction,
as can be seen on lines 32—-33.

I terator implementation andinner classes Aniterator has
an underlying collection, and the immutability of these two
objects might be different. For example, you can have

e a mutable iterator over a mutable collection (the iterator
supports both remove () and next ()),

e a mutable iterator over a readonly/immutable collection
(the iterator supportsnext () but not remove ()), or

e areadonly iterator over a mutable collection (the iterator
supports remove () but not next (), which can be useful
if you want to pass an iterator to a method that may not
advance theiterator but may remove the current element).

Consider the Tterator<0, ItrI, CollectionI,E> interface
defined on lines 49-53, and used on lines 27 and 36. 1trI is
the iterator’simmutability, whereas collectionI isintended
to bethe underlying collection’simmutability (seeon line 36
how the collection’s immutability 1 is used in the place of
CollectionI).Line51requiresamutablertrt tocall next (),
and line 52 requiresamutable collectionI to call remove ().

Inner class ListItr (lines 35-48) is the implementation
of Iterator for list. [tsfull nameisLinkedList<0,I,E>.List-
Itr<ItrI>, and online 35it extends Iterator<o, ItrI, I,E>.
It reuses the owner parameter o from LinkedList, but de-
clares a new immutability parameter 1tr1. An inner class,

such as ListItr<ItrI>, only declares an immutability pa-
rameter because it inherits the owner parameter from its
outer class. ListItr and LinkedList have the same owner o,
but different immutability parameters (1tr1 for ListItr, and
1 for LinkedList). ListItr must inherit LinkedList’s owner
becauseit directly accesses the (this-owned) representation
of Linkedrist (line39), whichwould beillegal if their owner
was different. For example, consider the types of this and
LinkedList.this online 39:

Iterator<O,ItrI,...> thisIterator = this;
LinkedList<0,I,...> thisList = LinkedList.this;

Because line 38 sets the bound of 1trI to be Raw, this can
be mutated. By contrast, the bound of 1 is Readonly, SO
LinkedList.this cannot.

An inner class must have a distinct immutability parame-
ter, but it must reuse the owner parameter of its outer class.
We could have severa This types, €.9., LinkedList.This VS.
ListItr.This, but thiswould complicate the typing rules.

Finally, consider the creation of a new inner object on
line29 using this.new ListItr<ItrIs(). Thisexpressionis
type-checked both as a method call (whose receiver is this)
and as a constructor call. Observe that the bound of 1tr1 is
Readonly (line 27) and the guard on the constructor is Raw
(line 38), whichislegal because araw constructor can create
both mutable and immutable objects.

2.3 OIGJtypingrules

Fig. 4 contains al the OIGJ typing rules. We now discuss
each rule. Sec. 3 presents a formal type system based on
a simplified version of these rules. Some of the rules are
identical to those foundin OGJ[32] and IGJ[39] (see Sec. 5
for a comparison with OIGJ).

Ownershipnesting Consider thefollowing example:

List<This, I,Date<World,I>> 11; // Legal nesting
List<World,I,Date<This,I>> 12; // lllegal!

Definition of 12 hasillegal ownership nesting because owned
dates might leak, e.g., we can store 12 in this variable:
public static Object<World,ReadOnly> publicAliasToL2;

On the one hand, typesin Ol GJ may have multiple owner
parameters, e.g., the type of 11 has two owner parameters
(This and world). On the other hand, an object may only
have a single owner at run time. For example, the type of
11 will correspond at runtimeto alist that is owned by this
whileits elementsare owned by wor1d, and observethat this
isawaysinside world.

Recall that an owner 01 isinside o, iff 01 is adescendant
inthe ownershiptree of 02, i.e., 01 =g 02. We extend this def-
inition from owners to owner parameters as follows:. given
two owner parameters 01 and o2 in the same type, then o4
is inside o2 iff in any possible execution, these owner pa-
rameters correspond to some owners 01 and o0, (respectively)
where o1 <g 0. For example, This isinsideo, and any owner
parameter isinside wor1d.

Ownership nesting Thefirst owner parameter of type T must be inside any
other owner parameter inT.

Field access Field accesso. £ islegal iff O(f) = This = o = this.

Field assignment Field assignment o.£=. .. islegal iff (i) I(o) < raw, and
(i) (|(o) =Raw = (0o =this Or O(o0) = This)), and (iii) field access o. £
islegal.

Method invocation Consider method T m(Ty, ..., T,). The invoca
tion o.m(...) is legal iff (i) O(T) = This = o =this for i = 0,...,n,
and (i) I(m) = raw implies field assignment part (ii).

cJ’'smethod guard (i) An invocation o.m(...) is legal if the type of o
satisfies the guard of w. (ii) When typing method n, the bound of type
variables that appear in the guard changes to their bound in the guard.
(iii) The guard of an overriding method is equivalent or weaker than that
of the overridden method.

Inner classes An inner class reuses the owner parameter of the outer class.
However, it has a distinct immutability parameter.

Invariant The programmer marks each type parameter as invariant or co-
variant. An immutability parameter is always covariant, whereas an
owner parameter is always invariant.

A type parameter must be invariant if it is used in a superclass that
contains Mutable, a field that contains Mutable but is not this-owned,
or in the position of another invariant type parameter.

Same-class subtyperelation Let c<xi,...,x,> be a class. Type s =
C<S1,...,Sn>isasubtype of T =c<Ty,...,Tph>, Written ass < T, iff (s=T)
or ((all immutability parameters 1; are either readonly Or Immut), and

Erased signature If method o’ overrides a readonly/immutable method m,
then the erased signatures of o and m, excluding invariant type parame-
ters, must be identical. (The erased signature of a method is obtained by
replacing type parameters with their bounds.)

Object creation A constructor cannot have any this-owned arguments.
Furthermore, new someClass<X,...>(...) is lega iff the constructor's
guard <I extends Y>? satisfies: v = Mutable and X = Mutable, OF Y = Raw.

Generic Wildcards OIGJ prohibits using a generic wildcard (?) in the
position of the immutability parameter. For the owner parameter, OIGJ
prohibits using a wildcard in a field or in a method return type, but
permits it for stack variables and method parameters.

Raw parameter raw can only be used after the extends keyword. It cannot
be used in the position of a generic parameter.

Fresh owners A fresh owner isamethod owner parameter that is not used
in the method signature. It is a descendant in the ownership tree of all
other owners in scope.

Static context This cannot be used in astatic context, i.e., in static methods
or fields.

Figure 4. All the OIGJtyping rules (beyond those of Java),
in English. Also see Sec. 3 for a formalization. Underlined
sentences show similarities among the rules.

OIGJrequires that owner parameters are properly nested,
i.e., that the first owner parameter of type T is inside any
other owner parameter in T. To enforcethis rule, OlGJ main-
tains ordering constraints among owner parameters in the
same way as described in OGJ[32].

Field access This rule enforces ownership: this-owned
fields can be assigned only via this. In Fig. 3, note that all
accesses and assignmentsto header are doneviathis.

Field assignment Assigning to afield should respect both
immutability and ownership constraints. Part (i) of the rule
enforces immutability constraints: a field can be assigned
only by a mutable or raw reference. Part (ii) ensures Raw
is transitive only for this or this-owned objects. Part (iii)
enforces ownership constraints as in field access.

For example, consider the assignments on lines 8 and 9
of Fig. 3. Note that the bound of 1 is raw, thus the as-
signments satisfy part (i). Part (ii) holds, i.e., raw is transi-
tive in the first assignment because the target object is this
and in the second assignment because it is this-owned (the
type of this.header iS Entry<This, I,E>). Finaly, part (iii)
holds in the first assignment because header was assigned
via this, and in the second assignment because field next
(Entry<0, I>) isnot this-owned.

Method invocation Method invocation is handled in the
same way as field access/assignment: parts (i) and (ii) are
similar to field access and field assignment part (ii). For ex-
ample, consider thefollowing method: R m(a a) { ... }
Then, the method call o.m(e) ishandled as if thereis an as-
signment to afield of typea, and the return value is typed as
if therewas an accessto afield of typer. Note that regarding
the transitivity of raw, we check both the immutability of the
receiver aobject (1(o0)) and that of the method, i.e., its guard
(I(m)). If both are raw, then we requirethat o iseither this or
this-owned.

Inner classes An inner class is a non-static nested class,
e.g., iterators in java.util are implemented using inner
classes. An inner class reuses the owner parameter of the
outer class, i.e., theinner object is seen as an extension of the
outer object. However, it has a distinct immutability param-
eter. Therefore, both this and outerClass.this are treated
identically by the typing rules that involve ownership.

Nested classes that are static can be treated the same as
normal classes.

Invariant A user can annotate atype parameter x in classc
with eInvariant to prevent covariant changes, in which case
we say that x is invariant. Otherwise we say that x is covari-
ant. An immutability parameter must be covariant, or else
a mutable reference could not be a receiver when calling a
readonly method. An owner parameter must be invariant, be-
cause the owner of an object cannot change.

A type parameter must be invariant if it is used in a
field/superclass that contains mMutable, or if the erased sig-
nature differs. For example, if a class has a field of type
Foo<O,Mutable, X>, then x must be invariant (the owner pa-
rameter o is always invariant).

Subtype relation Java is invariant in generic arguments,
i.e., it prohibitscovariant (or contravariant) changes. vector<
Integer> IS NOt @ subtype of vector<objects. If it were,
then mutating avector<Integers by inserting, €.9., astring,
breaks type-safety.

OIGJ permits covariant changes for non-mutable refer-
ences because the object cannot be mutated in a way that
is not type-safe. OIGJs subtyping rules includes Java's
subtyping rules, therefore OIGJs subtype relation is a
superset of Java's subtype relation. If mutation is disal-
lowed, OIGJ's subtyping rule allows covariant changes in
other type parameters, within the same class. For example,
List<O,ReadOnly, Integer> isasubtypeof List<O,ReadOnly,
Number>. Note that covariance is allowed iff all immutabil-
ity parameters of the supertype are readonly or Immut, €.g.,
Iterator<0,ReadOnly,Mutable, Integer> iSnot asubtype of
Iterator<0,ReadOnly,Mutable, Number>, but it is a subtype
of Iterator<0O,ReadOnly,ReadOnly, Numbers.

Erased signature When the erased signature of an overrid-
ing method differs from the overridden method, the normal
javac compiler inserts a bridge method to cast the argu-
mentsto the correct type [7]. Such bridge methods work cor-
rectly only under the assumptionsthat subtyping isinvariant.
For example, consider an integer comparator intComp that
implements Comparable<Integers. |If Comparable<Integers
were a subtype of comparable<Objects, then we could passa
String tO intComp’simplementation of compareTo (Integer) :
((Comparable<Object>) intComp) . compareTo ("a")

OIGJ requires that the erased signature of an overriding
method remainsthe same (excluding invariant parameters) if
the overridden method is either readonly or immutable. For
example, the erased signature of compareTo in intComp dif-
fersfromthe onein theinterface comparable<o, 1, %>. There-
fore, this rule requires that the type parameter x must be in-
variant:

interface Comparable<0O,I, @InVariant X> {
int compareTo (X o); }

Object creation A constructor should not have any this-
owned parameters, because this-owned objects can only be
created inside this.

Recall that the immutability of a constructor (or any
method in general) is defined to be the bound of the im-
mutability parameter in that constructor, e.g., a mutable con-
structor hasthe guard <1 extends Mutables?. Recall that ¢J
prohibits calling a rRaw constructor to create an Tmmut oObject
because the guard is not satisfied: Tmmut is not a subtype of
Raw. OIGJ changed cJ and treats constructor calls using this
object creation rule: araw constructor can create any object
(mutable and immutable). A Mutable constructor can only
create Mutable objects. A constructor cannot be Immut oOr
ReadOnly, SO that it is able to assign to the fields of this.

Genericwildcards OIGJ uses Java s existing generic wild-
card syntax (?) to express existential owners [8, 29, 37].
A programmer can use existential owners when the exact
owner of an object is unknown. One motivation for ex-
istential owners is the downcast performed in the equals
method [37].

Consider thefollowing two castsin normal Java:

boolean equals (Object o)
{ List<?> 1 = (List<?>)o; // OK
List<Object> 1 = (List<Object>)o; } // Warning!
The second cast is awarning since erasure makes it impossi-
ble to check at run time that the generic parameter is object.
OIGJ prohibits wildcards on the owner parameter of
fields, e.g., Date<?,Readonly> field, because one can de-
clare a static field of that type and store a this-owned date,
thus breaking owner-as-dominator. Wildcards on a method
return type are also prohibited because they can be used to
leak this-owned fields. However, wildcards on stack vari-
ables (method parameters or local variables) are allowed.
Note that the immutability parameter is covariant, and
therefore there is no need to use a wildcard for immutabil-
ity. For example, consider the pateList class, which is pa-
rameterized by its owner parameter (0) and the dates' owner
parameter (DO):
class DateList<0,I,DO extends Worlds {
boolean equals(Object<?,ReadOnly> o)
{ DateList<?,ReadOnly,?> 1 =
/I No need to check ownership or immutability at run time.
(DateList<?,ReadOnly,?>) o;
return listEquals(1l); }
<02 extends World,DO2 extends World> boolean
listEquals (DateList<02,ReadOnly,D02> 1) {...}
}
Method 1istEquals shows that it is possible to name the
existential owner—the unknown list’s owner parameter is 02
and the unknown dates' owner parameter is po2. Phrased
differently, the two wildcards in pateList<?,ReadOnly, 2>
are now named DateList<02,ReadOnly, D02 >.
Recall that Java's generics can be bypassed by using
reflection or raw types such as rList. Similarly, one can
bypass OlGJ when using these features.

Raw parameter Raw can only be used after the extends
keyword. For example, it is prohibited to write Date<0, Raws>.
If this was possible, then such a date could leak from a raw
constructor that is building an immutable object resulting in
an dias that could mutate such immutable object.

Fresh owner A fresh owner is a method owner parameter
that is not used in the method signature. In OIGJ, a fresh
owner expresses temporary ownership within the method.
This allows a method to create stack-local objects with ac-
cess to any object visible at the point of creation, but with
a guarantee that stack-locals will not leak. Hence, stack-
local objects can be garbage-collected when the method
returns. For example, consider a method that deserializes
a ByteStream by creating a temporary objectStream wrap-
per:
<0, TmpO> void deserialize (ByteStream<O> bs)

ObjectStream<TmpO,ByteStream<0>> 08 = ... }

Note that Tmpo is a fresh owner, whereas o is not. Because
TmpoO IS strictly inside other owner parameters such aso, there

cannot be any aliases from bs to os. In fact, os can only
be referenced from other stack-local objects, and therefore,
when the method returns, os can be garbage-collected.

Technically, a fresh owner is strictly inside all other non-
fresh owners in scope, to make sure it cannot exist after the
method returns. (Multiple fresh owners are incomparable
with each other.) Because a fresh owner is inside severa
other owners that might be incomparable in the ownership
tree, the ownership structureis a DAG rather than atree.

To type-check temporary ownership and DAG ownership
structures, Ol GJ adopts Wrigstad's scoped confinement [36]
ownership model, in which the fresh owners are owned by
the current stack-entry. Briefly stated, each method invoca-
tion pushes a new stack-entry (the first stack-entry corre-
spondsto the static main method), which isthe root of anew
ownership tree. Objectsin this new tree may point to objects
in previous trees, but not vice versa.

Static context This represents that an object is owned by
this, and so OIGJ prohibits using it in a static context, such
as static fields or methods. Static fields can use the owner
parameter world, and static methods can also use generic
method parameters extending wor1d. For example, method:

static <LO extends World,E> void sort (
List<LO,Mutable,E> 1) { ... }

is parameterized by the list's owner 1o.

2.4 Factory method design pattern

The factory method pattern [17] is a creational design pat-
tern for creating objects without specifying the exact class
of the object that will be created. The solutionisto define an
interface with amethod for creating an object. Implementers
can override the method to create objects of a derived type.

The challenge of the factory method pattern with respect
to ownership [25] is that the point of creation and usage are
in different classes, and the created object must be owned
by its user. Previous work makes a newly-created object
be owned by its creator, and then changes the ownership
after the fact via sophisticated ownership transfer mecha
nisms [24] using capture and release.

In OIGJ's approach, an object has its final owner from
its moment of creation. When requesting creation of a new
object, the client of the factory also specifies the owner.
The type-checker ensures that the created object cannot be
captured (stored in alocation that would require a different
owner) in the process. Specifically, ageneric factory method
can abstract over the owner (and immutability) parameter of
the constructed object. The underlying generics mechanism
finds the correct generic method arguments.

We will show how to use the factory method pattern in
the context of synchronized lists. Consider this client code:

b = new LinkedList<T>();

1 = Collections.synchronizedList (b);
Thedocumentation of collections.synchronizedList States:
“In order to guarantee serial access, it is critical that all ac-

1. class SafeSyncList<O,I,E> implements List<O,I,E> {
2 List<This,I,E> 1;

3 <I extends Raw>? SafeSyncList (

4 Factory<?,ReadOnly,E> f)

5: { List<This,I,E> b = f.create();

6 1 = Collections.synchronizedList (b); }

7. ... Il delegate methods to 1

8 }
9 class Collections<0,I> {

10: /I Sun’s original implementation, augmented only by 02 and 12
11: static <02,I2,E> List<02,I2,E>

12 synchronizedList (List<02,12,E> list) { ... }
13}

14: interface Factory<O,I,E>

15: { <02,I2> List<02,I2,E> create(); |

16: class LinkedListFactory<O,I,E> implements

17: Factory<0O,I,E> {

18: <02,I2> List<02,I2,E> create() {

19: return new LinkedList<02,I2,E>();

20: } }

Figure 5. Factory method design pattern in OIGJ. OIGJ
guarantees that the backing list b (line 5) is never accessed
directly, e.g., it cannot be captured on line 19.

cess to the backing list is accomplished through the returned
list.” That means that there might be concurrency problems
if one accidentally uses the backing list b instead of 1.

So, you want to own alist 1, which is backed by another
list b. The chalengeis that b should be owned by 1 (and not
by you), in order to guarantee that you do not accidentally
access b directly and comprise thread-safety.

Fig. 5 shows how owner-as-dominator can ensure that
the backing list b has no outside aliases. This solution
avoids refactoring of existing Java code by delegating calls
to the synchronized list 1. Specifically, class safesyncList
(lines 1-8) owns both the list 1 (line 2) and the backing list
b (line5). A factory method is used on lines 3-6.

The Factory interface is defined on lines 14-15. The
owner and immutability of the Factory isirrelevant because
it only has a readonly method. However, the newly created
list has a generic owner and immutability, which are stati-
cally unknown at the creation point (line 15). The generics
mechanism fillsin the correct generic argumentsfrom the us-
age point (line 6) to the actua creation point (line 19). Note
that the factory implementation cannot capturean aliasto the
newly created list on line 19, because its owner parameter 02
is a generic method parameter that cannot be used in fields.

To conclude, one can use safeSyncList instead of using
Sun’s unsafe synchronizedList, and be certain no one else
can access the backing list. All this was achieved using
generic factory methods on lines 15 and 18.

1. interface Visitor<O,I,NodeO,NodeI> {

2. <I extends Mutable>? void

3 visit (Node<NodeO,NodeI> n);

4}

5. class Node<0,I> {

6: void accept(Visitor<?,Mutable,0,I> v)

7. { wv.visit(this) }

8 }

9: // Visiting a readonly node hierarchy.

10: Node<This,ReadOnly> readonlyNode = ...;
11: readonlyNode.accept (new

12: Visitor<World,Mutable,This,ReadOnly>() {
13: <I extends Mutable>? void

14: visit (Node<This,ReadOnly> n)

15: { .../l Can mutate the visitor, but not the nodes. }
16 });

17: /] Visiting a mutable node hierarchy.

18: Node<This,Mutable> mutableNode = ...;

19: mutableNode.accept (new

20: Visitor<World,Mutable,This,Mutables>() {
21: <I extends Mutable>? void

22: visit (Node<This,Mutable> n)

23; { .../l Can mutate the visitor and the nodes. }
24: }) ;

Figure6. Visitor patternin OIGJ. TheNode’s ownership and
immutability are underlined. We omit the extends clause
for generic parameters, e.g., we assume that Nodeo extends
world. A singlevisitor interface can be used both for mutable
and Readonly hodes.

25 Visitor pattern

Thevisitor design pattern [17] isaway of separating an algo-
rithm from a node hierarchy upon which it operates. Instead
of distributing the node processing code among al the node
implementations, the algorithm is written in a single visitor
class that has avisit method for every node in the hierarchy.
This is desirable when the algorithm changes frequently or
when new algorithms are frequently created. The standard
implementation (that does not use reflection) defines a tiny
accept method that is overridden in all the nodes, that calls
the appropriate visit method for that node.

Nageli [25] discusses ownership in design patterns, and
showsthat previousownership work was not flexible enough
to express the visitor pattern. A visitor is aways mutable
because it may accumulate information during the traversal
of the nodes hierarchy. However, some visitors only need
readonly access to the nodes, and some need to modify the
nodes. In the former case, the owner of the visitor and nodes
may be different, and in the latter case, it must be the same
owner. The chalenge is to use the same visit and accept
methods, and to avoid duplicating the traversal code.

OIGJ can express the visitor pattern by relying on owner-
polymorphic methods:. the owner of an object o, can pass it
to an owner-polymorphic method, which cannot capture o.

Fig. 6 showsthevisitor patternin OlGJ. As mentioned be-
fore, the owner of the visitor and nodesmay be different, and
some visitors may or may not modify the nodes. Therefore,
the visitor is parameterized on line 1 by the owner (Node0)
and immutability (Node1) of the nodes. Thevisit method on
line 2 is mutable because it changes the visitor that accumu-
lates information during the traversal. Different visitor im-
plementationsmay have differentimmutability for the nodes,
e.g., readonly on line 14 or mutable on line 22.

Finally, note how the type arguments This, ReadOnly Of
the node on line 10 match the last two arguments of the visi-
tor online12, and online 18 thetype argumentsThis, Mutable
match those on line 20. This shows that the same accept
method (without duplicating the nodes' hierarchy traversa
code) can be used both for readonly and mutable hierarchies.

3. Formalization and Type Soundness

Proving soundness is essential in the face of complexities
such aswildcards and raw/cooked objects. This section gives
the typing rules and operational semantics of a simplified
version of OIGJ and sketches the proofs of our immutability
and ownership guarantees. For lack of space, the full proofs
areincluded in our technical report [38].

Our type system, called Featherweight OIGJ (FOIGJ), is
based on Featherweight Java (FJ) [20]. FOIGJ models the
essence of OIGJ: the fact that every object has an owner-
ship and immutability, and the cooking phase when creat-
ing immutable objects. FOIGJ adds imperative constructs to
FJ, such as nul1 values, field assignment, locations/objects,
and a heap. FOIGJ also adds a constructor body (to model
the cooking phase), owner and immutability parameters to
classes, guards as in ¢J [19], wildcard owners, and the run-
time notion of raw/cooked objects.

FOIGJ poses two main challenges. (i) modeling wild-
cards in the typing rules, and (ii) the representation for raw
objects. We use the following example (similar to Fig. 2) to
demonstrate these two challenges:

class Foo<0,I> {

Date<0,I> sameD;

Date<This,I> ownedD;

Date<This, Immut> immutD;

<I extends Raw>? void Foo() {

this.ownedD = new Date<This,I>();
this.immutD = new Date<This, Immut>();
.

Wildcards pose a difficulty due to aprocessin Javacalled
wildcard capture inwhich awildcardis replaced with afresh
type variable. For example, the two underlined wildcards
bel ow might represent two distinct owners:

Foo<?,I> f = ...;

Date<?,I> d = ...;

f.sameD = d; // Illegal assignment! Different owners!

A Java compiler rejects the assignment due to incompat-
ible types, because the wildcards were captured by dif-

ferent type variables. Formalizing the full power of wild-
cards (with upper and lower bounds) was only recently
achieved [9]. FOIGJ does not model wildcard capture. In-
stead, it is enough to augment the field assignment rule with
the following check: assigning to o is illega if O(0) = »
(similarly for method invocation). This extracheck is needed
only in FOIGJ, and not in OIGJ, because OIGJ is built on
top of Java, which supports wildcard capture.

The second challenge is modeling raw objectsin the non-
erased operational semantics. Recall that genericsare erased
in Java and are not present at run time. FOIGJ's erased op-
erational semanticsis identical to that of normal Java: own-
ership and immutability information is not kept. In contrast,
the non-erased version stores with each object its owner and
immutability, and it checks at run time the ownership and
immutability guarantees (i.e., that field assignment respects
owner-as-dominator and is done only on mutable or raw ob-
jects). The non-erased version is used only in the formalism.
Storing the owner and immutability of every object at run
time would be a huge overhead, and is not required for cor-
rectness if the program satisfies OIGJ s type rules.

The non-erased semantics of Featherweight Generic
Java [20] (FGJ) performs variable substitution for method
cals, however FGJs way of doing substitution does not
work in FOIGJ. For example, consider the following reduc-
tion as done in imperative FGJ:

new Foo<World, Immut>() —
1.ownedD = new Date<l,Immuts>();
1.immutD = new Date<l,Immut>();...

Thevariable 1 in the constructor was substituted with Tmmut,
and the variables this and This were substituted with a new
location 1 that was created on the heap, i.e, the heap H
now contains a new object in location 1 whose fields are all
null: H = {1 Foo<World, Immut>(null) }. (Locationsare
pointers to objects; we treat locations and objectsidentically
because they have a one-to-one mapping, e.g., the owner of
a location is defined to be the owner of its object.) Note
how owner parameters (O(0)) at compile time are replaced
with owners (6(0)) at run time, e.g., This was replaced with
location 1.

There are two reasonswhy substituting 1 with rmmut does
not work in FOIGJ: (i) the reduction does not type-check
because we mutate an immutable object (1.ownedp = ...),
and (i) we lost information about the two new pate objects,
namely that ownedp can still be mutated after its constructor
finishes (becauseit is this-owned) whereas immutD cannot.

FOIGJ solvesthesetwo issues by introducing an auxiliary
type Immuti. An object o of immutability 1(0) = Immutj
becomes cooked when the constructor of 1 finishes, therefore
wecall 1 itscooker, denoted by x(0) = 1. Phrased differently,
an object is cooked when its cooker is constructed (i.e.,
the cooker’s constructor finishes). Note that the cooker 1
can be o itself, its owner, or even some other incomparable
object.

The connection between the cooker and the owner will be
shown in the subtyping and typing rules below. Intuitively,
for a reference of type c<o, Immut 1 >, if the cooker 1 is not
insidethe owner o, then that reference must point to an object
whose cooker is 1. Otherwise (if 1 is inside o), then that
reference might point to any cooked immutable object (even
onewith a cooker that is not 1).

In our example, the location 1 that was created with new
Foo<World, Immut> () becomescooked whenit isconstructed,
i.e, k(1) =1, and H = {1 — Foo<World, Immuty > (null) }.
Now FGJ's way of doing the substitution works for FOIGJ,
because 1 is replaced with Tmmut 1, i.e.,

1.ownedD = new Date<l, Immuty>();

1.immutD = new Date<l, Immut>();
Note how the cooker of ownedD is 1, whereas the cooker
of immutD IS immutD itself. Therefore, ownedp has a longer
cooking phase than immutD.

FOIGJ also maintains the set of currently executing con-
structors K, where K € dom(H). We maintain the invariant
that a location 1 is raw iff k(1) € K, and require that only
mutable or raw objects can be mutated. Specifically, Immut
is a subtype of Raw Wwhen 1 € K, and it is a subtype of Tmmut
when1 ¢ K.

Type tmmut; also helps understand the Object creation
rule better. Recall that an tmmut object can be created from
a Raw constructor, even though Immut is not a subtype of
Raw, Which seems to contradict cJ’s method guard rule.
However, type tmmut 1 is in fact a subtype of raw when the
object is created, because in our typing rules we have that
Immut] < Raw iff 1 € K, and when an object is created, its
cooker must be in K. Phrased differently, the type of an
immutabl e object never changes (always 1mmut 1), but during
the program execution the set K changes, and therefore the
subtyping relation changes: initially tmmut; is a subtype of
Raw, but later the object becomes cooked, and then Immut 1 is
no longer a subtype of raw, but instead it becomes a subtype
of Immut.

Faced with such mgor challenges, we removed from
FOIGJ anything that was not needed to prove our run-time
guarantees. Specifically, FOIGJ does not model: generics
(except for the owner and immutability parameters), owner
polymorphic methods, casting, inner classes, fresh own-
ers, or multiple immutability/owner parameters. On the one
hand, the interaction between generics and immutability
(which enables covariant subtyping) was previously proven
sound in Featherweight 1GJ (FIGJ) [39]. On the other hand,
the interaction between generics and ownership (as found
in the ownership nesting rule) was previously proven sound
in Featherweight OGJ (FOGJ) [32]. Because covariant sub-
typing (as found in IGJ) and ownership nesting (as found in
OGJ) was not changed in OIGJ, we decided not to model
generics in FOIGJ. We note that FOIGJ does model Rraw,
which was not modeled previously in FIGJ.

FT !i= C<FO,IP>

T Ii= C<MO, IP>

N I= C<NO,NI>

NO :i=TWorld | 1

FO::=NO | This | 0

MO i=FO | ?

NI ::=Mutable | | Immut]

VI=NI | Immut | I

IP ::=ReadOnly | VI

IG :i= ReadOnly | Immut | Mutable | Raw

M= <I extends IG>? FTm(TX) { returne; }
L= class C<0,I> extends C’<0,I>{ FT £;M }
v i=null | 1

e

i=v|x|ef|ef=e]|em(e) | newC<FO,VI>(€) | e ;jreturn 1

Field (and method return) Type.

Type.

Non-variable type (for objects).

Non-variable Owner parameter (for objects).

Field Owner parameter.

Method Owner parameter (including generic wildcard).
Non-variable Immutability parameter (for objects).
Variable Immutability for new.

Immutability Parameter.

Immutability method Guard.

Method declaration.

cLass declaration.

Values: either null or alocation 1.

Expressions.

Figure7. FOIGJSyntax. Theterminalsarenull, owner parameters (o, This, World), and immutability parameters (1, Readonly,
Mutable, Raw, Immut). Givenalocation 1, Immut 1 representsan immutable object with cooker 1. The program source code cannot
contain the grayed elements (locations are only created during execution/reductionin r-new of Fig. 10).

Consider thetyping rulesin Fig. 4. Classesin FOIGJ have
a single raw constructor, therefore Object creation ruleis
always satisfied and can be ignored. Furthermore, because
FOIGJ does not model generics, static, or inner classes, then
thefollowing rules can also beignored: Owner ship nesting,
Inner classes, Inheritance, Invariant, Erased signature,
and Fresh owners. Covariant subtyping and erased signa-
tures were described in FIGJ, and ownership nesting and
(limited) owner-polymorphic methods in FOGJ. We stress
that FOIGJ does model wildcard for the owner parameter
(?), which is used in owner-polymorphic methods such as
sort Of equals. In our view, extending the formalism with
fresh ownersor inner classes increases the complexity of the
calculus without providing new insights.

The following rules are enforced by the syntax of FOIGJ
(Fig. 7): Generic Wildcards and raw parameter. The re-
maining rules are: Field assignment, Field access, M ethod
invocation, cJ’'s [19] method guard, and a Subtype rela-
tion (without generics). Theserulesareformalizedin FOIGJ
inthe subtyping rulesof Fig. 8 (K, ' T < 1') and thetyping
rules of Fig. 9 (K,T"F e : T). Finaly, the reduction rules are
described in Fig. 10(K - H,e — H’,¢’).

Sec. 3.1 describes the syntax of FOIGJ, Sec. 3.2 the sub-
typing rules, Sec. 3.3 the typing rules, Sec. 3.4 the reduc-
tion rules, and Sec. 3.5 proves preservation, progress, and
our run-time immutability and ownership guarantees.

3.1 Syntax of FOIGJ

FOIGJ adds imperative extensions to FJ such as assignment
to fields, object locations, nul1, and aheap [31]. A construc-
tor initializes all the fields to null, and then calls a build
method that constructs the object. Having null valuesisim-
portant because this-owned fields must be initialized with
null since they cannot be assigned from the outside, i.e.,

they must be created within this. For example, a list con-
structor cannot receive its entries as constructor arguments,
instead it must create the entries within the bui1d method.

Fig. 7 presents the syntax of FOIGJ. Expressions in
FOIGJ include the four expressions in FJ (method param-
eter, field access, method invocation, and new instance
creation; without casting), as well as the imperative ex-
tensions (field update, e;return 1, and values). Expres-
sione;return 1 iscreated when reducing a constructor call,
eg., K+ new N(...) — 1.build(...);return 1, then we
proceed to reduce 1.build(...) and finaly return 1. Note
that 0 and 1 are terminds, i.e., the owner and immutability
parameters are aways named o and 1.

An evaluation of an expression (e) is either infinite, or is
stuck on null-pointer exception, or terminates with a value
(v), whichiseither nu1l or alocation 1.

Note how the syntax limits the usage of wildcards and
Raw: Wildcards (?) can be used only as the owner of method
arguments (FOIGJ does not have local variables), and raw
only as a method guard (zc).

We represent sequences using an over-line notation, simi-
larly to FJ, i.e., comma denotes concatenation of sequences,
and FT £; representsthe sequencerTy f1;...FTy £n;

A class in FOIGJ has a single constructor that can create
both mutable and immutable objects, i.e., it isaraw construc-
tor. The constructor is not shown in the syntax becauseit can
beinferred from the class declaration: it always assignsnul1l
to the fields of the newly created object, and then invokes
this special method (ignoring the return value):
<I extends Raw>? T’ build(T €) { return e; }

We require that each class has such a method, and that its
parameters are not this-owned nor have wildcards. The re-
duction rules call that method after the fields are set to null.

o o K.'ts<t K, TkT<U class C<0,I> extends C'<0,I> o
K,TF1<T(1) (s K.'kr<T (52 K.'ks<uvu K,T I c<Mo, 1P> < C'<MO, TP>)
K,I'F Mutable < Raw (=) K,T'F Raw < ReadOnly =6) K,T'F Immut < ReadOnly &7
K,IT'F1p<i1p < © 1eK <10
K,T' F c<Mo, 1P> < C<MO, IP'> 8) K,T"F c<Mo, 1P> < C<?,1P> 9 K, ' Immut] < Raw (510)
1¢K 1¢K 1 <g NO

(S11)

K,I'F Immut] < Immut

K, It Immut < Immutj

(S12) (S13)

K,T' F C<NO, Immut > < C<NO, Immutq >

Figure 8. FOIGJ Subtyping Rules (K,T"F T <). Rule s13 shows the connection between cooker 1 and owner No.

3.2 Subtypingin FOIGJ

An environment T is a finite mapping from variables x and
locations 1 to types T, e.g., x : T € I'. The location types
define the ownership tree <g (or without reflexivity <g).
The set of currently executing constructorsis denoted K. In
addition, T" maps the immutability parameter 1 to its bound
according to the current method's guard (zc in Fig. 7). For
example, 1: rRaw € I" when typing the expression e in method
build above.

Fig. 8 shows FOIGJ subtyping rules. Rules si—s4 are the
same as FGJ rules. s1 means that a generic variable is a
subtype of its bound, sz is reflexivity, s3 is transitivity, and
s4 is that subclassing defines subtyping. Rules ss—s7 show
subtyping among non-variable immutability parameters as
shown in Fig. 1b. Rule ss defines covariant subtyping for the
immutability parameter. Rule s9 formalizes subtyping with a
wildcard owner.

The last four rules si0—s13 are concerned with cookers
such as tmmut;. Recall that an object is cooked when its
cooker 1 is constructed, i.e., the constructor of 1 isno longer
executing: 1 ¢ K. Rule si0 views the type as raw, while
rules s11—s12 shows the equivalence to Tmmut. Note that sub-
typing is no longer antisymmetric, i.e., there are non-equal
types 1 and T2 for which T1 < T2 < 1. For example, T1 =
C<0, Immut1> and T2 = C<0, Immut>, When 1 ¢ K. In fact,
this is not surprising because these types both represent im-
mutable object, and after the cooker is cooked, the identity
of the cooker isirrelevant.

Cooker vs. owner Rule s13 assumes that the cooker is in-
sidethe owner (1 <g N0), which meansthe object might came
from the outside. This rule addresses the difference between
the cooker of (i) alocation 1 or (ii) that of an expression such
asfieldaccess1. f: (i) location 1 will be cooked exactly when
the constructor of k(1) is finished, however, (ii) the cooker
of 1.f isanover-approximation, i.e., the object stored in that
field might have been cooked earlier. Rule s13 allows an over-
approximation only when the cooker isinside the owner.

Consider this example:

class Foo<O,I> { Date<O,I> same;

<I extends Raw>? Foo(Date<O,I> d) { same=d; } }

Field same is assigned from the outside, but it might still be
this-owned. We will show the reduction of two expressions:
one where same is assigned a cooked (outside) date, and one
with a raw date. The expressions are inside the constructor
of some object b whose cooker isb itself.

The reduction of thefirst expression:

new Foo<This, Immut> (new Date<This, Immut>())
results in the heap: H = {d1 +— Date<b, Immutg;>(),£1 —
Foo<b, Immut 1 > (d1) }. Notethat thetype of d1 must beasub-
typeof £1.same inawell-typed heap (formally defined later).
Thetype of d1 is a subtype of pate<b, Tmmut > (because d1 ¢
K in rule s12), which is a subtype of pate<b, Tmmut ¢7 > (be-
cause £1 <g b inrule s13). Phrased differently, the cooker of
f1.same iS £1, but it may point to an object that was cooked
before, and indeed it points to an object whose cooker is d1
(so it is an over-approximation).

The reduction of the second expression:

new Foo<This,I>(new Date<This,I>())

results in the heap (because I = Immutyp): H = {d2 —
Date<b, Immutp> (), £2 +— Foo<b, Immuty, > (d2) } Note that in
this case, both a2 and f2 have the same cooker b. The
type of f2.same iS Date<b,Immuty>, and because b 4g
b (see rule s13), then we know that this is not an over-
approximation, i.e., that field points to an object whose
cooker must be b.

To summarize, consider a type Foo<o, Immut c>. If the
cooker c is inside the owner o (c <g o), or the cooker is
cooked (c ¢ K), then the type is an over-approximation,
i.e., it can point to any Immut object (that is, to any object
with cooker ¢’ ¢ K). Otherwise, it pointsto an object whose
cooker is exactly c. Formally,

LEMMA 3.1. If K,T" - c<Mo, 1P> < C’<NO, Immut] >, 1 £g NO,
and 1 € K, then 1p = Immut .

We also provein the technical report that:

LEMMA 3.2. IfK,T'F c<MO, IP> < ¢’ <MO’, IP' >, then (i) Mo’ #
?=MO=MO", (ii) (IP" # Immut] Or 1 AgM0’') = K,I'F1P <
1P/, and (iii) c is a subclass of ¢, (iv) K,I' F p<1,1p> <
D<1,1P’> for any class p and location 1 where Mo’ <g 1.

(T-LOCATION) K,TF 1P < Raw

Ku{i},Tke:T . mtype(L,build,c<Fo,vi>)=T—Uu K, TT'ke:Tm KTITFT <T .
K,T'Fe;return 1: F(l) (T-RETURN) K,I'F new C<FO,VI> (%) : C<FO,VI> (T-New)
v . K,k e:c<Mo,1P> ftype(e,£,C<MO,IP>) =T —
K, TEx:T(x) (TVAR) K.,IT'Fnull:T (T-nuLL) KTFef:T (T-FIELD-ACCESS)
KI'kFef:T KJTITFe :1m KTk <T K, ['Fe:cwo,1pP>

isTransitive(e, ", C<MO, IP>)

MO # ?

(T-FIELD-ASSIGNMENT)

K,TH1:T(1)

K,I"teg: c<MO, IP>
K, I'F1p<1c

mtype(eg,m, C<MO, IP>) =T — T"

K.I'kFef=e' T’

K,TH&:T"
IG = Raw = isTransitive(eg, I', C<MO, IP>)

K,TFT" <T mguard(m,C) = IG

mtype(m,¢) =T—v O(Ti) =2 =0(Ui) =? (T-Invoke)

K,'Feg.m(g) : T"

Figure9. FOIGJ Expression Typing Rules (K, T' e : T).

3.3 Typingrulesof FOIGJ

Auxiliary functions We use the following auxiliary func-
tions: fields(c) returns all the field names (including inher-
ited fields) of class ¢, ftype(£, ¢) returnsthe type of field £ in
class ¢, mtype(m,) returns the type of method m in class c,
and mbody (m, C) returnsits body. Their definitions are based
on their counterpartsin FJ, and thus omitted from this paper.
In addition, function mguard (m, ¢) returnsthe method’s guard
(zcinFig. 7).

We overload the auxiliary functions above to work also
for types (T = c<Mo, 1p>) and not just classes (c) by substi-
tuting [Mo/0,1P/1]. However, we also need to carefully sub-
gtitute This when the receiver is this or locations. Func-
tion ftype(e, £,T) returns the type of the field access e.f
whereT isthetype of e, or error if the accessisillegal. For
example,

ftype (ownedD, Foo) = Date<This, I>
ftype (this, ownedD, Foo<O, Immut>) = Date<This, Immut>
ftype (this. f, ownedD, Foo<O, Immut>) = error

ftype (1, ownedD, Foo<o, Immut >) = Date<l, Immutc>

Formally, ftype (e, £, C<MO, IP>) =[M0/0,1P/I,z/This]ftype (£, C),
where (i) z =1 if e = 1, (ii) z = This if e = this, (iii) oth-
erwise z = error (and if a type contains error then it
means the call to ftype failed). When we know the field
is not this-owned, then the expression e is not used, and
we write ftype(_L, £,c). However, if the field is this-owned,
then e must be this or alocation 1.

Recall that Field accessrulein Fig. 4 required that this-
owned fields can be accessed only via this. At run time,
this is substituted with a location 1. Therefore, there is
a duality between this and a location 1 in the definition
of ftype. For example, the field access this.ownedp oOf type
Date<This, I> iS legal because we accessed a this-owned
field via this. At run time, this is substituted with some
location 1, and the access 1 .ownedp Of type Date<l,...> IS

now still legal because we accessed a this-owned field via

alocation 1. Notethat if the accessis not doneviaalocation,

e.g., bar.1.ownedD, then we cannot type-check the resulting
expression (because we do not know what should be the
substitute for This).

Thereisasimilar duality in Field assignment rule part
(i), that checksthat raw istransitivefor this or this-owned
objects. The dual of this is alocation 1, and the dua of a
this-owned object (c<This, I>) isan object whose cooker is
not insideits owner (C<o, Immut 1 > Where1 £g o). The second
duality holds because, for type c<This, 1>, the cooker (1) is
never inside the owner (This). At runtime, the owner will be
the location of this, and the cooker is either this or some
other object that was created before this, i.e., the cooker is
never inside the owner (but they might be equal).

Function isTransitive checks whether raw istransitive. The
underlined part shows the dual version of Field assignment
rulepart (ii): (i) this vs. 1/, and (i) Mo = This VS. 1 £g MO.

isTransitive(e, I',c<MO, IP>) =

(1p =1 and T (1) = Raw = (e=this OF MO = This)) Or
(1P = Immut; = (e=1’ Or 1 £q M0))

Typing class declarations FOIGJ program consists of
class declarations followed by the program’s expression.
Next, we describein words the rules for typing the class dec-
larations, and the rules for typing an expression are given
formally in Fig. 9. When typing an expression, we assumed
the class declarations are well-formed.

To check that class declarations are well-formed, FOIGJ
first performs all the checks done in FJ, e.g., that there
are no cycles in the inheritance relation, that field and
method names are unique in a class, that this is not a
legal method parameter name, that an overriding method
maintains the same signature, etc. FOIGJ performs addi-
tional checks related to method guards when typing method
declarations, i.e., we modify rule T-mernoo in FJ as follows:
(i) An overriding method can only make the guard weaker,
i.e., if a method with guard 1c overrides one with guard

16’ then 16’ < 16. (ii) In class ¢, when typing a method:
<I extends IG>? FTm(TX) { returne;}

we use an environment T" in which the bound of 1 is 1g,
i.e, I' = {1:16,%:T,this: C<0,I>}, and we must prove
that 0,'-e:sand 0,' - s < rT. Finally, we require that
if 16 = Readonly then I(Tj) # 1. This last requirement is
not really a limitation, because a programmer can replace
1 with readonly for parameters in readonly methods, and
previously legal programswould remain legal. (Thisrequire-
ment is needed to prove preservation for the congruencerule
of method receiver, see our technical report for details.)

Typing expressions Fig. 9 shows the typing rules for ex-
pressions in FOIGJ. Most of these rules are a direct trandla-
tion from Fig. 4. The main challenge was handling wildcards
correctly without resulting to wildcard-capture. Rule T-FieLo-
AssieNMENT Fequires that Mo # 2, i.e., one cannot assign to an
object with unknown owner. Typing method parameters is
similar to typing field-assignment, however, method param-
eters can have a wildcard owner whereas fields cannot (see
the difference between T and Fr in Fig. 7). Therefore, rule T
Invoke requiresthat O(T) =2 = O(T7) =2, i.e,if Tj=c<?, 1p>
thenuj = c<?, 1p’ >. Phrased differently, if the owner of eg is
unknown, then the owner of the method parameters cannot
beo.

Rule T-new performs less checks compared to a method
cal (e.g., no need to check the guard, isTransitive, nor wild-
cards) because build has severa restrictions. its guard is
Raw and it does not contain wildcards nor this-owned pa-
rameters. Because This does not appear in the signature
of build, we know that mtype will not use L in the call:
mtype(_L,build,C<FO, VI>).

An expression/typeis called closed if it does not contain
any free variables (such as wildcards, this, I, 0, Or This),
but it may contain World, ReadOnly, Mutable, Immut, Immut]
or locations. Note that the type of aclosed expressionis aso
closed.

LEMMA 3.3. IfK,T'+¢e’': T and ¢’ is closed and ¢’ # null,
then T’ is closed.

The delicate part of the proof is showing that T/ does not
contain This. Note that ftype returns a type with This only
if e = this (Which cannot happen sincee is closed).

3.4 Reduction rulesof FOIGJ

The initial expression to be reduced is closed, and we guar-
antee that a closed expression is always reduced to another
closed expression:

LEMMA 3.4. If eisclosed and K - H,e — H’, €/, then e’ is
closed.

The heap (or store) H maps each location 1 to an ob-
ject c<no, NI> (¥), wherefy (1) =noisitsowner,and I (1) =
NI is its immutability, and v are the values of its fields.
If NI = Immut/ then we say that itscooker iskn (1) =1". (We
added the subscript H to the functions that return the owner,

immutability and cooker, in order to explicitly show the de-
pendence on the heap.) We define aheap-typing 'y : 1+—T
that gives atype to each location in the obviousway (simply
removing thelist of fields (7)).

Theset of currently executing constructorsisK. A heap H
is well-typed for K if it satisfies two conditions: (i) Each
field location is a subtype (using K, T'y) of the declared field
type, i.e., for every location 1, where H[1] = c<NO,NI> (¥)
and fields(c) = £, and for every field £;, we have that ei-
ther vi = null or K,IT'y F Ty (vi) < ftype(1, £j,C<NO,NI>).
(ii) There is a linear order <7 over dom(H) such that for
every location 1, O (1) =world or O (1) <" 1, and Iy (1) =
Mutable OF ¥y (1) <T 1. The linear order <7 can order the
objects according to their creation time, because 64(1) is
always created before 1, and xn (1) is either 1 or created
before 1.

In our technical report we prove that if H is well-typed
for K then (a8) owner-as-dominator holds (Lem. 3.5), and
(b) H iswell-typed for any subset of K (Lem. 3.6). Part (b) is
not trivial, because the subtyping relation for asubset of K is
different because raw objects becomeimmutable. Intuitively,
during execution objects become cooked (when their cooker
is removed from K), and therefore Lem. 3.6 guarantees that
the heap remains well-typed when K decreases.

LEMMA 3.5. If heap H is well-typed for K, then for every
location 1 € dom(H), 1 — c<No,NI> (%), then either vi =
null or 1 <g O (vi).

LEMMA 3.6. Given a heap H that is well-typed for K, then
for any S C K, the heap H is well-typed for S.

Fig. 10 presents the reduction rules in a small-step nota-
tion, excluding all congruence rules except r-c1.

Rule r-return ignores the return value of build and re-
turns 1. Rule R-FieLb-Access 1S trivial. Rule R-FiELb-AssIGNMENT
enforces our immutability guarantee (only mutable or raw
objects can be mutated) and our ownership guarantee (owner-
as-dominator, i.e., 1 can point to v’ iff 1 <g 6 (v')). Rule r-
invoke finds the method body according to the receiver, and
substitutes all the free variables in the method body.

Ruler-c1 isthe congruencerulefor e; return 1. Notethat
this rule is the only place the set K is modified, i.e., when
reducing e, the set of ongoing constructors is K U {1}. It
is easy to prove that if K - H,e — H’ ¢’ then Ty C T'yy.
The other congruence rules are not shown because they are
trivial, e.g., in order to reduce a method call eg.m(g), we
first reduce e to alocation, then reduce the first argument to
avalue, etc.

Ruler-New createsanew location 1, setsthefieldstonull,
sets the cooker of 1 (vi) and finally callsbuild. In order to
build the newly created object 1, then it must be raw, i.e., its
cooker vi' must bein K. (Notethat 1 will bein K according
to r-c1.) Therefore, if vi = Immut and c ¢ K, then we must
set the cooker to 1. This can happen if there is a method

1 ¢ dom(H)
otherwise

{ Tmmut]

if VI = Immut Of (VI = Immutc and c ¢ K)

(R-NEW)

K+ H,new c<NO,VI> (V) —

Ku{i}FH,e = H' e

li—>C<NO,VI’>

H[1] = c<no, NI> (¥)

(null)],1.build (¥) ;return 1

fields(c) = £

R-c1
KFH,e;return 1 — H' e’ ;return 1 (Rl

H[1] = c<No,NI> (V) fields(c) = NI = Mutable OF Ky (

(R-FIELD-ACCESS)

KFH,1.ff — H,vj

KFH,Lfi=v — H[1+~ c<N0,NI>(

H

= C<NO,NI>(...

1)eK v/ =nullorl=g0u(v
[) <o On (v) (R-FIELD-ASSIGNMENT)

v//vi]V)],v/

) mbody(m,C) =%

[1]
1.m

(R-RETURN)

KFH,v;return 1 - H,1 KEFH, ()

7— (R-INVOKE)

— H,[¥/%,1/this,1/This,NO/O,NI/I]e

Figure 10. FOIGJReduction Rules (K -H,e — H’,

¢’), excluding all congruence rules except r-ci.

that returns new c<0,I>(...) and the receiver is a cooked

immutable object.

3.5 Guaranteesof FOIGJ

We now turn to prove various properties of FOIGJ, includ-
ing preservation theorem, ownership and immutability guar-
antees, and an erasure property. In the remainder of this sec-
tion, we assume that reduction does not get stuck on null-
pointer exceptions, i.e., the receiver/target of field access, as-
signment and method callsis never null. Under this assump-
tion, then e can always be reduced to another expressione’.

Before stating the preservation theorem, we need to es-
tablish a connection between K and the reduced expres-
sion e, which may contain return 1. Given an expression e,
we define K(e) to be the set of all ongoing constructors
in e, i.e, al the locations in subexpressions e’ ;return
1. Formally, K(e;return 1) = K(e) U {l}, and for any
other expression we just recurse into al subexpressions,
eg. K(e.f=e’) =K(e)UK(e").

We will maintain the invariant that H is well-typed
for KUK(e). From Lem. 3.6, then H will aso be well-typed
for K. Initially, we start with a closed expression e without
any locations (thereforeK (e) = 0), an empty heap H, and an
empty set of constructorsK.

THEOREM 3.7. (Progressand Preservation) For every closed
expression e # v, K, and H, if K,'y Fe:T and H is
well-typed for K UK(e), then there exists H',e’, 1" such
that K - H,e — H’,¢/, H' is well-typed for KUK(¢e'), T
1’,and ¢’ are closed, K,y Fe' i1, and K, T’y =1/ < T.

Proved by showing there is always (exactly) one applicable
reduction rule, which preserves subtyping. From Lem. 3.4,
we know that e’ is closed, and from Lem. 3.3, we know that
T and T’ are closed. Next we mention some highlights from
the proof. In rule rreturn, We have that K(e) = K(e) \ {1},
but even though we shrink K, we still have awell-typed heap
from Lem. 3.6. In rule r-FieLb-Assienment, Lem. 3.5 shows
that the assumption 1 <y 6 (v') holds, and the resulting

heap is well-typed for K UK(e’) because K(e') = {} and
from T-FieLo-Assienment. IN rule rR-New, We need to type the
call 1.puild (¥), and for parameters with immutability 1, we
usethe subtyp| ng rule sis.

Our ownership and immutability guarantees follow di-
rectly from the reduction rules, because rule R-FieLp-assiGNmENT
enforces them.

Thm. 3.8 shows that there is no need to maintain at run
time K nor to store the owner and immutability parameter
of each object. Formally, we define an erased heap struc-
ture E(H) that maps location to objects without these pa-
rameters, i.e.,, 1 — c(v) € E(H). We define the erasure of an

expression e, E(e), by deleting al generic parameters, and
define new reduction rules — g in the obvious way.

THEOREM 3.8. (Erasure) If K- H,e — H’ ¢’ then
KFE(H),E(e) —g E(H),E(¢).

4. OIlGJ Case Studies

This section describes our implementation of OIGJ: the lan-
guage syntax (Sec. 4.1) and the type-checker implementa-
tion (Sec. 4.2). Sec. 4.3 presents our case study that involved
annotating Sun’s implementation of the java.util collec-
tions, and our conclusions about the design of the collection
classes w.r.t. ownership and immutability.

The prototype OIGJ type-checker is implemented and
distributed as part of the Checker Framework [30] 2, which
supports pluggabl e type systems using type annotations.

4.1 Syntax: from genericsto annotations

Whereas this paper uses generics to express ownership and
immutability (e.g., bate<0,1>), our OIGJ implementation
uses Java 7's type annotations [15] (e.g., @0 @I Date). Java
7's receiver annotations play the role of ¢J's guards.

Using annotations has the advantage of compatibility
with existing compilers and other tools. Another advantage
is the ability to use a default value, such as emutable. Fur-

2http://types.cs.washington.edu/checker- framework/

thermore, it is possible to customize these defaults per class.
Defaults are not possible in generics, because a programmer
must supply argumentsfor all generic parameters.

Using annotations has the disadvantage that some notions
are no longer explicit in the syntax, such as transitivity,
wildcards, and generic methods. For example, compare the
annotation and generic syntax:

{ @ eI Bar bar; }

class Foo<O,I> { Bar<0,I> bar; }

Note that the type of new Foo<World, Immut>().bar iS €X-
plicit in the generic syntax, whereas the annotation syntax
(new eWorld eImmut Foo().bar) requires additiona rules
that mimic generics. Use of annotations also complicates
the implementation (see below). For practical use, the com-
patibility benefits of using annotations outweigh their disad-
vantages.

Ol GJ’'s annotations are the Cartesian product of owner
parameters and immutability parameters. Our implementa-
tion does not yet support wildcards (though in practice the
@I and eo annotations subsume most need for wildcards),
nor classes with multiple owner or immutability parame-
ters, such asIterator<0, ItrI, CollectionI,E>inFig. 3. (In
our case study, we implemented iterators using a single im-
mutability parameter by declaring next () as mutable.)

A class declaration can be annotated as eImmut to indicate
class immutability, i.e., all instances are immutable and no
mutable methods exist.

class Foo

4.2 OIGJimplementation

Because a pluggable type checker augments, rather than
replaces, the type system of the underlying language, the
Checker Framework permits only language extensions that
are stricter than ordinary Java. A pluggable type system
cannot relax Java's rules, as the OIGJ subtyping rule does.

For example,
@Immut List<@Immut Date> a;
@ReadOnly List<@ReadOnly Date> b=a; // OK
@Immut List<@Immut Object> c=a; /I lllegal!

The assignment c=a is illegal in Java and therefore in
the Checker Framework, though it is legal in OIGJ itself.
Phrased differently, in our implementation, the covarianceis
limited to annotations.

The OIGJ type-checker incorporates, extends, and in
some places overrides the 1GJ checker, and adds OGJ fea
tures. It consists of about 700 source lines of code (of which
100 lines is Java boilerplate to define the annotations). Most
of the code handles default and implicit types.

4.3 java.util collectionscase study

As a case study, we type-checked Sun’s implementations of
the java.util collections (77 classes, 33,246 lines of code).
This required us to write 85 ownership-related annotations
and 46 immutability-related annotationsin 102 lines of code
(the lines with new usually contain 2 annotations).

Sun’s collections are not type-safe with respect to gener-
ics because Java does not support generic arrays. However,
the OIGJ implementation uses type annotations, which can
be placed on arrays as well, and therefore our annotated col-
lections type-check without any errors with respect to own-
ership and immutability.

Class LinkedList in Fig. 3 issimilar in essence to Sun’s
implementation. We annotated the constructors with Rraw,
thus alowing creation of immutable instances. Since all in-
stances of Entry are this-owned, using eThis eI as the de-
fault annotation for entry meant that only three ownership-

related® annotations were needed in LinkedList:
@Default ({This.class, I.class})

static class Entry<Es> {

E element; @0 Entry<E> next; @0 Entry<E> prev;
-

Similarly, in asashMap, both the array and the entries are
this-owned: @This @I Entry[eThis @I] table;

The case study supports these conclusions: (i) the collec-
tions classes are properly encapsulated (they own their rep-
resentation), (ii) it is possible to create immutable instances
(al constructors are raw), and (iii) methods Map.get and
clone contain design mistakes (see below). We were not pre-
viously aware of these design mistakes. We believethat if the
collections were designed with ownership and immutability
in mind, such mistakes could be avoided.

Immutability of method get Let's start with a quick rid-
die: is there a map implementation in java.util that might
throw an exception when running the following single-
threaded code?

for (Object key : map.keySet()) { map.get(key); }
The answer is that for amap created with

new LinkedHashMap (100, 1, /*accessOrder=*/ true)
that contains more than one element, the above code throws
ConcurrentModificationException after printing one ele-
ment.

Most programmers assume that Map . get is readonly, but
there is no such guarantee in Java's specification. The doc-
umentation of LinkedHashMap States. “A special constructor
is provided to create a linked hash map whose order of it-
eration is the order in which its entries were last accessed,
from least-recently accessed to most-recently (access-order).
Invoking the put or get method results in an access to the
corresponding entry.”

Because calling get modified the list, the above code
threw concurrentModificationException. Phrased differ-
ently, method LinkedHashMap.get iS mutable! Because an
overriding method can only strengthen the specification of
the overridden method, HashMap.get and Map.get must be
mutable as well.

3 The other annotations are immutability-related, e.g., receiver annotations.

OIGJOGJ| IGJ|GUT|UTT|10J|JOE3
[32]1[39] | [14] |[24] |[18] |[29]

Owner-as-dominator + |+ + | +
Owner-as-modifier + +
Readonly references + + | + + +
Immutable objects + + + | +
Uniqueness +
Ownership transfer +
Factory method pattern| + + |+ |+ + +
Visitor pattern + +
Sun'sLinkedList +
Case studies available | + +

Figure 11. Features supported by various language designs.

Ownership and method clone Method clone violates
owner-as-dominator because it leaks this-owned references
by creating a shallow copy, i.e., only immediate fields are
copied. Furthermore, Sun’s implementation of LinkedList
assignsto result.header, Which isathis-owned field. This
violates Field assignment rule of Sec. 2.3, which only per-
mits assignment to this.header.

/I The following code appears in LinkedList.clone().

/I Calling super.clone () breaks owner-as-dominator because

/I it leaked this.header to result.header.

LinkedList result = (LinkedList) super.clone();

result.header = new Entry(); // lllegal in OIGJ!

We sketch a solution that, instead of initializing the
cloned result from this, uses the idea of inversion of con-
trol. The solution has two parts. (1) The programmer writes
amethod constructFrom that initializes this from a param-
eter. (Thisis similar to a copy-constructor in C++, and in-
deed this method should be given all the privileges of a
constructor, such as assignment to final fields) (2) The
compiler automatically generates a clone method that first
nullifies al the reference fields and then calls the user gen-
erated constructFrom method. This approach enforces the
ownership and immutability guarantees.

5. Reated Work

In this section we discuss related work on ownership and im-
mutability. We first highlight the relationship between OIGJ
and our previous work on ownership (OGJ) and immutabil-
ity (IGJ). We also survey some of the most relevant related
language designs and show how OIGJ compares to them.

5.1 Reationship with OGJ and IGJ

OIGJ can be thought of as the “cartesian product” of OGJ
and 1GJ: OIGJ uses two type parameters to express owner-
ship and immutability. However, the delicate intricacies be-
tween ownership and immutability required changes to both
OGJ and I1GJ, making OIGJ more expressive than a naive
combination.

Owner ship Generic Java (OGJ) [32] demonstrated how
ownership and generic types can be unified as a language
feature. OGJ featured a single owner parameter for every
classthat wastreated in the same way as normal generictype
parameters, simplifying the language, theformalism, and the
implementation.

OGJ completely prohibits wildcards as owner parame-
ters, e.g., point<?>, Whereas OIGJ relaxes this rule and al-
lowswildcards on stack variables, which enableswriting the
equals method (see Generic Wildcardsrulein Sec. 2.3).

In OGJ, a method may have generic parameters that are
owner parameters, e.g.,

class Foo<O extends World> {
<02 extends World> void bar(Object<02> o) {...}

However, OGJ required that the parametric owners are out-
side the owner of the class, e.g., 0 <g 02. Thisruleisvery re-
strictive, however it guarantees that the ownership structure
isatree. OIGJremoved this rule at the cost of complicating
the ownership structure: it isadirected acyclic graph (DAG)
instead of atree.

Finally, OIGJ can express temporary ownership within a
method by using afresh owner parameter (see Fresh owners
in Sec. 2.3).

Immutability Generic Java (1GJ) [39] showed how
generic types can be used to provide support for readonly
references and object immutability. OIGJ used ownership
information to improve the expressiveness of 1GJ. Specif-
ically, certain restrictions in 1GJ no longer apply in OIGJ
for this-owned objects. For example, rRaw iSnot transitivein
IGJ, e.g., the assignment to next in Fig. 3 onlines 9 and 22
isillegal in 1GJ, thus limiting creation of immutable objects.
In contrast, raw is transitive in OIGJ for this-owned fields
(see Field assignment rulein Sec. 2.3), and therefore there
was no need to refactor the collections’ code.

IGJ includes an eassignable annotation on fields that
permits field assignment even in immutable objects. The
@Assignable annotation indicates that a given field is not
part of the object’s abstract state. This is necessary to type-
check caches, lazily-initialized fields, and other program-
ming idioms. OIGJ removed this annotation to simplify the
formalism. This aso guarantees representation immutability
as well as immutability of the abstraction: the fields of a
cooked immutable object never change. Our implementation
supports the eassignable annotation.

IGJ only permits a single immutability parameter, which
simplifies the subtyping rule. In contrast, types in OIGJ
can have multiple immutability parameters, for example,
Tterator<0,ItrI,CollectionI,E>. Because IGJ uses a sin-
gle immutability parameter, the immutability of an itera-
tor and its underlying collection must be the same. Thus,
in 1GJ, method next () must be readonly (or you couldn’t
iterate over a readonly list), and therefore we had to use
an eAssignable annotation on ListItr.current (line 37 in
Fig. 3). In contrast, in OIGJ, we guard next () with a mu-

table 1tr1 (line 51), and guard remove () with a mutable
CollectionI (line52).

5.2 Relationship with other work

OIGJuses method guards borrowed fromcJ [19]. (The OIGJ
implementation uses annotations syntax instead.)

In what follows, we have room to survey only closely re-
lated papers. Fig. 11 compares Ol GJto some of the previous
work described below.

Mutability and encapsulation were first combined by
Flexible Alias Protection (FLAP) [27]. FLAP inspired a
number of proposals including ownership types [13] and
confined types [35]. Capabilities for Sharing [5] describes
the fundamentals underlying various encapsul ation and mu-
tability approaches by separating “mechanism” (the seman-
tics of sharing and exclusion) from “policy” (the guaran-
tees provided by the resulting system). Capabilities gives a
lower-level semanticsthat can be enforced at compile or run
time. A reference can possess any combination of these 7
access rights: read, write, identity (permitting address com-
parisons), exclusive read, exclusive write, exclusive identity,
and ownership (giving the capability to assert rights). Im-
mutability, for example, is represented by the lack of the
write right and possession of the exclusive write right. Fi-
nally, Fractional Permissions [6] can give semantics to var-
ious annotations such as unique, readonly, method effects,
and an ownership variant called owner-as-effector in which
one cannot read or write owned state without declaring the
appropriate effect for the owner.

Ownership types [2, 3, 11] impose a structure on the
references between objects in a program’s memory. OIGJ
and other work [29, 32] enforce the owner-as-dominator
disciplines. Generic Universe Types (GUT) [14, 23] en-
force owner-as-modifier by using three type annotations:
rep, peer, and readonly. rep denotes representation objects
(similar to This), while peer denotes objects owned by the
same owner (similar to o). UTT [24] is an extension of Uni-
verse Types that supports ownership transfer by utilizing a
modular static analysis, which is useful for merging data-
structures or complex object initialization.

MQOJO [10] can express multiple ownership, i.e., objects
can have more than one owner at run time. OIGJ supports
only a single owner at run time. (OlGJ supports multiple
owner parameters, but according to the Owner ship nesting
rule, all owner parameters are inside the first owner parame-
ter.)

Jo3 [8] supports variant subtyping over the owner param-
eter by using existential types. Ol GJ supportswildcardsused
as ownersfor stack variables, but those are less flexible than
Jod. For example, Jo3 can distinguish a list of students that
may have different owners, from alist of student that share
the same unknown owner.

Immutability and ownership. Similarly to OIGJ, Im-
mutable Objects for a Java-like Language (10J) [18] asso-
ciates with each type its mutability and owner. In contrast to

OIGJ, 10J does not have generics, nor readonly references
(only readonly and immutable objects). Moreover, in 0],
the constructor cannot leak areferenceto this.

X10 [28] supports constrained types that can refer to
properties and final local variables. X10 supports cyclic im-
mutable structures by using proto annotations, which are
similar to our immutability 1 and the notion of cookers. How-
ever, both X10 and I GJ cannot type-check Sun’s LinkedList
because an object becomes cooked when its constructor
finishes. It is possible to refactor Linkednist to fit X10's
typing-rules by using a recursive implementation, but then
you risk a stack-overflow when creating large lists. Delayed
types [16], which are similar to X10's proto, are used to
verify non-null fields or other heap-monotonic properties.

JOE3 [29] combines ownership (as dominators, not mod-
ifiers), uniqueness, and immutability. It also supports owner-
polymorphic methods, but not existential owners.

Frozen Objects [22] show how ownership can help sup-
port immutability by allowing programmersto decide when
the object should become immutable. This system takes a
verification approach rather than a simple type checker such
as Ol GJ. Frozen Objects show how flexible the initialization
stage can potentially be in the presence of ownership and
immutability, while OIGJ shows how much flexibility can
be achieved while staying at the type checking level.

Readonly references are found in C++ (using the const
keyword), JAC [21], modes [33], Javari [34], etc. Previous
work on readonly references lack ownership information.
Boyland [4] observes that readonly does not address obser-
vational exposure, i.e., modifications on one side of an ab-
straction boundary that are observable on the other side. Im-
mutable objects address such exposure because their state
cannot change.

List iterator sposeachallengeto ownership becausethey
require a direct pointer to the list’'s privately owned entries,
thus breaking the owner-as-dominator property. Both OIGJ
and SafeJava [3] allow an inner instance to access the outer
instance’'s privately owned objects. Clarke [11] suggested to
use iterators only with stack variables, i.e., you cannot store
an iterator in afield. It is aso possible to redesign the code
and implement iteratorswithout viol ating ownership, e.g., by
using internal iterators or magic-cookies[26].

6. Conclusion

OIGJis aJavalanguage extension that supports both owner-
ship and immutability, while enhancing the expressiveness
of each individual concept. By using Java's generic types,
OIGJ simplifies previous type mechanisms, such as existen-
tial owners, scoped regions, and owner-polymorphic meth-
ods. OIGJ is easy to understand and implement, using only
14 (flow-insensitive) typing rules beyond those of Java. We
have formalized a core calculus caled FOIGJ and proved
it sound. Our implementation is backward-compatible with
Java, and it scalesto realistic programs. Ol GJ can type-check

Sun’sjava.util collections (without the clone method), us-
ing a small number of annotations. Finally, various design
patterns, such as the factory and visitor patterns, can be
expressed in OIGJ, making it ready for practical use. An
implementation is publicly available at http://types.cs.
washington.edu/checker- framework/.

Future work includesinferring ownership and immutabil -
ity annotations, conducting a bigger case study including
client and library code, and extending OIGJ with concepts
such as owner-as-modifier [40], uniqueness, and external-
uniqueness [12].

Acknowledgments

Thiswork was supported by the New Zealand Royal Society
Marsden Grant, ISAT Grant, and NSF grant CNS-0855252.
Werner Dietl, James Noble, the ELV1S group, and the anony-
mous referees provided val uable feedback.

References

[1] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe
Programming. PhD thesis, MIT Dept. of EECS, Feb. 2004.

[2] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: Preventing data races and deadlocks. In
OOPSLA, pages 211-230, Oct. 2002.

[3] Chandrasekhar Boyapeati, Barbara Liskov, and Liuba Shrira. Owner-
ship types for object encapsulation. In POPL, pages 213-223, Jan.
2003.

[4] John Boyland. Why we should not add readonly to Java (yet). In
FTfIP, July 2005.

[5] John Boyland, James Noble, and William Retert. Capabilities for
sharing: A generalisation of uniqueness and read-only. In ECOOP,
pages 2—27, June 2001.

[6] John Boyland, William Retert, and Yang Zhao. Comprehending
annotations on object-oriented programs using fractional permissions.
In IWACO, pages 1-11, July 2009.

[7] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: Adding genericity to the Java
programming language. In OOPSLA, pages 183-200, Oct. 1998.

[8] Nicholas Cameron and Sophia Drossopoulou. Existential quantifica-
tion for variant ownership. In ESOP, pages 128-142, Mar. 2009.

[9] Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. A model
for Javawith wildcards. In ECOOP, pages 2—26, July 2008.

[10] Nicholas R. Cameron, Sophia Drossopoulou, James Noble, and
Matthew J. Smith. Multiple ownership. In OOPSLA, pages 441460,
Oct. 2007.

[11] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation
and the digjointness of type and effect. In OOPSLA, pages 292-310,
Oct. 2002.

[12] Dave Clarke and Tobias Wrigstad. Externa uniqueness is unique
enough. In ECOOP, pages 176-200, July 2003.

[13] David G. Clarke, John M. Potter, and James Noble. Ownership types
for flexible alias protection. In OOPSLA, pages 48-64, Oct. 1998.

[14] Werner Dietl, Sophia Drossopoulou, and Peter Mller. Generic Uni-
verse Types. In ECOOP, pages 28-53, Aug. 2007.

[15] Michael D. Ernst. Type Annotations specification (JSR 308). http:
//types.cs.washington.edu/jsr308/, Sep. 12, 2008.

[16] Manuel Féhndrich and Songtao Xia. Establishing object invariants
with delayed types. In OOPSLA, pages 337-350, Oct. 2007.

[17] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides.
Design Patterns. Addison-Wesley, Reading, MA, 1995.

[18] Christian Haack, Erik Poll, Jan Schafer, and Aleksy Schubert. Im-
mutable objects for a Java-like language. In ESOP, pages 347-362,
Mar. 2007.

[19] Shan Shan Huang, David Zook, and Yannis Smaragdakis. cJ: Enhanc-
ing Java with safe type conditions. In AOSD, pages 185-198, Mar.
2007.

[20] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Javac aminimal core calculus for Javaand GJ. ACM TOPLAS,
23(3):396-450, May 2001. ISSN 0164-0925.

[21] Ginter Kniesel and Dirk Theisen. JAC — access right based encap-
sulation for Java. Software: Practice and Experience, 31(6):555-576,
2001.

[22] K. Rustan M. Leino, Peter Mller, and Angela Wallenburg. Flexible
immutability with frozen objects. In VSTTE, pages 192-208, Oct.
2008.

[23] P. Miller and A. Poetzsch-Heffter. Universes: A type system for
controlling representation exposure. In Programming Languages and
Fundamentals of Programming, pages 131-140, 1999.

[24] Peter Muller and Arsenii Rudich. Ownership transfer in universe
types. In OOPSLA, pages 461478, Oct. 2007.

[25] Stefan Négeli. Ownership in design patterns. Master’s thesis, ETH
Zurich, Zurich, Switzerland, Mar. 2006.

[26] James Noble. Iterators and encapsulation. In TOOLS Pacific, pages
431-442, 2000.

[27] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In
ECOOP, pages 158185, July 1998.

[28] Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian
Grothoff. Constrained types for object-oriented languages. In OOP-
SLA, pages 457-474, Oct. 2008.

[29] Johan Ostlund, Tobias Wrigstad, and Dave Clarke. Ownership,
uniqueness and immutability. In Tools Europe, pages 178-197, 2008.

[30] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H.
Perkins, and Michael D. Ernst. Practical pluggable types for Java
In ISSTA, pages 201-212, July 2008.

[31] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[32] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic
Ownership for Generic Java. In OOPSLA, pages 311-324, Oct. 2006.

[33] Mats Skoglund and Tobias Wrigstad. A mode system for read-only
references in Java. In FTfJP, June 2001.

[34] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference
immutability to Java. In OOPSLA, pages 211-230, Oct. 2005.

[35] Jan Vitek and Boris Bokowski. Confined types. In OOPSLA, pages
82-96, Nov. 1999.

[36] Tobias Wrigstad. Ownership-Based Alias Management. PhD thesis,
Royal Institute of Technology, Sweden, May 2006.

[37] Tobias Wrigstad and Dave Clarke. Existential owners for ownership
types. J. Object Tech., 6(4):141-159, May—June 2007.

[38] Yoav Zibin. Featherweight Ownership and Immutability Generic Java
(FOIGJ). Technical Report 10-16, ECS, VUW, June 2010. http:
//ecs.victoria.ac.nz/Main/TechnicalReportSeries.

[39] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun,
and Michael D. Ernst. Object and reference immutability using Java
generics. In ESEC/FSE, pages 75-84, Sep. 2007.

[40] Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D.

Ernst. OIGJ with owners as modifiers. Technical Report 10-15, ECS,
VUW, January 2010.

