
Featherweight Ownership and Immutability Generic Java -
Technical Report

Yoav Zibin yoav.zibin@gmail.com

1 Introduction
This technical report contains proofs that were omitted from our paper entitled “Ownership and Immutability in
Generic Java”. Please read the paper first, and only then proceed to reading this technical report, because this
technical report is not self contained. We only include a summary of the syntax (Fig. 1), subtyping rules (Fig. 2),
expression typing rules (Fig. 3), and reduction rules (Fig. 4).

We begin with some definitions. A rule has the form
A
B

, where A is the assumption and B is the conclusion.

If A is empty, we also call the rule an axiom. An instance of a rule/assumption/conclusion is any substitution of
variables in the rule. A derivation sequence is a sequence of elements (each element is an instance of a conclusion),
where the assumptions needed for each element appear as previous elements in the sequence.

An expression/type is called closed if it does not contain any free variables (such as wildcards, this, I, O, or
This).

The length of a sequence x is written #(x),
To define ftype(e,f,T) and mtype(e,f,T), we use the auxiliary function substitute:

substitute(e,C<MO,IP>,T) =

{
error O(T) = This and z= error

[z/This,MO/O,IP/I]T otherwise
z=


l e= l

This e= this

error otherwise

Formally, ftype(e,f,C<MO,IP>)= substitute(e,C<MO,IP>, ftype(f,C)), and similarly for mtype.
Given an expression e, we define K(e) to be the set of all ongoing constructors in e, i.e., all locations in

subexpressions e;return l. Formally,

K(e) =



K(e’)∪{l} if e= (e’;return l)

K(e’) if e= (e’.f)

K(e’)∪K(e") if e= (e’.f=e")

∪K(e′) if e= (new N(e′))

K(e")∪K(e′) if e= (e".m(e′))

A heap H is well-typed for K if it satisfies two conditions: (i) Each field location is a subtype (using K,ΓH)
of the declared field type, i.e., for every location l, where H[l] = C<NO,NI>(v) and fields(C) = f, and for every
field fi, we have that either vi = null or K,ΓH ` ΓH(vi) ≤ ftype(l,fi,C<NO,NI>). (ii) There is a linear order �T

over dom(H) such that for every location l, θH(l) = World or θH(l)≺T l, and IH(l) = Mutable or κH(l)�T l.

2 Subtyping
First we prove some lemmas regarding subtyping.

Lemma 2.1. If K,Γ ` C<MO,IP>≤ C’<MO’,IP’>, then
(i) MO’ 6= ?⇒ MO= MO’,
(ii) (IP’ 6= Immutl or (IP’= Immutl and (l 6≺θ MO’ or l 6∈ K))⇒ K,Γ ` IP≤ IP’,
(iii) C is a subclass of C’,
(iv) K,Γ ` D<MO,IP>≤ D<MO’,IP’> for any class D,
(v) K,Γ ` D<l,IP>≤ D<l,IP’> for any class D and MO’�θ l.

1

FT ::= C<FO,IP> Field (and method return) Type.
T ::= C<MO,IP> Type.
N ::= C<NO,NI> Non-variable type (for objects).
NO ::= World | l Non-variable Owner parameter (for objects).
FO ::= NO | This | O Field Owner parameter.
MO ::= FO | ? Method Owner parameter (including generic wildcard).
NI ::= Mutable | Immutl Non-variable Immutability parameter (for objects).
VI ::= NI | Immut | I Variable Immutability for new.
IP ::= ReadOnly | VI Immutability Parameter.
IG ::= ReadOnly | Immut | Mutable | Raw Immutability method Guard.
M ::= <I extends IG>? FT m(T x) { return e; } Method declaration.
L ::= class C<O,I> extends C’<O,I>{ FT f;M } cLass declaration.
v ::= null | l Values: either null or a location l.
e ::= v | x | e.f | e.f= e | e.m(e) | new C<FO,VI>(e) | e ;return l Expressions.

Figure 1: FOIGJ Syntax. The terminals are null, owner parameters (O, This, World), and immutability parame-
ters (I, ReadOnly, Mutable, Raw, Immut). Given a location l, Immutl represents an immutable object with cooker l.
The program source code cannot contain the grayed elements (locations are only created during execution/reduc-
tion in R-NEW of Fig. 4).

K,Γ ` I≤ Γ(I)
(S1)

K,Γ ` T≤ T
(S2)

K,Γ ` S≤ T K,Γ ` T≤ U

K,Γ ` S≤ U
(S3)

class C<O,I> extends C′<O,I>
K,Γ ` C<MO,IP>≤ C′<MO,IP>

(S4)

K,Γ ` Mutable≤ Raw
(S5)

K,Γ ` Raw≤ ReadOnly
(S6)

K,Γ ` Immut≤ ReadOnly
(S7)

K,Γ ` IP≤ IP′

K,Γ ` C<MO,IP>≤ C<MO,IP′>
(S8)

K,Γ ` C<MO,IP>≤ C<?,IP>
(S9)

l ∈ K
K,Γ ` Immutl ≤ Raw

(S10)

l 6∈ K
K,Γ ` Immutl ≤ Immut

(S11)
l 6∈ K

K,Γ ` Immut≤ Immutl
(S12)

l≺θ NO

K,Γ ` C<NO,Immut>≤ C<NO,Immutl>
(S13)

Figure 2: FOIGJ Subtyping Rules (K,Γ ` T≤ T’). Rule S13 shows the connection between cooker l and owner NO.

Proof. In this proof we omit K,Γ ` because the context K,Γ is clear. First note that due to S13, it is not the case
that IP≤ IP’. Therefore, we need parts (ii) and (iv)–(v), which connects IP and IP’ in other ways.

(i) All subtyping rules maintain the same owner parameter, except S9, thus if MO’ 6= ?, then the owner must be
preserved.

(ii) All subtyping rules maintain that IP ≤ IP’ except S13. If l 6≺θ MO’ then we cannot use S13. If l 6∈ K then
(from S12) Immut≤ IP’, and if the proof used S13 then C<MO,IP>≤ C<MO,Immut>, thus IP≤ Immut≤ IP’.

(iii) All rules maintain the same class, and S4 permits subclassing.
(iv) We create a new derivation sequence where instances of rule S4 are deleted, and all occurrences of C are

replaced with D.
(v) Similarly to part (iv), we delete S4 and S9, replace C with D, and replace MO and MO’ with l. The only rule

where the owner matters is S13:

l′ ≺θ MO’

K,Γ ` C<MO’,Immut>≤ C<MO’,Immutl′>

and we have that MO’�θ l, therefore l′ ≺θ l.

Lemma 2.2. If K,Γ ` C<MO,IP> ≤ C’<MO,IP’>, then for any class D and any owner parameter W such that W =
O | World, we have that

K,Γ ` D<[MO/O]W, [IP/I]Z>≤ D<[MO/O]W, [IP’/I]Z>.

Proof. If Z 6= I then obviously D<[MO/O]W,Z>= D<[MO/O]W,Z>. If Z= I then we need to prove that K,Γ` D<[MO/O]W,IP>≤
D<[MO/O]W,IP’>. Because MO �θ World and W = O | World, then MO �θ [MO/O]W. Therefore, we can apply Lem. 2.1
part (v).

2

K∪{l},Γ ` e : T
K,Γ ` e;return l : Γ(l)

(T-RETURN)
mtype(⊥,build,C<FO,VI>) = T→ U K,Γ ` e : T’ K,Γ ` T’≤ T

K,Γ ` new C<FO,VI>(e) : C<FO,VI>
(T-NEW)

K,Γ ` x : Γ(x)
(T-VAR)

K,Γ ` null : T
(T-NULL)

K,Γ ` e : C<MO,IP> ftype(e,f,C<MO,IP>) = T

K,Γ ` e.f : T
(T-FIELD-ACCESS)

K,Γ ` l : Γ(l)
(T-LOCATION)

K,Γ ` e.f : T K,Γ ` e’ : T’ K,Γ ` T’≤ T K,Γ ` e : C<MO,IP>
K,Γ ` IP≤ Raw isTransitive(e,Γ,C<MO,IP>) MO 6= ?

K,Γ ` e.f= e’ : T’
(T-FIELD-ASSIGNMENT)

K,Γ ` e0 : C<MO,IP> mtype(e0,m,C<MO,IP>) = T→ T" K,Γ ` e : T’ K,Γ ` T’≤ T mguard(m,C) = IG

K,Γ ` IP≤ IG IG= Raw⇒ isTransitive(e0,Γ,C<MO,IP>) mtype(m,C) = U→ V O(Ti) = ?⇒ O(Ui) = ?

K,Γ ` e0.m(e) : T"
(T-INVOKE)

Figure 3: FOIGJ Expression Typing Rules (K,Γ ` e : T).

l 6∈ dom(H) VI′ =

{
Immutl if VI= Immut or (VI= Immutc and c 6∈ K)

VI otherwise
K ` H,new C<NO,VI>(v)→ H[l 7→ C<NO,VI’>(null)],l.build(v);return l

(R-NEW)

K∪{l} ` H,e→ H ′,e’
K ` H,e;return l→ H ′,e’;return l

(R-C1)
H[l] = C<NO,NI>(v) fields(C) = f

K ` H,l.fi→ H,vi
(R-FIELD-ACCESS)

H[l] = C<NO,NI>(v) fields(C) = f NI= Mutable or κH(l) ∈ K v′ = null or l�θ θH(v
′)

K ` H,l.fi = v′→ H[l 7→ C<NO,NI>([v′/vi]v)],v
′ (R-FIELD-ASSIGNMENT)

K ` H,v;return l→ H,l
(R-RETURN)

H[l] = C<NO,NI>(. . .) mbody(m,C) = x.e′

K ` H,l.m(v)→ H, [v/x,l/this,l/This,NO/O,NI/I]e′
(R-INVOKE)

Figure 4: FOIGJ Reduction Rules (K ` H,e→ H ′,e′), excluding all congruence rules except R-C1.

Lemma 2.3. If K,Γ ` C<MO,IP>≤ C’<MO,IP’>, both types are closed, isTransitive(⊥,Γ,C’<MO,IP’>) and IP’≤ Raw,
then IP= IP’.

Proof. If IP’ = Mutable then obviously IP = Mutable. Otherwise IP’ = Immutl and l ∈ K (because IP’ ≤ Raw).
From definition of isTransitive(⊥,Γ,C’<MO,IP’>), l 6≺θ MO, thus S13 cannot be applied, and that is the only applicable
rule where Immutl appears as a supertype (because S12 cannot be applied since l ∈ K), thus IP= IP’.

The next lemma shows that if e′ was reduced to e (therefore the type of e is a subtype of e′), then e can call
any method that e′ could. Phrased differently, if e′ satisfies a method’s guard then e would as well.

Lemma 2.4. If K,Γ ` C<MO,IP>≤ C’<MO,IP’>, and both types are closed, then
(i) K,Γ ` IP’≤ Mutable⇒ K,Γ ` IP≤ Mutable,
(ii) K,Γ ` IP’≤ Immut⇒ K,Γ ` IP≤ Immut,
(iii) isTransitive(⊥,Γ,C’<MO,IP’>) and K,Γ ` IP’≤ Raw⇒ K,Γ ` IP≤ Raw,
(iv) if IG = Raw⇒ isTransitive(⊥,Γ,C’<MO,IP’>), where IG = ReadOnly | Immut | Mutable | Raw, then K,Γ ` IP’ ≤
IG⇒ K,Γ ` IP≤ IG.

Proof. (i) Trivial because we must have that IP’= IP= Mutable or (IP’= IP= I and I : Mutable ∈ Γ).
(ii) If IP’ 6= Immutl then from Lem. 2.1 part (ii), we have K,Γ ` IP ≤ IP’, and from transitivity IP ≤ IP’ ≤

Immut⇒ IP≤ Immut. Otherwise, IP’= Immutl, and because IP’≤ Immut, from S11 we must have that l 6∈ K, and
from Lem. 2.1 part (ii), we proved K,Γ ` IP≤ IP’,

(iii) From Lem. 2.3 we know that IP= IP’ thus IP≤ Raw.
(iv) Stems from parts (vi)–(viii) and the fact that for any IP≤ ReadOnly.

3

If the cooker is not inside the owner, then subtypes are not over-approximation (i.e., they preserve the same
cooker).

Lemma 2.5. If K,Γ ` C<MO,IP>≤ C’<NO,Immutl>, l 6≺θ NO, and l ∈ K, then IP= Immutl.

Proof. The only subtyping rule where the supertype has a cooker Immutl are rules S12 and S13, and they can’t
be applied because we assumed that l 6≺θ NO and l 6∈ K. Thus only the reflexivity rule can be applied. Note
that rule K,Γ ` I ≤ Γ(I) cannot be applied because we assume that Γ(I) is a method guard IG, and IG 6= Immutl
because according to our syntax

IG= ReadOnly | Immut | Mutable | Raw.

Next we prove a substitution lemma: substituting I, O, or This, does not change the subtype relation.

Lemma 2.6. If K,Γ ` T≤ T′ then for every IP,MO,MO’ such that IP≤ Γ(I), we have that

K,Γ ` [IP/I,MO/O,MO’/This](T≤ T′).

Proof. Let S denote the derivation sequence for K,Γ ` T ≤ T′, and SI for IP ≤ Γ(I). Let S′ be a new sequence
in which we do the substitution [IP/I,MO/O,MO’/This] on every element in S, and let S” be the sequence starting
with SI followed by S′. The last element in S is K,Γ` T≤ T′, therefore the last element in S′ and S” is what we need
to prove: K,Γ ` [IP/I,MO/O,MO’/This](T ≤ T′). Next we show that S” is a legal derivation sequence by showing
that each element is a legal consequence of previous elements (by induction on the size of S”). Elements from SI
are of course legal. By induction we proved the first n−1 elements are legal, and we now prove that element n is
legal (i.e., a legal consequence of previous elements). Let the corresponding element in S be U≤ U′, and element n
is [IP/I,MO/O,MO’/This](U≤ U′). (i) If the element is an instance of rules S5–S7 or S10–S12, then substitution did not
change the element. (ii) If the element is an instance of rule S1 then we replaced it with [IP/I](I≤ Γ(I)) = IP≤
Γ(I), which is the last element of SI . (iii) If the element is an instance of any other rule, then a simple application
of the induction hypothesis proves the element is legal.

We now prove that substitution preserves subtyping.

Lemma 2.7. If K,Γ ` T ≤ T′, T and T′ are closed, then for (e = ⊥ and O(T ") 6= This) or e = l, O(T) �θ l, we
have that:
(i) K,Γ ` substitute(e,T,T”)≤ substitute(e,T′,T”),
(ii) K,Γ ` ftype(e,f,T)≤ ftype(e,f,T′),
(iii) let mtype(e,f,T) = T→ T0 and ftype(e,f,T′) = T′→ T′0, then K,Γ ` Ti ≤ T′i for i = 0, . . . ,#(T).

Proof. From Lem. 2.1 part (i) and the fact that T and T′ are closed (no wildcards), then O(T) = O(T′). Let T =
C<MO,IP> and T′ = C’<MO,IP’>.

Recall that ftype(e,f,C<MO,IP>) = substitute(e,C<MO,IP>, ftype(f,C)), and similarly for mtype. Therefore, parts
(ii) and (iii) follow from part (i), and the fact that ftype(f,C) = ftype(f,C′) and mtype(m,C) = mtype(m,C′) (i.e., sub-
classing cannot change method signature or field type).

We now prove part (i). From the definition of substitute, and because (e=⊥ and O(T ") 6= This) or e= l, we
have that substitute(e,T,T”) = [e/This,MO/O,IP/I]T”.

Let T” = D<MO",IP">. Because K,Γ ` T≤ T′, from Lem. 2.1 part (v),

K,Γ ` D<l’,IP>≤ D<l’,IP’> if MO�θ l′ (1)

(note that l′ can be MO or World). We need to prove that K,Γ ` substitute(e,T,T”)≤ substitute(e,T′,T”), i.e., K,Γ `
[e/This,MO/O,IP/I]T”≤ [e/This,MO/O,IP’/I]T”.

If IP" 6= I then from reflexivity K,Γ ` [e/This,MO/O]T”≤ [e/This,MO/O]T”.
Consider now the case that IP"= I. We need to show that

K,Γ ` D<[e/This,MO/O]MO",IP>≤ D<[e/This,MO/O]MO",IP’> (2)

Because MO"= O | World | This and e=⊥ or e= l, we have that

MO�θ [e/This,MO/O]MO" (3)

From (1) and (3), we proved (2).

4

Lemma 2.8. If K,Γ ` C<MO,IP>≤ C’<MO,IP’>, and both types are closed, and

mtype(⊥,m,C’<MO,IP’>) = T’→ U

mtype(⊥,m,C<MO,IP>) = T→ U

mguard(m,C’) = IG

K,Γ ` IP’≤ IG

IG= Raw⇒ isTransitive(⊥,Γ,C’<MO,IP’>)

then (i) K,Γ ` Ti ≤ T’i and K,Γ ` T’i ≤ Ti, and (ii) for any type T", if K,Γ ` T"≤ T’i then K,Γ ` T"≤ Ti.

Proof. Part (i) implies that T’i and Ti are equivalent. Part (ii) follows directly from part (i) using transitivity rule S3.
Let mtype(m,C)=mtype(m,C′)= FT→ V, FTi = D<FO,IP">. Note that T’i = [MO/O,IP’/I]FTi and Ti = [MO/O,IP/I]FTi.

Therefore, if IP" 6= I then T’i = Ti, qed.
Thus, IP" = I, T’i = D<MO",IP’>, Ti = D<MO",IP>, where MO �θ MO" (because FO is either O or World, but it

cannot be This). From Lem. 2.7 part (iii), Ti ≤ T’i.
If IG = ReadOnly, then FOIGJ ensures that I does not appear in method parameters, i.e., we must have

that IP" 6= I. If IG = Mutable, then IP’ = IP = Mutable (because IP’ ≤ IG), thus T’i = Ti,. If IG = Immut,
then IP’ ≤ Immut (because IP’ ≤ IG), thus from Lem. 2.4 part (ii), IP ≤ Immut, i.e., IP ≤ IP’ ≤ IP. If IG = Raw,
then isTransitive(⊥,Γ,C’<MO,IP’>), and IP’≤ Raw, thus from Lem. 2.3 we have that IP’= IP.

3 Typing
We next prove that a closed expression has a closed type.

Lemma 3.1. If K,Γ ` e” : T” and e” is closed and e” 6= null, then T” is closed.

Proof. Note that null can have any type T” (even an open type) according to rule T-NULL, therefore we require
that e” 6= null.

We prove by induction on the structure of e”.

Value e” = v Because e” 6= null, then v= l, and the type of a location is always closed C<NO,NI>.

Value e” = e;return l Similarly, the type of a location is always closed.

Method parameter e” = x We assumed e” is closed, thus it does not contain parameters.

Object creation e” = new C<FO,VI>(e) From T-NEW, T” = C<FO,VI>, and because e” is closed then T” must be
closed.

Field access e” = e.f Because K,Γ ` e” : T”, from T-FIELD-ACCESS we have that T” = T and

K,Γ ` e : C<MO,IP> ftype(e,f,C<MO,IP>) = T

By induction, C<MO,IP> is closed. Therefore T does not contains O nor I. Next we show it does not contain
This. Because ftype did not return error, then either the field did not contain This, or it was substituted.
Because e 6= this then e= l, and This was substituted with l.

Field assignment e” = e.f= e’ Because K,Γ ` e” : T”, from T-FIELD-ASSIGNMENT we have that T” = T′ and K,Γ `
e’ : T’ By induction, T’ is closed.

Method invocation e” = e0.m(e) Because K,Γ ` e” : T”, from T-INVOKE we have that

K,Γ ` e0 : C<MO,IP> mtype(e0,m,C<MO,IP>) = T→ T"

By induction C<MO,IP> is closed, and similar reasoning to field access concludes that T" is closed.

5

4 Heap
We now prove that if the heap is well-typed for K, then it is well-typed for any subset of K.

Lemma 4.1. Given a heap H that is well-typed for K, then for any S⊆ K, the heap H is well-typed for S.

Proof. This is not trivial, because decreasing K changes the subtyping relation by turning raw objects into im-
mutable. Recall that a well-typed heap H satisfies: (i) there is a linear order �T over dom(H) such that for every
location l, θ(l) = World or θ(l)≺T l, and I(l) = Mutable or κ(l)�T l, and (ii) each non-null field location is a
subtype of the declared field type.

First, note that the same linear order �T satisfies (i) for H is well-typed for S. Suppose to the contrary that
H is not well-typed for S, i.e., there is some field location l.f of type T that points to an object o of type T",
and S,ΓH 6` T" ≤ T. Because H is well-typed for K, we have that K,ΓH ` T" ≤ T. Consider the derivation
sequence for K,ΓH ` T" ≤ T. We will take this sequence and transform it into a proof that S,ΓH ` T" ≤ T, which
will lead to contradiction. Specifically, we replace every usage of rule S10 (K,ΓH ` Immutl ≤ Raw) with a proof
that K,ΓH ` Immutl ≤ ReadOnly (using either S10 or S11). We first claim that this is a valid sequence in S,ΓH :
rules S1–S9 and S13 do not use K and therefore are identical, rule S10 was removed, and rules S11–S12 is valid
because S⊂K. We now claim that these sequence proves that S,ΓH ` T"≤ T, i.e., that each element in the sequence
has previous elements that fulfill the assumptions of the rule. Consider an element we removed Immutl≤ Raw. Note
that Raw does not appear in T = C<MO,IP> because it can only appear in a method guard. The only rule where Raw

appears as a subtype is S6, and by using transitivity (S3), we have that the only conclusion is that Immutl≤ ReadOnly,
and we added that conclusion.

Next we prove that owner-as-dominator holds in any well-typed heap.

Lemma 4.2. If heap H is well-typed for K, then for every location l∈ dom(H), l 7→ C<NO,NI>(v), then either vi =
null or l�θ θ(vi).

Proof. Recall that heap H is well-typed for K if it satisfies two conditions: (i) Each field location is a subtype
(using K,ΓH) of the declared field type, i.e., for every location l, where H[l] = C<NO,NI>(v) and fields(C) = f, and
for every field fi, we have that either vi = null or K,ΓH ` ΓH(vi) ≤ ftype(l,fi,C<NO,NI>). (ii) There is a linear
order �T over dom(H) such that for every location l, θH(l) = World or θH(l) ≺T l, and IH(l) = Mutable or
κH(l)�T l. From part (ii), we have that the relation �θ is a tree order.

Consider some vi 6= null, and we will prove that l�θ θ(vi). Let

H[vi] = C’<NO’,NI’>(. . .)

fields(C) = f

ftype(fi,C) = C"<FO,IP>

ftype(l,fi,C<NO,NI>) = C"<NO",NI">

We need to prove that l�θ NO’. Because the heap is well-typed for K, then K,ΓH ` C’<NO’,NI’>≤ C"<NO",NI">.
From Lem. 2.1 part (i), we have that NO’= NO". According to the syntax, FO= World | This | O (the owner of a field
cannot be l of course because the class declarations cannot use locations). By definition of ftype(l,fi,C<NO,NI>),
then NO"= World | l | θ(l), respectively. Thus we proved that

NO’= NO"= World | l | θ(l)

Therefore, because l�θ World and l�θ l and l�θ θ(l), we proved that l�θ NO’.

5 Reduction
We consider only expressions that when reduced using the erased operational semantics, do not result in null-
pointer exceptions. Null-pointer exceptions can be handled by adding special reduction rules that return error,
but we prefer to leave the reduction process “stuck”.

First we prove that a closed expression reduces in one step to another closed expression.

Lemma 5.1. If e is closed and K ` H,e→ H ′,e′, then e′ is closed.

6

Proof. Rules R-NEW, R-FIELD-ACCESS, and R-FIELD-ASSIGNMENT result in a value, which is closed. Rule R-INVOKE results
in an expression, but all free variables x,this,This,O,I are substituted with locations, Immut, Immutl, or Mutable.
The proof of the congruence rules uses the induction hypothesis.

Lemma 5.2. If K ` H,e→ H”,e” then (i) ΓH ⊆ ΓH”, (ii) K,ΓH ` e′ : T′⇒ K,ΓH ′ ` e′ : T′, and (iii) K,ΓH ` T ≤
T′⇒ K,ΓH ′ ` T≤ T′.

Proof. Trivial. (i) None of the reduction rules removes locations or changes the type of a location, therefore H”
only includes additional locations. Parts (ii) and (iii) are trivial from (i).

Theorem 5.3. (Progress and Preservation) For every closed expression e 6= v, K, and H, if K,ΓH ` e : T and H is
well-typed for K∪K(e), then there exists H ′,e′,T′ such that (i) K `H,e→H ′,e′, (ii) K,ΓH ′ ` e′ : T′, and K,ΓH ′ `
T′ ≤ T, (iii) H ′ is well-typed for K∪K(e′), (iv) T, T’, and e′ are closed.

Proof. Part (iv) is proved from Lem. 5.1 (we know that è is closed) and from Lem. 3.1 (we know that T” and T̀ are
closed).

We assume that there are no null-pointer exceptions, i.e., that for field access, assignment and method invoca-
tion, the receiver is never null.

It is easy to examine the reduction rules and verify there is always at most one applicable reduction rule.
We will split the proof into three stages: (i) progress: there is exactly one applicable reduction rule (Lem. 5.4),
(ii) preservation: K,ΓH ′ ` è : T̀ and K,ΓH ′ ` T̀≤ T” (Lem. 5.6), and (iii) H ′ is well-typed for K∪K(e′) (Lem. 5.7).

Lemma 5.4. (Progress) For every closed expression e” 6= v, H, and K, if K,ΓH ` e” : T” and and H is well-typed
for K∪K(e”), then there exists H ′, è such that K ` H,e”→ H ′, è.

Proof. We prove by examining the structure of e”. Because it is closed and not a value, then according to our
syntax, it must have one of the following forms:

e.f | e.f= e | e.m(e) | new C<FO,VI>(e) | e;return l

If the subexpressions are not all values, then we can always apply (exactly) one of the congruence rules. For
example, if e” = (e;return l) and e is not a value, then by induction we can apply R-C1.

Therefore, e” has one of the following forms:

v.f | v.f= v | v.m(v) | new C<FO,VI>(v) | v;return l

Because we assumed we do not have null pointer exceptions (in field access, assignment or method invocation),
then e” has one of the following forms:

l.f | l.f= v | l.m(v) | new C<FO,VI>(v) | v;return l

We will next examine the matching five reduction rules (R-FIELD-ACCESS, R-FIELD-ASSIGNMENT, R-INVOKE, R-NEW, R-RETURN)
and show that their assumptions hold.

Rule R-FIELD-ACCESS

H[l] = C<NO,NI>(v) fields(C) = f

K ` H,l.fi→ H,vi

We assumed that K,ΓH ` l.fi : T”, therefore from T-FIELD-ACCESS:

K,ΓH ` l : C<MO,IP> ftype(l,fi,C<MO,IP>) = T”

From the definitions of ftype and fields, we know that fi ∈ fields(C).

Rule R-FIELD-ASSIGNMENT

H[l] = C<NO,NI>(v) fields(C) = f NI= Mutable or κ(l) ∈ K v′ = null or l�θ θ(v′)
K ` H,l.fi = v′→ H[l 7→ C<NO,NI>([v′/vi]v)],v

′

Because H is well-typed for K, then from Lem. 4.2, we have that v′ = null or l�θ θ(v′).

7

We assumed that K,ΓH ` l.fi = v’ : T′, therefore from T-FIELD-ASSIGNMENT:

K,ΓH ` l.fi : T K,ΓH ` l : C<NO,NI> K,ΓH ` NI≤ Raw

Similarly to field access, because K,ΓH ` l.fi : T, then fi ∈ fields(C). From our syntax NI is either Mutable or
Immutl′ . We want to show that NI = Mutable or κ(l) ∈ K. Therefore we need to show that if NI = Immutl′

then l′ ∈ K. Because K,ΓH ` NI≤ Raw, it must be from S10 and therefore l′ ∈ K.

Rule R-INVOKE

H[l] = C<NO,NI>(. . .) mbody(m,C) = x.e′

K ` H,l.m(v)→ H, [v/x,l/this,l/This,NO/O,NI/I]e′

We assumed that K,ΓH ` l.m(v) : T”, therefore from T-INVOKE we know that

mtype(l,m,C<NO,NI>) = T→ T"

Therefore mbody(m,C) is defined.

Rule R-NEW

l 6∈ dom(H) VI′ =

{
Immutl if VI= Immut or (VI= Immutc and c 6∈ K)

VI otherwise
H ′ = H[l 7→ C<NO,VI’>(null)]

K ` H,new C<NO,VI>(v)→ H ′,l.build(v);return l

We assumed that K,ΓH ` new C<NO,VI>(v) : T”, therefore from T-NEW we know that

mtype(⊥,build,C<NO,NI>) = T→ U

Thus there is a constructor with #(v) of arguments.

Rule R-RETURN Trivial because there are no assumptions for v;return l

We prove preservation (Lem. 5.6) for method invocation by using Lem. 5.5 that uses induction on the size of
the method body.

Lemma 5.5. (Invocation Substitution) For every heap H that is well-typed for K, location l ∈ dom(H), values v,
types U, and guard IG, where

H[l] = C<NO,NI>

K,ΓH ` NI≤ IG

K,ΓH ` v : U′

K,ΓH ` U′ ≤ [l/This,NI/I,NO/O]U

(4)

Then, for any e” such that /0,Γ ` e” : S, Γ = {I : IG,x : U,this : C<O,I>}, then

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e” : S′

K,ΓH ` S′ ≤ [l/This,NI/I,NO/O]S

Proof. We will prove by induction on the structure of e”.

e” = (e;return l) Impossible because Γ does not contain locations.

e” = (v) Γ does not contain locations. Therefore, v= null, and we can choose S′ = [l/This,NI/I,NO/O]S.

e” = (this) Then S= C<O,I>, and

[l/This,NI/I,NO/O,v/x,l/this]e” = l

[l/This,NI/I,NO/O]S= C<NO,NI>

S′ = C<NO,NI>

K,ΓH ` l : S′

K,ΓH ` S′ ≤ C<NO,NI>

8

e” = (xi) Then S= Ui. We assumed that

K,ΓH ` vi : U′i
K,ΓH ` U′i ≤ [l/This,NI/I,NO/O]Ui

Therefore,

[l/This,NI/I,NO/O,v/x,l/this]e” = vi

S′ = U′i
S= Ui

K,ΓH ` vi : S′

K,ΓH ` S′ ≤ [l/This,NI/I,NO/O]S

e” = (new D<FO,VI>(e)) We assumed that K,ΓH ` new D<FO,VI>(e) : S. From T-NEW, S= D<FO,VI> and

mtype(⊥,build,D<FO,VI>) = T→ U /0,Γ ` e : T′ /0,Γ ` T′ ≤ T (5)

By induction on ei, we have that

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]ei : Vi

K,ΓH ` Vi ≤ [l/This,NI/I,NO/O]T′i
(6)

From Lem. 2.6 and (5), we have that

K,ΓH ` [l/This,NI/I,NO/O]T′i ≤ [l/This,NI/I,NO/O]Ti (7)

From transitivity, (6), and (7), we have

K,ΓH ` Vi ≤ [l/This,NI/I,NO/O]Ti (8)

From definition of mtype we have

mtype(⊥,build, [l/This,NI/I,NO/O]D<FO,VI>) = [l/This,NI/I,NO/O](T→ U) (9)

From T-NEW, (8), and (9),

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]new D<FO,VI>(e) : [l/This,NI/I,NO/O]D<FO,VI>

e” = (e.f) From T-FIELD-ACCESS,

/0,Γ ` e : D<MO,IP>
/0,Γ ` e.f : S

S= ftype(e,f,D<MO,IP>)

Recall that S= ftype(e,f,D<MO,IP>) = substitute(e,D<MO,IP>, ftype(f,D)). Note that e is not a location, and thus
if f is this-owned, then e= this. Consider first the case that f is this-owned, thus e= this. Let ftype(f,D) =
FT, and O(FT) = This. We assumed that /0,Γ ` this. f : S. Then, S= FT. We need to show that

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]this.f : S′

K,ΓH ` S′ ≤ [l/This,NI/I,NO/O]FT

From T-FIELD-ACCESS

K,ΓH ` l.f : [l/This,NI/I,NO/O]FT

, i.e., S′ = [l/This,NI/I,NO/O]FT.

Now suppose that f is not this-owned. Therefore, S= [IP/I,MO/O]FT. We need to show that

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e.f : S′

K,ΓH ` S′ ≤ [l/This,NI/I,NO/O]S S= [IP/I,MO/O]FT
(10)

9

From the induction on e, we have that

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e : S”
K,ΓH ` S”≤ [l/This,NI/I,NO/O]D<MO,IP>

(11)

From (11), O(S”) = [l/This,NO/O]MO. From (10) and (11), and Lem. 2.2, we have that

S′ = ftype(⊥,f,S”) = [I(S”)/I,O(S”)/O]FT≤ [([NI/I]IP)/I,([l/This,NO/O]MO)/O]FT=

= [l/This,NI/I,NO/O]([IP/I,MO/O]FT)

e” = (e.f=e′) The challenge in field assignment is that (by induction) the type of the substitution of e changed
covariantly (i.e., it is a subtype of the substitution of the type), and e′ also changed covariantly. However, we
will prove that because I(e) is Raw, and e is either this or this-owned, then e is invariant.

We assumed that /0,Γ ` e.f=e′ : S. From T-FIELD-ASSIGNMENT, we know that

/0,Γ ` e.f : T /0,Γ ` e′ : S /0,Γ ` S≤ T /0,Γ ` e : D<MO,IP>
/0,Γ ` IP≤ Raw isTransitive(e,Γ,D<MO,IP>) MO 6= ?

(12)

We wish to prove all the assumptions in (12) after substituting [l/This,NI/I,NO/O,v/x,l/this].

By induction on e′ we have that

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e′ : S′

K,ΓH ` S′ ≤ [l/This,NI/I,NO/O]S
(13)

By induction on e.f we have that

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e.f : T′

K,ΓH ` T′ ≤ [l/This,NI/I,NO/O]T
(14)

From the proof of field access above, we see that the class of T′ and T is the same. By induction on e we have
that

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e : D’<MO’,IP’>
K,ΓH ` D’<MO’,IP’>≤ [l/This,NI/I,NO/O]D<MO,IP>

(15)

Because MO 6= ?, from Lem. 2.1 part (i), we have that MO’= MO.

We now prove that the following holds:

K,ΓH ` [NI/I]IP≤ Raw

isTransitive([l/this]e,Γ, [l/This,NI/I,NO/O]D<MO,IP>)
(16)

From (12), /0,Γ ` IP≤ Raw. From our syntax, and because Γ does not contain locations:

IP= ReadOnly | Immut | Mutable | I

If IP= Mutable then we proved (16). Therefore, it must be that IP= I (thus [NI/I]IP= NI) and Γ(I) = IG≤
Raw. From (4) (K,ΓH ` NI≤ IG), we proved the first part of (16) that K,ΓH ` [NI/I]IP≤ Raw. If IG= Mutable

then, NI = Mutable, which proved (16). Therefore IG = Raw, and from the definition of isTransitive we have
that e=this or MO= This. If e= this then isTransitive(l, . . .), which proved (16). Thus MO= This, and

D<MO,IP>= D<This,I>

[l/This,NI/I,NO/O]D<MO,IP>= D<l,NI>
(17)

From (4), H[l] = C<NO,NI>. If NI = Mutable then we proved (16). Otherwise NI = Immutl′ . Because H is
well-typed for K, l′ �T l, thus l′ 6≺θ l, proving (16) (because if a≺θ b then b≺T a).

(i) If e= this. Let ftype(f,D)= FT. We assumed in (12) that /0,Γ` this. f : T. Then, T= FT. From T-FIELD-ACCESS

K,ΓH ` l.f : [l/This,NI/I,NO/O]FT

10

From definition of isTransitive, we have that isTransitive(l, . . .) holds. From (12) (/0,Γ ` S ≤ T) and Lem. 2.6,
we have

K,ΓH ` [l/This,NI/I,NO/O]S≤ [l/This,NI/I,NO/O]T (18)

From (13), (18), and transitivity, we have

K,ΓH ` S′ ≤ [l/This,NI/I,NO/O]FT (19)

To summarize, from (19), (16) (K,ΓH ` NI≤ Raw), we have that

K,ΓH ` l.f : [l/This,NI/I,NO/O]FT K,ΓH ` e′ : S′ K,ΓH ` S′ ≤ [l/This,NI/I,NO/O]FT

K,ΓH ` l : C<NO,NI> K,ΓH ` NI≤ Raw isTransitive(l, . . .)
(20)

Therefore, from (20), and T-FIELD-ASSIGNMENT, we proved that

K,ΓH ` l.f=e′ : S′

K,ΓH ` S′ ≤ [l/This,NI/I,NO/O]FT

(ii) If e 6= this, then from (16), we have

isTransitive(⊥,Γ, [l/This,NI/I,NO/O]D<MO,IP>) (21)

From (15) and (21) and Lem. 2.3, we have that IP’= [NI/I]IP. To summarize, from (13), (14), (18), (21),

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e.f : [l/This,NI/I,NO/O]T
K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e′ : S′

K,ΓH ` S′ ≤ [l/This,NI/I,NO/O]S

K,ΓH ` [l/This,NI/I,NO/O]S≤ [l/This,NI/I,NO/O]T

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e : D’<MO,IP’>
K,ΓH ` IP’≤ Raw

isTransitive(⊥,Γ,D’<MO,IP’>) MO 6= ?

(22)

Thus, from (22), and T-FIELD-ASSIGNMENT, we proved that

K,ΓH ` e.f=e′ : S′

K,ΓH ` S′ ≤ [l/This,NI/I,NO/O]S

e” = (e0.m(e)) The proof is similar in spirit to field assignment: the challenge is that both e0 and ei change
covariantly. Let IG’ be the guard of m. If IG’= ReadOnly then the parameters of m cannot include I. If IG’=
Mutable | Immut, then I remains with the same bound. The challenge is when IG’ = Raw, then we use either
the fact the e0 is either this or this-owned, to prove that e0 is invariant (like in field assignment).

With respect to wildcards, if the receiver e0 has a wildcard, then after the covariant change it might no longer
be the case. Therefore we require that the owner of method parameters in this case must be World. (it cannot
be O nor This).

From T-INVOKE,

/0,Γ ` e0 : D<MO,IP> mtype(e0,m,D<MO,IP>) = T→ W /0,Γ ` e : T’ /0,Γ ` T’≤ T mguard(m,D) = IG’

/0,Γ ` IP≤ IG’ IG’= Raw⇒ isTransitive(e0,Γ,D<MO,IP>) mtype(m,D) = U→ V O(T) = ?⇒ O(U) = ?

/0,Γ ` e0.m(e) : W
(23)

By induction on e0, we have that

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e0 : D’<MO’,IP’>
K,ΓH ` D’<MO’,IP’>≤ [l/This,NI/I,NO/O]D<MO,IP>

(24)

11

Note that, in contrast with field assignment, here we might have MO = ?, and then MO’ 6= MO. However, from
Lem. 2.1 part (i),

MO 6= ?⇒ MO’= [l/This,NO/O]MO (25)

By induction on ei, we have that

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]ei : S′i
K,ΓH ` S′i ≤ [l/This,NI/I,NO/O]T’i

(26)

From (26) and (23) and Lem. 2.6, we have

K,ΓH ` [l/This,NI/I,NO/O]T’i ≤ [l/This,NI/I,NO/O]Ti (27)

From transitivity, (26), and (27),

K,ΓH ` S′i ≤ [l/This,NI/I,NO/O]Ti (28)

Because method overriding maintains the same signature, we have that

mtype(m,D’) = mtype(m,D) = U→ V (29)

From definition of mtype, (29), and because e0 does not contain locations, we have that

mtype(e0,m,D<MO,IP>) = T→ W= [MO/O,IP/I](U→ V)

mtype([l/this]e0,m,D’<MO’,IP’>) = [l/This,MO’/O,IP’/I](U→ V)
(30)

We will always prove that the parameters are invariant, i.e.,

mtype([l/this]e0,m,D’<MO’,IP’>) = [l/This,NI/I,NO/O]Ti→ W’ (31)

We will also prove that

K,ΓH ` IP’≤ IG’ IG’= Raw⇒ isTransitive([l/this]e0,Γ,D’<MO’,IP’>) (32)

Because there are no wildcards after substitution, from (31) and (32), we will have that

K,ΓH ` [l/This,NI/I,NO/O,v/x,l/this]e0.m(e) : W′

K,ΓH ` W′ ≤ [l/This,NI/I,NO/O]W

Next we prove (31) just for the owner parameter, i.e., we want to show that (from (30) and (31))

O([l/This,MO’/O]Ui) = O([l/This,NO/O]Ti) (33)

From (30),
O(Ti) = O([MO/O]Ui) (34)

If O(Ui) = This, then both sides of (33) are l. If O(Ui) 6= O, then both sides of (33) are O(Ui). The last case is
that O(Ui) = O. From (23), we have

O(Ti) = ?⇒ O(Ui) = ? (35)

On the one hand, if MO = ?, then O(Ti) = ?, thus O(Ui) = ?, and both sides of (33) are ?. On the other hand,
if MO 6= ?, then from (25)

MO’= [l/This,NO/O]MO

which proves (33).

From (33), in order to prove (31), we just need to show it for the immutability parameter, i.e., (from (30))

I([IP’/I]Ui) = I([NI/I]([IP/I]Ui)) (36)

12

Recall the following: From (24), we know that K,ΓH ` D’<MO’,IP’>≤ [l/This,NI/I,NO/O]D<MO,IP>. From (23), /0,Γ`
IP≤ IG’. From (4), K,ΓH ` NI≤ IG and I : IG ∈ Γ.

We will split the proof by the four possible values of IG’ = ReadOnly | Mutable | Immut | Raw. For each case
we need to prove (32) and (36).

(i) IG’= ReadOnly Because any immutability is a subtype of ReadOnly, we proved (32). Furthermore, when
IG’= ReadOnly the signature of parameters cannot contain I, i.e., I(Ui) 6= I, which proved (36).

(ii) IG’= Mutable From (23), /0,Γ ` IP≤ Mutable, thus either IP= Mutable or (IG= Mutable and IP= I). If
IP= I, then from (4), K,ΓH ` NI≤ Mutable, thus NI= Mutable. Thus, K,ΓH ` [NI/I]IP≤ Mutable. Therefore,
from (24) and Lem. 2.4 part (i), we have that K,ΓH ` IP’≤ Mutable, which proved (32).

We showed that if IP = I, then NI = Mutable and IP’ = Mutable, proving (36). We also showed that if
IP= Mutable then IP’= Mutable, proving (36).

(iii) IG’= Immut Exactly like part (ii), but we use Lem. 2.4 part (ii) instead of part (i), and (Immutl′ where l′ 6∈
K) instead of Mutable.

(iv) IG’= Raw Exactly like in field assignment, we prove that:

K,ΓH ` [NI/I]IP≤ Raw

isTransitive([l/this]e,Γ, [l/This,NI/I,NO/O]D<MO,IP>)
(37)

If e = this, then D = C, IP = I (because /0,Γ ` this : D<O,I>) and IP’ = NI (because K,ΓH ` l : D<NO,NI>),
therefore,

I([NI/I]Ui) = I([NI/I]([I/I]Ui))

which proved (36). Furthermore, because /0,Γ ` IP ≤ Raw (and IP = I), we know that IG ≤ Raw. Thus
from (4), K,ΓH ` NI ≤ Raw. Finally because this was replaced with l, and isTransitive(l, . . .) always holds,
then we proved (32).

If e 6= this, then from (37), we have that isTransitive(⊥,Γ, [l/This,NI/I,NO/O]D<MO,IP>), thus from definition
of isTransitive we have that MO 6= ?. From Lem. 2.4 part (iii) and (24), we know that IP’ = [NI/I]IP, which
proved (36). Combined with (37), we have that K,ΓH ` IP’≤ Raw. From (25), we have MO’= [l/This,NO/O]MO.
Therefore, D’<MO’,IP’>= [l/This,NI/I,NO/O]D<MO,IP>, which proved (32).

Lemma 5.6. (Subtype preservation) For every closed expression e” 6= v, H, and K, if K,ΓH ` e” : T” and K `
H,e”→ H ′, è and H is well-typed for K∪K(e”), then K,ΓH ′ ` è : T̀ and K,ΓH ′ ` T̀≤ T”.

Proof. We prove by examining all possible reduction rules.

Congruence for field access Consider the congruence rule for field access

K ` H,e→ H ′,e′

K ` H,e.f→ H ′,e′.f

We assumed that K,ΓH ` e.f : T” and by induction K,ΓH ` e : T, K,ΓH ′ ` e′ : T′ and K,ΓH ′ ` T′ ≤ T. Let T=
C<MO,IP>. Because e 6= this (cause e is closed) and e 6= l (cause a location cannot be reduced further), then
field f is not this-owned, and T” = ftype(⊥,f,T).
Because K,ΓH ′ ` T′ ≤ T, from Lem. 2.1 part (iii), then C’ is a subtype of C. Therefore fields(C’) must contain
the same field f which is not this-owned. Thus, K,ΓH ′ ` è : T̀, where T̀ = ftype(⊥,f,T′). The last thing we
need to prove is that K,ΓH ′ ` T̀≤ T”, which follows from Lem. 2.7.

Congruence for method receiver Consider the congruence rule for method receiver

K ` H,e0→ H ′,e′0
K ` H,e0.m(e)→ H ′,e′0.m(e)

Similarly to field access, because e0 is not a location, then none of the parameters or return type of method m

is this-owned. Proving that K,ΓH ′ ` T̀ ≤ T” (i.e., the return type is preserved) is done similarly to field

13

access, by noting that method overriding maintains the same return type. (The return type could also change
covariantly and the proof would still hold.) However, proving that K,ΓH ′ ` è : T̀ is more challenging because:
(i) we need to show that e′0 satisfies the guard, and (ii) the type of method parameters after substitution can
change covariantly (as opposed to FGJ, which is invariant).

We will first prove that e′0 satisfies the guard. We assumed that K,ΓH ` e0.m(e) : T” and by induction K,ΓH `
e0 : T, K,ΓH ′ ` e′0 : T′ and K,ΓH ′ ` T′ ≤ T. From T-INVOKE, we know that

K,ΓH ` e0 : C<MO,IP> mguard(m,C) = IG K,ΓH ` IP≤ IG IG= Raw⇒ isTransitive(e0,Γ,C<MO,IP>)

Because e0 is neither this nor l (because it was reduced), then IG = Raw ⇒ isTransitive(⊥,Γ,C<MO,IP>).
Let T′ = C’<MO,IP’> and mguard(m,C’) = IG’. Because K,ΓH ′ ` T′ ≤ T, from Lem. 2.1 part (iii), then C’

is a subtype of C. From the restriction on method overriding with guards, IG ≤ IG’. From Lem. 2.4 part (iv),
we have that IP’≤ IG. From transitivity, IP’≤ IG’.

Next we show that IG= Raw⇒ isTransitive(e′0,Γ,C’<MO,IP’>). If IG= Raw then we showed that isTransitive(⊥,Γ,C<MO,IP>).
From Lem. 2.3 we have that IP’= IP, thus IG= Raw⇒ isTransitive(e′0,Γ,C’<MO,IP’>).

Let

mtype(e0,m,C<MO,IP>) = U→ V

mtype(e′0,m,C’<MO,IP’>) = U’→ V’

K,ΓH ` e : U"

Because K,ΓH ` U"≤ U, from Lem. 2.8, we have that K,ΓH ` U"≤ U’.

Therefore, all the assumptions in T-INVOKE are fulfilled (the requirement for wildcards is fulfilled because all
types are closed), and we proved that K,ΓH ′ ` è : T̀.

Congruence for method argument Trivial.

Congruence for new instance Trivial.

Congruence for the rvalue of field assignment Trivial.

Congruence for the receiver of field assignment Consider the congruence rule for the receiver of field assign-
ment

K ` H,e→ H ′,e′

K ` H,e.f=e"→ H ′,e’.f=e"

We assumed that K,ΓH ` e.f=e" : T” and by induction K,ΓH ` e : T, K,ΓH ′ ` e′ : T′ and K,ΓH ′ ` T′ ≤ T. We
will show that K,ΓH ` e.f=e" : T”. From T-FIELD-ASSIGNMENT:

K,ΓH ` e.f : F K,ΓH ` e" : T" K,ΓH ` T"≤ F K,ΓH ` e : C<MO,IP> K,ΓH ` IP≤ Raw isTransitive(e,ΓH ,C<MO,IP>)

We need to show that:

K,ΓH ` e′.f : F’ K,ΓH ` T"≤ F’ K,ΓH ` e′ : C’<MO,IP’> K,ΓH ` IP’≤ Raw isTransitive(e,ΓH ,C’<MO,IP’>)

Because e was reduced, we know it is not a location, so isTransitive(⊥,ΓH ,C<MO,IP>). From Lem. 2.3, we
have that IP= IP’. Therefore F’= F (because ftype(f,C) = ftype(f,C′)), and isTransitive(e,ΓH ,C’<MO,IP’>).

Congruence for return R-C1 Consider the congruence rule for e;return l

K∪{l} ` H,e→ H ′,e′

K ` H,e;return l→ H ′,e’;return l

We assumed that

K,ΓH ` e;return l : T” e” = e;return l è= e’;return l

K∪{l},ΓH ` e : T K∪{l},ΓH ′ ` e′ : T′ K∪{l},ΓH ′ ` T′ ≤ T

We need to prove that K,ΓH ′ ` è : T̀ and K,ΓH ′ ` T̀≤ T”.

14

According to T-RETURN:
K∪{l},ΓH ′ ` e′ : T′

K,ΓH ′ ` e’;return l : ΓH ′(l)

Because K∪{l},ΓH̀ ` e′ : T′, we proved that K,ΓH ′ ` e’;return l : ΓH ′(l), i.e., K,ΓH ′ ` è : T̀.

We still need to prove that K,ΓH ′ ` T̀ ≤ T”. Because T̀ = ΓH ′(l) and T” = ΓH(l) then T̀ = T”, and from
reflexivity (S2) we have K,ΓH ′ ` T̀≤ T”.

Rule R-RETURN Trivial

Rule R-NEW According to R-NEW

l 6∈ dom(H) VI′ =

{
Immutl if VI= Immut or (VI= Immutc and c 6∈ K)

VI otherwise
H ′ = H[l 7→ C<NO,VI’>(null)]

K ` H,new C<NO,VI>(v)→ H ′,l.build(v);return l

We assumed that

K,ΓH ` e” : T” e” = new C<NO,VI>(v) è= l.build(v);return l

We need to prove that K,ΓH ′ ` è : T̀ and K,ΓH ′ ` T̀≤ T”.

From T-NEW

mtype(⊥,build,C<NO,VI>) = U→ Z K,ΓH ` v : V K,ΓH ` V≤ U

K,ΓH ` new C<NO,VI>(v) : C<NO,VI>
(38)

Thus, T”= C<NO,VI>. From T-RETURN, T̀= C<NO,VI’>. Because l 6∈K, then K,ΓH ′ ` Immutl≤ Immut, thus K,ΓH ′ `
T̀≤ T”.

We still need to prove that K,ΓH ′ ` è : T̀, and from T-RETURN we need to prove that

K∪{l},ΓH ′ ` l.build(v) : Z

Because l is a new location, all the equations in (38) are still true if we replace ΓH with ΓH ′ . From T-INVOKE,
and because the guard of build is Raw:

K∪{l},ΓH ′ ` l : T̀ mtype(l,build, T̀) = W→ Z’ K∪{l},ΓH ′ ` v : V K∪{l},ΓH ′ ` V≤ W

K∪{l},ΓH ′ ` VI’≤ Raw isTransitive(l,Γ, T̀)
K∪{l},ΓH ′ ` l.build(v) : Z’

Assumption isTransitive(l,Γ, T̀) holds because l is a location. Because l ∈ K∪{l} and VI is either Mutable or
Immut or Immutl′ , then this assumption holds K ∪{l},ΓH ′ ` VI’ ≤ Raw. The only assumption left to prove is
that K∪{l},ΓH ′ ` V≤ W. From (38) we have that K∪{l},ΓH ′ ` V≤ U. If VI= Mutable then U= W. Otherwise
VI= Immut, T̀= C<NO,Immut lVI>, and we have that

mtype(build,C) = FT→ Z"

mtype(l,build,C<NO,Immut lVI>) = W→ Z’

mtype(⊥,build,C<NO,Immut >) = U→ Z

Wi = [NO/O,Immutl/I]FTi

Ui = [NO/O,Immut/I]FTi

K∪{l},ΓH ′ ` Vi ≤ Ui

We want to prove that K∪{l},ΓH ′ ` Vi ≤ Wi. If I(FTi) 6= I then Wi = Ui. Because O(FTi) 6= This, then it is either
O or World, thus, θ(Wi) is either NO or World. Finally note that l≺θ NO (because l 7→ C<NO,...>), and we always
have that NO�θ World, thus l≺θ World. According to subtyping rule S13, we have that K∪{l},ΓH ′ ` Ui ≤ Wi,
and from transitivity Vi ≤ Ui ≤ Wi.

Rule R-FIELD-ACCESS According to R-FIELD-ACCESS

H[l] = C<NO,NI>(v) fields(C) = f

K ` H,l.fi→ H,vi

We assumed that K,ΓH ` l.fi : T”, and we need to prove that K,ΓH ` vi : T̀ and K,ΓH ` T̀ ≤ T”. If vi = null

then we can choose T̀= T”, otherwise vi 6= null, and because the heap is well-typed for K, then K,ΓH ` T̀≤ T”.

15

Rule R-FIELD-ASSIGNMENT According to R-FIELD-ASSIGNMENT

. . .
K ` H,l.fi = v’→ H ′,v′

We assumed that K,ΓH ` l.fi = v’ : T”, and we need to prove that K,ΓH ′ ` v′ : T̀ and K,ΓH ′ ` T̀≤ T”. Because
we did not add any new locations, we have ΓH = ΓH ′ . From T-FIELD-ASSIGNMENT, we have that K,ΓH ` v’ : T”,
i.e., T̀= T”.

Rule R-INVOKE According to R-INVOKE

H[l] = C<NO,NI>(. . .) mbody(m,C) = x.e′

K ` H,l.m(v)→ H, [v/x,l/this,l/This,NO/O,NI/I]e′

We assumed that

K,ΓH ` e” : T” e” = l.m(v) è= [v/x,l/this,l/This,NO/O,NI/I]e′

From T-INVOKE we have that

mtype(l,m,C<NO,NI>) = T→ T” K,ΓH ` v : T′ K,ΓH ` T′ ≤ T mguard(m,C) = IG K,ΓH ` NI≤ IG

We know the method m was typed-checked in C, i.e.,

Γ = {I : IG,x : U,this : C<O,I>}
mtype(m,C) = U→ FT

/0,Γ ` e′ : S
/0,Γ ` S≤ FT

From the definition of mtype:

mtype(l,m,C<NO,NI>) = substitute(l,C<NO,NI>,mtype(m,C))

T” = [NO/O,NI/I,l/This]FT

Ti = [NO/O,NI/I,l/This]Ui

We need to prove that K,ΓH ` è : T̀ and K,ΓH ` T̀≤ T”, which follows immediately from Lem. 5.5.

Lemma 5.7. (Well-typed heap preservation) For every closed expression e” 6= v, K, and H, if K,ΓH ` e” : T”
and K ` H,e”→ H ′, è and H is well-typed for K∪K(e”), then H ′ is well-typed for K∪K(è).

Proof. Recall that a well-typed heap H satisfies: (i) there is a linear order �T over dom(H) such that for every
location l, θ(l) = World or θ(l)≺T l, and I(l) = Mutable or κ(l)�T l, and (ii) each non-null field location is a
subtype of the declared field type. Recall also that from the definition of a heap H, every location l in H has the
form: (iii) l 7→ C<NO,NI>(v).

Consider the congruence rules, such as

K ` H,e→ H ′,e′

K ` H,e. f → H ′,e′. f

By the induction hypothesis H ′ is well-typed K∪K(è).
The only rule that changes K is R-C1:

K∪{l} ` H ′,e→ H”,e’
K ` H,e;return l→ H”,e’;return l

By induction H” is well-typed for (K∪{l})∪K(e’). We need to prove that H” is well-typed for K∪K(e’;return l).
By definition of K(. . .), we have that K∪K(e’;return l) = K∪{l}∪K(e’).

16

Rules R-FIELD-ACCESS and R-INVOKE do not change the heap.
Rule R-RETURN does not change the heap nor K, however K(è) = K(e”) \ {l}, According to Lem. 4.1, the

resulting heap H ′ is well-typed for K∪K(è).
Rule R-NEW creates a new object with null fields:

VI′ =

{
Immutl if VI= Immut or (VI= Immutc and c 6∈ K)

VI otherwise
l 6∈ dom(H) H ′ = H[l 7→ C<NO,VI’>(null)]

The fields of the new object are all null, thus fulfilling demand (ii).
We extend the linear order �T by adding the new location l at the end. Its owner NO is either World or an

existing object l′, and either VI = Mutable or VI = Immutl′ (where l′ is either an existing location or l), thus
fulfilling demand (i).

Note that e” = new C<NO,VI>(v), and because e” is closed, then we have that NO and VI do not contain O,
I, nor This. And if VI = Immut then it is substituted with Immutl, thus fulfilling demand (iii). Finally, note
that è = (l.build(v);return l), i.e., K(è) = K(e”)∪ {l}. However, because l is a new location, it does not
change existing subtype relations (it does not affect existing objects that do not refer to l). Therefore, H ′ is
well-typed for K∪K(è).

Finally, in rule R-FIELD-ASSIGNMENT, e”= l.fi = v’, è= v’, and H ′=H[l 7→ C<NO,NI>([v′/vi]v)]. Note that K(e”)=
K(è) = {}, thus a if H ′ is well typed then it is well-typed for K∪K(è). Because the typing rule T-FIELD-ASSIGNMENT

require that:
K,ΓH ` l.f : T K,ΓH ` v’ : T’ K,ΓH ` T’≤ T

then the heap H ′ is well-typed for K∪K(è).

17

What follows is our camera-ready SPLASH2010 (formerly known as OOPSLA) main technical track paper.

Ownership and Immutability in Generic Java

Yoav Zibin Alex Potanin Paley Li

Victoria University of Wellington
Wellington, New Zealand

yoav|alex|lipale@ecs.vuw.ac.nz

Mahmood Ali

Massachusetts Institute of Technology
Cambridge, MA, USA

mali@csail.mit.edu

Michael D. Ernst

University of Washington
Seattle, WA, USA

mernst@cs.washington.edu

Abstract
The Java language lacks the important notions of ownership
(an object owns its representation to prevent unwanted alias-
ing) and immutability (the division into mutable, immutable,
and readonly data and references). Programmers are prone to
design errors, such as representation exposure or violation
of immutability contracts. This paper presents Ownership
Immutability Generic Java (OIGJ), a backward-compatible
purely-static language extension supporting ownership and
immutability. We formally defined a core calculus for OIGJ,
based on Featherweight Java, and proved it sound. We also
implemented OIGJ and performed case studies on 33,000
lines of code.

Creation of immutable cyclic structures requires a “cook-
ing phase” in which the structure is mutated but the outside
world cannot observe this mutation. OIGJ uses ownership
information to facilitate creation of immutable cyclic struc-
tures, by safely prolonging the cooking phase even after the
constructor finishes.

OIGJ is easy for a programmer to use, and it is easy to
implement (flow-insensitive, adding only 14 rules to those of
Java). Yet, OIGJ is more expressive than previous ownership
languages, in the sense that it can type-check more good
code. OIGJ can express the factory and visitor patterns, and
OIGJ can type-check Sun’s java.util collections (except
for the clone method) without refactoring and with only a
small number of annotations. Previous work required major
refactoring of existing code in order to fit its ownership
restrictions. Forcing refactoring of well-designed code is
undesirable because it costs programmer effort, degrades the
design, and hinders adoption in the mainstream community.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.1.5
[Programming Techniques]: Object-oriented Programming

General Terms Experimentation, Languages, Theory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

1. Introduction
This paper presents Ownership Immutability Generic Java
(OIGJ), a simple and practical language extension that ex-
presses both ownership and immutability information. OIGJ
is purely static, without any run-time representation. This
enables executing the resulting code on any JVM without
run-time penalty. Our ideas, though demonstrated using Java,
are applicable to any statically typed language with generics,
such as C++, C#, Scala, and Eiffel.

OIGJ follows the owner-as-dominator discipline [1, 11,
32] where an object cannot leak beyond its owner: outside
objects cannot access it. If an object owns its representation,
then there are no aliases to its internal state. For example, a
LinkedList should own all its Entry objects (but not its ele-
ments); entries should not be exposed to clients, and entries
from different lists must not be mixed.

The keyword private does not offer such strong protec-
tion as ownership, because a careless programmer might
write a public method that exposes a private object (a.k.a.
representation exposure). Phrased differently, the name-
based protection used in Java hides the variable but not the
object, as opposed to ownership that ensures proper encap-
sulation. The key idea in ownership is that representation
objects are nested and encapsulated inside the objects to
which they belong. Because this nesting is transitive, this
kind of ownership is also called deep ownership [12].

OIGJ is based on our previous type systems for owner-
ship (OGJ [32]) and immutability (IGJ [39]). Although own-
ership and immutability may seem like two unrelated con-
cepts, a design involving both enhances the expressiveness
of each individual concept. On the one hand, immutabil-
ity enhances ownership by relaxing owner-as-dominator to
owner-as-modifier [23], i.e., it constrains modification in-
stead of aliasing. On the other hand, the benefits of adding
ownership on top of immutability have not been investigated
before. One such benefit is easier creation of immutable
cyclic data-structures by using ownership information.

Constructing an immutable object must be done with
care. An object begins in the raw (not fully initialized) state
and transitions to the cooked state [6] when initialization
is complete. For an immutable object, field assignment is
allowed only when the object is raw, i.e., the object cannot

be modified after it is cooked. An immutable object should
not be visible to the outside world in its raw state because
it would seem to be mutating. The challenge in building an
immutable cyclic data-structure is that many objects must be
raw simultaneously to create the cyclic structure. Previous
work restricted cooking an object to the constructor, i.e., an
object becomes cooked when its constructor finishes.

Our key observation is that an object can be cooked when
its owner’s constructor finishes. More precisely, in OIGJ, a
programmer can choose between cooking an object until
its constructor finishes, or until its owner becomes cooked.
Because the object is encapsulated within its owner, the
outside world will not see this cooking phase. By adding
ownership information, we can prolong the cooking time to
make it easier to create complex data-structures.

Consider building an immutable LinkedList (Sun’s im-
plementation is similar):

LinkedList(Collection<E> c) {

this();

Entry<E> succ = this.header, pred = succ.prev;

for (E e : c)

{ Entry<E> entry = new Entry<E>(e,succ,pred);

// It is illegal to change an entry after it is cooked.
pred.next = entry; pred = entry; }

succ.prev = pred;

}

An immutable list contains immutable entries, i.e., the fields
next and prev cannot be changed after an entry is cooked. In
IGJ and previous work on immutability, an object becomes
cooked after its constructor finishes. Because next and prev

are changed after that time, this code is illegal. In contrast,
in OIGJ, this code type-checks if we specify that the list
(the this object) owns all its entries (the entries are the
list’s representation). The entries will become cooked when
their owner’s (the list’s) constructor finishes, thus permitting
the underlined assignments during the list’s construction.
Therefore, there was no need to refactor the constructor of
LinkedList for the benefit of OIGJ type-checking.

Informally, OIGJ provides the following ownership and
immutability guarantees. Let θ(o) denote the owner of o and
let �θ denote the ownership tree, i.e., the transitive, reflexive
closure of o �θ θ(o). Phrased differently, θ(o) is the parent
of o in the tree, and the top (biggest) node in the tree is the
root World. We say that o1 is inside o2 iff o1 �θ o2, and it is
strictly inside if o1 �= o2.

Ownership guarantee: An object o′ can point to object o
iff o′ �θ θ(o), i.e., o is owned by o′ or by one of its owners.

Immutability guarantee: An immutable object cannot
be changed after it is cooked.

Contributions The main contributions of this paper are:

Simplify ownership concepts OIGJ expresses ownership
concepts without introducing new mechanisms, by us-
ing Java’s underlying generic mechanisms. Specifically,

owner-polymorphic methods and scoped regions [36] are
implemented using generic methods, and existential own-
ers [37] are implemented using generic wildcards. By
contrast, previous work used new mechanisms that are
orthogonal to generics.

No refactoring of existing code Java’s collection classes
(java.util) are properly encapsulated. We have imple-
mented OIGJ, and verified the encapsulation by run-
ning the OIGJ type-checker without changing the source
code (except for the clone method). Verifying Sun’s
LinkedList requires only 3 ownership annotations (see
Sec. 4). Previous approaches to ownership or immutabil-
ity required major refactoring of this codebase.

Flexibility As illustrated by our case study, OIGJ is more
flexible and practical than previous type systems. For ex-
ample, OIGJ can type-check the factory and visitor design
patterns (see Sec. 2), but other ownership languages can-
not [25]. Another advantage of OIGJ is that it uses own-
ership information to facilitate creating immutable cyclic
structures by prolonging their cooking phase.

Formalization We define a Featherweight OIGJ (FOIGJ)
calculus to formalize the concepts of raw/cooked objects
and wildcards as owner parameters. We prove FOIGJ is
sound and show our ownership and immutability guaran-
tees.

Outline. Sec. 2 presents the OIGJ language. Sec. 3 de-
fines the OIGJ formalization. Sec. 4 discusses the OIGJ im-
plementation and the collections case study. Sec. 5 compares
OIGJ to related work, and Sec. 6 concludes.

2. OIGJ Language
This section presents the OIGJ language extension that ex-
presses both ownership and immutability information. We
first describe the OIGJ syntax (Sec. 2.1). We then proceed
with a LinkedList class example (Sec. 2.2), followed by the
OIGJ typing rules (Sec. 2.3). We conclude with the factory
(Sec. 2.4) and visitor (Sec. 2.5) design patterns in OIGJ.

2.1 OIGJ syntax

OIGJ introduces two new type parameters to each type,
called the owner parameter and the immutability parame-
ter. For simplicity of presentation, in the rest of this paper
we assume that the special type parameters are at the begin-
ning of the list of type parameters. We stress that generics in
Java are erased during compilation to bytecode and do not
exist at run time, therefore OIGJ does not incur any run-time
overhead (nor does it support run-time casts).

In OIGJ, all classes are subtypes of the parameterized root
type Object<O,I> that declares an owner and an immutabil-
ity parameter. In OIGJ, the first parameter is the owner (O),
and the second is the immutability (I). All subclasses must
invariantly preserve their owner and immutability parameter.
The owner and immutability parameters form two separate

ReadOnly

Raw Immut

Mutable

World

This

(a) (b)

Figure 1. The type hierarchy of (a) ownership and (b) im-
mutability parameters. World means the entire world can
access the object, whereas This means that this owns the
object and no one else can access it. The meaning of
Mutable/Immut is obvious. A ReadOnly reference points to a
mutable or immutable object, and therefore cannot be used
to mutate the object. Raw represents an object under construc-
tion whose fields can be assigned.

hierarchies, which are shown in Fig. 1. These parameters
cannot be extended, and they have no subtype relation with
any other types. The subtyping relation is denoted by ≤, e.g.,
Mutable≤ ReadOnly. Subtyping is invariant in the owner pa-
rameter and covariant in the immutability parameter. (See
also paragraph Subtype relation in Sec. 2.3.)

Note that the owner parameter O is a type, whereas the
owner of an object is an object. For example, if the owner
parameter is This, then the owner is the object this. There-
fore, the owner parameter (which is a type) at compile time
corresponds to an owner (which is an object) at run time.
(See also paragraph Owner vs. Owner-parameter below.)

OIGJ syntax borrows from conditional Java (cJ) [19],
where a programmer can write method guards. A guard of
the form <X extends Y>? METHOD DECLARATION has a dual
meaning: (i) the method is applicable only if the type ar-
gument that substitutes X extends Y, and (ii) the bound of
X inside METHOD DECLARATION changes to Y. The guards are
used to express the immutability of this: a method receiver
or a constructor result. For example, a method guarded with
<I extends Mutable>? means that (i) the method is applica-
ble only if the receiver is mutable and therefore (ii) this can
be mutated inside the method.

Class definition example Fig. 2 shows an example of OIGJ
syntax. A class definition declares the owner and immutabil-
ity parameters (line 1); by convention we always denote
them by O and I and they always extend World and ReadOnly.
If the extends clause is missing from a class declaration,
then we assume it extends Object<O,I>.

Immutability example Lines 2–4 show different kinds of
immutability in OIGJ: immutable, mutable, and readonly.
A readonly and an immutable reference may seem similar
because neither can be used to mutate the referent. However,
line 4 shows the difference between the two: a readonly
reference may point to a mutable object. Phrased differently,
a readonly reference may not mutate its referent, though the
referent may be changed via an aliasing mutable reference.

1:class Foo<O extends World,I extends ReadOnly> {

2: // An immutable reference to an immutable date.
Date<O,Immut> imD = new Date<O,Immut>();

3: // A mutable reference to a mutable date.
Date<O,Mutable> mutD = new Date<O,Mutable>();

4: // A readonly reference to any date. Both roD and imD cannot
mutate their referent, however the referent of roD might be
mutated by an alias, whereas the referent of imD is immutable.
Date<O,ReadOnly> roD = ... ? imD : mutD;

5: // A date with the same owner and immutability as this.
Date<O,I> sameD;

6: // A date owned by this; it cannot leak.
Date<This,I> ownedD;

7: // Anyone can access this date.
Date<World,I> publicD;

8: // Can be called on any receiver; cannot mutate this. The
method guard “<...>?” is part of cJ’s syntax [19].
<I extends ReadOnly>? int readonlyMethod() {...}

9: // Can be called only on mutable receivers; can mutate this.
<I extends Mutable>? void mutatingMethod() {...}

10: // Constructor that can create (im)mutable objects.
<I extends Raw>? Foo(Date<O,I> d) {

11: this.sameD = d;

12: this.ownedD = new Date<This,I>();

13: // Illegal, because sameD came from the outside.
// this.sameD.setTime(...);

14: // OK, because Raw is transitive for owned fields.
this.ownedD.setTime(...);

15:}}

Figure 2. An example of OIGJ syntax.

Java’s type arguments are invariant (neither covariant nor
contravariant), to avoid a type loophole [20], so line 4 is il-
legal in Java. Line 4 is legal in OIGJ, because OIGJ safely
allows covariant changes in the immutability parameter (but
not in the owner parameter). OIGJ restricts Java by having
additional typing rules, while at the same time OIGJ also re-
laxes Java’s subtyping relation. Therefore, neither OIGJ nor
Java subsumes the other, i.e., a legal OIGJ program may be
illegal in Java (and vice versa). However, because generics
are erased during compilation, the resulting bytecode can be
executed on any JVM.

The immutability of sameD (line 5) depends on the im-
mutability of this, i.e., sameD is (im)mutable in an (im)mutable
Foo object. Similarly, the owner of sameD is the same as the
owner of this.

Ownership example Lines 5–7 show three different owner
parameters: O, This, and World. The owner parameter is in-
variant, i.e., the subtype relation preserves the owner param-
eter. For instance, the types on lines 5–7 have no subtype
relation with each other because they have different owner
parameters.

Reference ownedD cannot leak outside of this, whereas
references sameD and publicD can potentially be accessed by

anyone with access to this. Although sameD and publicD can
be accessed by the same objects, they cannot be stored in the
same places: publicD can be stored anywhere on the heap
(even in a static public variable) whereas sameD can only be
stored inside its owner.

We use O(. . .) to denote the function that takes a type or a
reference, and returns its owner parameter; e.g., O(ownedD)=
This. Similarly, function I(. . .) returns the immutability pa-
rameter; e.g., I(ownedD) = I. We say that an object o is this-
owned (i.e., owned by this) if O(o) = This; e.g., ownedD is
this-owned, but sameD is not. OIGJ prevents leaking this-
owned objects by requiring that this-owned fields (and
methods with this-owned arguments or return-type) can
only be used via this. For example, this.ownedD is legal,
but foo.ownedD is illegal.

Owner vs. owner-parameter Now we explain the connec-
tion between the owner parameter O(o), which is a generic
type parameter at compile time, and the owner θ(o), which is
an object at run time. This is an owner parameter that repre-
sents an owner that is the current this object, and World rep-
resents the root of the ownership tree (we treat World both
as a type parameter and as an object that is the root of the
ownership tree). Formally, if O(o) = This then θ(o) = this,
if O(o) = O then θ(o) = θ(this), and if O(o) = World then
θ(o) = World. Two references (in the same class) with the
same owner parameter (at compile time) will point to ob-
jects with the same owner (at run time), i.e., O(o1) = O(o2)
implies θ(o1) = θ(o2).

Finally, recall the Ownership guarantee: o′ can point
to o iff o′ �θ θ(o). By definition of �θ, we have that for
all o: (i) o �θ o, (ii) o �θ θ(o), and (iii) o �θ World. By part
(iii), if θ(o) = World then anyone can point to o. On lines 5–
7, we see that this can point to ownedD, sameD, publicD,
whose owner parameters are This, O, World, and whose own-
ers are this, θ(this), World. This conforms with the own-
ership guarantee according to parts (i), (ii), and (iii), respec-
tively. More complicated pointing patterns can occur by us-
ing multiple owner parameters, e.g., an entry in a list can
point to an element owned by the list’s owner, such as in
List<This,I,Date<O,I>>.

There is a similar connection between the immutability
type parameter (at compile time) and the object’s immutabil-
ity (at run time). Immutability parameter Mutable or Immut

implies the object is mutable or immutable (respectively),
ReadOnly implies the referenced object may be either mu-
table or immutable and thus the object cannot be mutated
through the read-only reference. Raw implies the object is
still raw and thus can still be mutated, but it might become
immutable after it is cooked.

Method guard example Lines 8 and 9 show a readonly and
a mutating method. These methods are guarded with <...>?.
Conditional Java (cJ) [19] extends Java with such guards
(a.k.a. conditional type expressions). Note that cJ changed
Java’s syntax by using the question mark in the guard <...>?.

The exposition in this paper uses cJ for convenience. How-
ever, our implementation of OIGJ (Sec. 4) uses type anno-
tations [15] without changing Java’s syntax, for conciseness
and compatibility with existing tools and code bases.

A guard such as <T extends U>? METHOD DECLARATION

has a dual purpose: (i) the method is included only if T

extends U, and (ii) the bound of T is U inside the method.
In our example, the guard on line 9 means that (i) this
method can only be called on a Mutable receiver, and
(ii) inside the method the bound of I changes to Mutable.
For instance, (i) only a mutable Foo object can be a re-
ceiver of mutatingMethod, and (ii) field sameD is mutable
in mutatingMethod. cJ also ensures that the condition of an
overriding method is equivalent or weaker than the condition
of the overridden method.

IGJ [39] used declaration annotations to denote the im-
mutability of this. In this paper, OIGJ uses cJ to reduce the
number of typing rules and handle inner classes more flex-
ibly.1 OIGJ does not use the full power of cJ: it only uses
guards with immutability parameters. Moreover, we modi-
fied cJ to treat guards over constructors in a special way de-
scribed in the Object creation rule of Fig. 4.

To summarize, on lines 8–10 we see three guards that
change the bound of I to ReadOnly, Mutable, and Raw, respec-
tively. Because the bound of I is already declared on line 1
as ReadOnly, the guard on line 8 can be removed.

Constructor example The constructor on line 10 is guarded
with Raw, and therefore can create both mutable and im-
mutable objects, because all objects start their life cycle as
raw. This constructor illustrates the interplay between owner-
ship and immutability, which makes OIGJ more expressive
than previous work on immutability. OIGJ uses ownership
information to prolong the cooking phase for owned objects:
the cooking phase of this-owned fields (ownedD) is longer
than that of non-owned fields (sameD). This property is crit-
ical to type-check the collection classes, as Sec. 2.2 will
show.

Consider the following code:

class Bar<O extends World,I extends ReadOnly>

{ Date<O,Immut> d = new Date<O,Immut>();

Foo<O,Immut> foo = new Foo<O,Immut>(d); }

Recall our Immutability guarantee: an immutable object
cannot be changed after it is cooked. A This-owned object is
cooked when its owner is cooked (e.g., foo.ownedD). Any
other object is cooked when its constructor finishes (e.g.,
d and foo). The intuition is that ownedD cannot leak and so
the outside world cannot observe this longer cooking phase,
whereas d is visible to the world after its constructor finishes
and must not be mutated further. The constructor on lines 10–
15 shows this difference between the assignments to sameD

1 Our implementation uses type annotations to denote immutability of
this. A type annotation @Mutable on the receiver is similar to a cJ <I
extends Mutable>? construct, but it separates the distinct roles of the
receiver and the result in inner class constructors.

(line 11) and to ownedD (line 12): sameD can come from the
outside world, whereas ownedD must be created inside this.
Thus, sameD cannot be further mutated (line 13) whereas
ownedD can be mutated (line 14) until its owner is cooked.

An object in a raw method, whose immutability parame-
ter is I, is still considered raw (thus the modified body can
still assign to its fields or call other raw methods) iff the ob-
ject is this or this-owned. Informally, we say that Raw is
transitive only for this or this-owned objects. For exam-
ple, the receiver of the method call sameD.setTime(...) is
not this nor this-owned, and therefore the call on line 13
is illegal; however, the receiver of ownedD.setTime(...) is
this-owned, and therefore the call on line 14 is legal.

2.2 LinkedList example

Fig. 3 shows an implementation of LinkedList in OIGJ
that is similar in spirit to Sun’s implementation. We explain
this example in three stages: (i) we first explain the data-
structure, i.e., the fields of a list and its entries (lines 1–6),
(ii) then we discuss the Raw constructors that enable creation
of immutable lists (lines 7–24), and (iii) finally we dive into
the complexities of inner classes and iterators (lines 27–53).

LinkedList data-structure A linked list has a header field
(line 6) pointing to the first entry. Each entry has an element

and pointers to the next and prev entries (line 3). We explain
first the immutability and then the ownership of each field.

Recall that we implicitly assume that O extends World and
that *I extends ReadOnly on lines 1, 5, 35 and 49.

An (im)mutable list contains (im)mutable entries, i.e.,
the entire data-structure is either mutable or immutable as
a whole. Hence, all the fields have the same immutability
I. The underlying generic type system propagates the im-
mutability information without the need for special typing
rules.

Next consider the ownership of the fields of LinkedList
and Entry. This on line 6 expresses that the reference header
points to an Entry owned by this, i.e., the entry is encapsu-
lated and cannot be aliased outside of this. O on line 3 ex-
presses that the owner of next is the same as the owner of
the entry, i.e., a linked-list owns all its entries. Note how
the generics mechanism propagates the owner parameter,
e.g., the type of this.header.next.next is Entry<This,I,E>.
Thus, the owner of all entries is the this object, i.e., the list.

Finally, note that the field element has no immutability
nor owner parameters, because they will be specified by the
client that instantiates the list type, e.g.,
LinkedList<This,Mutable,Date<World,ReadOnly>>

Immutable object creation A constructor that is making an
immutable object must be able to set the fields of the object.
It is not acceptable to mark such constructors as Mutable,
which would permit arbitrary side effects, possibly including
making mutable aliases to this. OIGJ uses a fourth kind of
immutability, Raw, to permit constructors to perform limited
side effects without permitting modification of immutable

1: class Entry<O,I,E> {

2: E element;

3: Entry<O,I,E> next, prev;

4: }

5: class LinkedList<O,I,E> {

6: Entry<This,I,E> header;

7: <I extends Raw>? LinkedList() {

8: this.header = new Entry<This,I,E>();

9: header.next = header.prev = header;

10: }

11: <I extends Raw>? LinkedList(

12: Collection<?,ReadOnly,E> c) {

13: this(); this.addAll(c);

14: }

15: <I extends Raw>? void addAll(

16: Collection<?,ReadOnly,E> c) {

17: Entry<This,I,E> succ = this.header,

18: pred = succ.prev;

19: for (E e : c) {

20: Entry<This,I,E> en=new Entry<This,I,E>();

21: en.element=e; en.next=succ; en.prev=pred;

22: pred.next = en; pred = en; }

23: succ.prev = pred;

24: }

25: int size() {...}

26: // iterator is a generic method; this is not a cJ guard:
27: <ItrI extends ReadOnly> Iterator<O,ItrI,I,E>

28: iterator() {

29: return this.new ListItr<ItrI>();

30: }

31: void remove(Entry<This,Mutable,E> e) {

32: e.prev.next = e.next;

33: e.next.prev = e.prev;

34: }

35: class ListItr<ItrI> implements

36: Iterator<O,ItrI,I,E> {

37: Entry<This,I,E> current;

38: <ItrI extends Raw>? ListItr() {

39: this.current = LinkedList.this.header;

40: }

41: <ItrI extends Mutable>? E next() {

42: this.current = this.current.next;

43: return this.current.element;

44: }

45: <I extends Mutable>? void remove() {

46: LinkedList.this.remove(this.current);

47: }

48: } }

49: interface Iterator<O,ItrI,CollectionI,E> {

50: boolean hasNext();

51: <ItrI extends Mutable>? E next();

52: <CollectionI extends Mutable>? void remove();

53: }

Figure 3. LinkedList<O,I,E> in OIGJ.

objects. Raw represents a partially-initialized raw object that
can still be arbitrarily mutated, but after it is cooked (fully
initialized), then the object might become immutable. The
constructors on lines 7 and 11 are guarded with Raw, and
therefore can create both mutable and immutable lists.

Objects must not be captured in their raw state to prevent
further mutation after the object is cooked. If a programmer
could declare a field, such as Date<O,Raw>, then a raw date
could be stored there, and later it could be used to mutate a
cooked immutable date. Therefore, a programmer can write
the Raw type only after the extends keyword, but not in any
other way. As a consequence, in a Raw constructor, this can
only escape as ReadOnly.

Recall that an object becomes cooked either when its
constructor finishes or when its owner is cooked. The entries
of the list (line 6) are this-owned. Indeed, the entries are
mutated after their constructor finished, but before the list
is cooked, on lines 9, 22, and 23. This shows the power
of combining immutability and ownership: we are able to
create immutable lists only by using the fact that the list owns
its entries. If those entries were not owned by the list, then
this mutation of entries might be visible to the outside world,
thus breaking the guarantee that an immutable object never
changes. By enforcing ownership, OIGJ ensures that such
illegal mutations cannot occur.

OIGJ requires that all access and assignment to a this-
owned field must be done via this. For example, see header,
on lines 8, 9, 17, and 39. In contrast, fields next and prev

(which are not this-owned) do not have such a restriction,
as can be seen on lines 32–33.

Iterator implementation and inner classes An iterator has
an underlying collection, and the immutability of these two
objects might be different. For example, you can have

• a mutable iterator over a mutable collection (the iterator
supports both remove() and next()),

• a mutable iterator over a readonly/immutable collection
(the iterator supports next() but not remove()), or

• a readonly iterator over a mutable collection (the iterator
supports remove() but not next(), which can be useful
if you want to pass an iterator to a method that may not
advance the iterator but may remove the current element).

Consider the Iterator<O,ItrI,CollectionI,E> interface
defined on lines 49–53, and used on lines 27 and 36. ItrI is
the iterator’s immutability, whereas CollectionI is intended
to be the underlying collection’s immutability (see on line 36
how the collection’s immutability I is used in the place of
CollectionI). Line 51 requires a mutable ItrI to call next(),
and line 52 requires a mutable CollectionI to call remove().

Inner class ListItr (lines 35–48) is the implementation
of Iterator for list. Its full name is LinkedList<O,I,E>.List-
Itr<ItrI>, and on line 35 it extends Iterator<O,ItrI,I,E>.
It reuses the owner parameter O from LinkedList, but de-
clares a new immutability parameter ItrI. An inner class,

such as ListItr<ItrI>, only declares an immutability pa-
rameter because it inherits the owner parameter from its
outer class. ListItr and LinkedList have the same owner O,
but different immutability parameters (ItrI for ListItr, and
I for LinkedList). ListItr must inherit LinkedList’s owner
because it directly accesses the (this-owned) representation
of LinkedList (line 39), which would be illegal if their owner
was different. For example, consider the types of this and
LinkedList.this on line 39:

Iterator<O,ItrI,...> thisIterator = this;

LinkedList<O,I,...> thisList = LinkedList.this;

Because line 38 sets the bound of ItrI to be Raw, this can
be mutated. By contrast, the bound of I is ReadOnly, so
LinkedList.this cannot.

An inner class must have a distinct immutability parame-
ter, but it must reuse the owner parameter of its outer class.
We could have several This types, e.g., LinkedList.This vs.
ListItr.This, but this would complicate the typing rules.

Finally, consider the creation of a new inner object on
line 29 using this.new ListItr<ItrI>(). This expression is
type-checked both as a method call (whose receiver is this)
and as a constructor call. Observe that the bound of ItrI is
ReadOnly (line 27) and the guard on the constructor is Raw

(line 38), which is legal because a Raw constructor can create
both mutable and immutable objects.

2.3 OIGJ typing rules

Fig. 4 contains all the OIGJ typing rules. We now discuss
each rule. Sec. 3 presents a formal type system based on
a simplified version of these rules. Some of the rules are
identical to those found in OGJ [32] and IGJ [39] (see Sec. 5
for a comparison with OIGJ).

Ownership nesting Consider the following example:

List<This,I,Date<World,I>> l1; // Legal nesting
List<World,I,Date<This,I>> l2; // Illegal!

Definition of l2 has illegal ownership nesting because owned
dates might leak, e.g., we can store l2 in this variable:
public static Object<World,ReadOnly> publicAliasToL2;

On the one hand, types in OIGJ may have multiple owner
parameters, e.g., the type of l1 has two owner parameters
(This and World). On the other hand, an object may only
have a single owner at run time. For example, the type of
l1 will correspond at run time to a list that is owned by this

while its elements are owned by World, and observe that this
is always inside World.

Recall that an owner o1 is inside o2 iff o1 is a descendant
in the ownership tree of o2, i.e., o1 �θ o2. We extend this def-
inition from owners to owner parameters as follows: given
two owner parameters O1 and O2 in the same type, then O1

is inside O2 iff in any possible execution, these owner pa-
rameters correspond to some owners o1 and o2 (respectively)
where o1 �θ o2. For example, This is inside O, and any owner
parameter is inside World.

Ownership nesting The first owner parameter of type T must be inside any
other owner parameter in T.

Field access Field access o.f is legal iff O(f) = This⇒ o = this.

Field assignment Field assignment o.f=... is legal iff (i) I(o) ≤ Raw, and
(ii)

(
I(o) = Raw⇒ (o = this or O(o) = This)

)
, and (iii) field access o.f

is legal.

Method invocation Consider method T0 m(T1,...,Tn). The invoca-
tion o.m(...) is legal iff (i) O(Ti) = This⇒ o = this for i = 0, . . . ,n,
and (ii) I(m) = Raw implies field assignment part (ii).

cJ’s method guard (i) An invocation o.m(...) is legal if the type of o

satisfies the guard of m. (ii) When typing method m, the bound of type
variables that appear in the guard changes to their bound in the guard.
(iii) The guard of an overriding method is equivalent or weaker than that
of the overridden method.

Inner classes An inner class reuses the owner parameter of the outer class.
However, it has a distinct immutability parameter.

Invariant The programmer marks each type parameter as invariant or co-
variant. An immutability parameter is always covariant, whereas an
owner parameter is always invariant.

A type parameter must be invariant if it is used in a superclass that
contains Mutable, a field that contains Mutable but is not this-owned,
or in the position of another invariant type parameter.

Same-class subtype relation Let C<X1, . . . ,Xn> be a class. Type S =
C<S1, . . . ,Sn> is a subtype of T = C<T1, . . . ,Tn>, written as S≤ T, iff (S= T)

or
(

(all immutability parameters Tj are either ReadOnly or Immut), and

for i = 1, . . . ,n,
(
Si = Ti or (Si ≤ Ti and Xi is covariant in C)

))
.

Erased signature If method m′ overrides a readonly/immutable method m,
then the erased signatures of m′ and m, excluding invariant type parame-
ters, must be identical. (The erased signature of a method is obtained by
replacing type parameters with their bounds.)

Object creation A constructor cannot have any this-owned arguments.
Furthermore, new SomeClass<X,...>(...) is legal iff the constructor’s
guard <I extends Y>? satisfies: Y = Mutable and X = Mutable, or Y = Raw.

Generic Wildcards OIGJ prohibits using a generic wildcard (?) in the
position of the immutability parameter. For the owner parameter, OIGJ
prohibits using a wildcard in a field or in a method return type, but
permits it for stack variables and method parameters.

Raw parameter Raw can only be used after the extends keyword. It cannot
be used in the position of a generic parameter.

Fresh owners A fresh owner is a method owner parameter that is not used
in the method signature. It is a descendant in the ownership tree of all
other owners in scope.

Static context This cannot be used in a static context, i.e., in static methods
or fields.

Figure 4. All the OIGJ typing rules (beyond those of Java),
in English. Also see Sec. 3 for a formalization. Underlined
sentences show similarities among the rules.

OIGJ requires that owner parameters are properly nested,
i.e., that the first owner parameter of type T is inside any
other owner parameter in T. To enforce this rule, OIGJ main-
tains ordering constraints among owner parameters in the
same way as described in OGJ [32].

Field access This rule enforces ownership: this-owned
fields can be assigned only via this. In Fig. 3, note that all
accesses and assignments to header are done via this.

Field assignment Assigning to a field should respect both
immutability and ownership constraints. Part (i) of the rule
enforces immutability constraints: a field can be assigned
only by a Mutable or Raw reference. Part (ii) ensures Raw

is transitive only for this or this-owned objects. Part (iii)
enforces ownership constraints as in field access.

For example, consider the assignments on lines 8 and 9
of Fig. 3. Note that the bound of I is Raw, thus the as-
signments satisfy part (i). Part (ii) holds, i.e., Raw is transi-
tive in the first assignment because the target object is this

and in the second assignment because it is this-owned (the
type of this.header is Entry<This,I,E>). Finally, part (iii)
holds in the first assignment because header was assigned
via this, and in the second assignment because field next

(Entry<O,I>) is not this-owned.

Method invocation Method invocation is handled in the
same way as field access/assignment: parts (i) and (ii) are
similar to field access and field assignment part (ii). For ex-
ample, consider the following method: R m(A a) { ... }

Then, the method call o.m(e) is handled as if there is an as-
signment to a field of type A, and the return value is typed as
if there was an access to a field of type R. Note that regarding
the transitivity of Raw, we check both the immutability of the
receiver object (I(o)) and that of the method, i.e., its guard
(I(m)). If both are Raw, then we require that o is either this or
this-owned.

Inner classes An inner class is a non-static nested class,
e.g., iterators in java.util are implemented using inner
classes. An inner class reuses the owner parameter of the
outer class, i.e., the inner object is seen as an extension of the
outer object. However, it has a distinct immutability param-
eter. Therefore, both this and OuterClass.this are treated
identically by the typing rules that involve ownership.

Nested classes that are static can be treated the same as
normal classes.

Invariant A user can annotate a type parameter X in class C
with @InVariant to prevent covariant changes, in which case
we say that X is invariant. Otherwise we say that X is covari-
ant. An immutability parameter must be covariant, or else
a mutable reference could not be a receiver when calling a
readonly method. An owner parameter must be invariant, be-
cause the owner of an object cannot change.

A type parameter must be invariant if it is used in a
field/superclass that contains Mutable, or if the erased sig-
nature differs. For example, if a class has a field of type
Foo<O,Mutable,X>, then X must be invariant (the owner pa-
rameter O is always invariant).

Subtype relation Java is invariant in generic arguments,
i.e., it prohibits covariant (or contravariant) changes. Vector<
Integer> is not a subtype of Vector<Object>. If it were,
then mutating a Vector<Integer> by inserting, e.g., a String,
breaks type-safety.

OIGJ permits covariant changes for non-mutable refer-
ences because the object cannot be mutated in a way that
is not type-safe. OIGJ’s subtyping rules includes Java’s
subtyping rules, therefore OIGJ’s subtype relation is a
superset of Java’s subtype relation. If mutation is disal-
lowed, OIGJ’s subtyping rule allows covariant changes in
other type parameters, within the same class. For example,
List<O,ReadOnly,Integer> is a subtype of List<O,ReadOnly,
Number>. Note that covariance is allowed iff all immutabil-
ity parameters of the supertype are ReadOnly or Immut, e.g.,
Iterator<O,ReadOnly,Mutable,Integer> is not a subtype of
Iterator<O,ReadOnly,Mutable,Number>, but it is a subtype
of Iterator<O,ReadOnly,ReadOnly,Number>.

Erased signature When the erased signature of an overrid-
ing method differs from the overridden method, the normal
javac compiler inserts a bridge method to cast the argu-
ments to the correct type [7]. Such bridge methods work cor-
rectly only under the assumptions that subtyping is invariant.
For example, consider an integer comparator intComp that
implements Comparable<Integer>. If Comparable<Integer>

were a subtype of Comparable<Object>, then we could pass a
String to intComp’s implementation of compareTo(Integer):
((Comparable<Object>)intComp).compareTo("a")

OIGJ requires that the erased signature of an overriding
method remains the same (excluding invariant parameters) if
the overridden method is either readonly or immutable. For
example, the erased signature of compareTo in intComp dif-
fers from the one in the interface Comparable<O,I,X>. There-
fore, this rule requires that the type parameter X must be in-
variant:

interface Comparable<O,I, @InVariant X> {

int compareTo(X o); }

Object creation A constructor should not have any this-
owned parameters, because this-owned objects can only be
created inside this.

Recall that the immutability of a constructor (or any
method in general) is defined to be the bound of the im-
mutability parameter in that constructor, e.g., a mutable con-
structor has the guard <I extends Mutable>?. Recall that cJ
prohibits calling a Raw constructor to create an Immut object
because the guard is not satisfied: Immut is not a subtype of
Raw. OIGJ changed cJ and treats constructor calls using this
object creation rule: a Raw constructor can create any object
(mutable and immutable). A Mutable constructor can only
create Mutable objects. A constructor cannot be Immut or
ReadOnly, so that it is able to assign to the fields of this.

Generic wildcards OIGJ uses Java’s existing generic wild-
card syntax (?) to express existential owners [8, 29, 37].
A programmer can use existential owners when the exact
owner of an object is unknown. One motivation for ex-
istential owners is the downcast performed in the equals

method [37].
Consider the following two casts in normal Java:

boolean equals(Object o)

{ List<?> l = (List<?>)o; // OK
List<Object> l = (List<Object>)o; } // Warning!

The second cast is a warning since erasure makes it impossi-
ble to check at run time that the generic parameter is Object.

OIGJ prohibits wildcards on the owner parameter of
fields, e.g., Date<?,ReadOnly> field, because one can de-
clare a static field of that type and store a this-owned date,
thus breaking owner-as-dominator. Wildcards on a method
return type are also prohibited because they can be used to
leak this-owned fields. However, wildcards on stack vari-
ables (method parameters or local variables) are allowed.

Note that the immutability parameter is covariant, and
therefore there is no need to use a wildcard for immutabil-
ity. For example, consider the DateList class, which is pa-
rameterized by its owner parameter (O) and the dates’ owner
parameter (DO):

class DateList<O,I,DO extends World> {

boolean equals(Object<?,ReadOnly> o)

{ DateList<?,ReadOnly,?> l =

// No need to check ownership or immutability at run time.
(DateList<?,ReadOnly,?>) o;

return listEquals(l); }

<O2 extends World,DO2 extends World> boolean

listEquals(DateList<O2,ReadOnly,DO2> l) {...}

}

Method listEquals shows that it is possible to name the
existential owner—the unknown list’s owner parameter is O2
and the unknown dates’ owner parameter is DO2. Phrased
differently, the two wildcards in DateList<?,ReadOnly,?>

are now named DateList<O2,ReadOnly,DO2>.
Recall that Java’s generics can be bypassed by using

reflection or raw types such as List. Similarly, one can
bypass OIGJ when using these features.

Raw parameter Raw can only be used after the extends

keyword. For example, it is prohibited to write Date<O,Raw>.
If this was possible, then such a date could leak from a Raw

constructor that is building an immutable object resulting in
an alias that could mutate such immutable object.

Fresh owner A fresh owner is a method owner parameter
that is not used in the method signature. In OIGJ, a fresh
owner expresses temporary ownership within the method.
This allows a method to create stack-local objects with ac-
cess to any object visible at the point of creation, but with
a guarantee that stack-locals will not leak. Hence, stack-
local objects can be garbage-collected when the method
returns. For example, consider a method that deserializes
a ByteStream by creating a temporary ObjectStream wrap-
per:

<O,TmpO> void deserialize(ByteStream<O> bs) {

ObjectStream<TmpO,ByteStream<O>> os = ... }

Note that TmpO is a fresh owner, whereas O is not. Because
TmpO is strictly inside other owner parameters such as O, there

cannot be any aliases from bs to os. In fact, os can only
be referenced from other stack-local objects, and therefore,
when the method returns, os can be garbage-collected.

Technically, a fresh owner is strictly inside all other non-
fresh owners in scope, to make sure it cannot exist after the
method returns. (Multiple fresh owners are incomparable
with each other.) Because a fresh owner is inside several
other owners that might be incomparable in the ownership
tree, the ownership structure is a DAG rather than a tree.

To type-check temporary ownership and DAG ownership
structures, OIGJ adopts Wrigstad’s scoped confinement [36]
ownership model, in which the fresh owners are owned by
the current stack-entry. Briefly stated, each method invoca-
tion pushes a new stack-entry (the first stack-entry corre-
sponds to the static main method), which is the root of a new
ownership tree. Objects in this new tree may point to objects
in previous trees, but not vice versa.

Static context This represents that an object is owned by
this, and so OIGJ prohibits using it in a static context, such
as static fields or methods. Static fields can use the owner
parameter World, and static methods can also use generic
method parameters extending World. For example, method:

static <LO extends World,E> void sort(

List<LO,Mutable,E> l) { ... }

is parameterized by the list’s owner LO.

2.4 Factory method design pattern

The factory method pattern [17] is a creational design pat-
tern for creating objects without specifying the exact class
of the object that will be created. The solution is to define an
interface with a method for creating an object. Implementers
can override the method to create objects of a derived type.

The challenge of the factory method pattern with respect
to ownership [25] is that the point of creation and usage are
in different classes, and the created object must be owned
by its user. Previous work makes a newly-created object
be owned by its creator, and then changes the ownership
after the fact via sophisticated ownership transfer mecha-
nisms [24] using capture and release.

In OIGJ’s approach, an object has its final owner from
its moment of creation. When requesting creation of a new
object, the client of the factory also specifies the owner.
The type-checker ensures that the created object cannot be
captured (stored in a location that would require a different
owner) in the process. Specifically, a generic factory method
can abstract over the owner (and immutability) parameter of
the constructed object. The underlying generics mechanism
finds the correct generic method arguments.

We will show how to use the factory method pattern in
the context of synchronized lists. Consider this client code:

b = new LinkedList<T>();

l = Collections.synchronizedList(b);

The documentation of Collections.synchronizedList states:
“In order to guarantee serial access, it is critical that all ac-

1: class SafeSyncList<O,I,E> implements List<O,I,E> {
2: List<This,I,E> l;

3: <I extends Raw>? SafeSyncList(

4: Factory<?,ReadOnly,E> f)

5: { List<This,I,E> b = f.create();

6: l = Collections.synchronizedList(b); }

7: ... // delegate methods to l

8: }

9: class Collections<O,I> {

10: // Sun’s original implementation, augmented only by O2 and I2

11: static <O2,I2,E> List<O2,I2,E>

12: synchronizedList(List<O2,I2,E> list) { ... }

13: }

14: interface Factory<O,I,E>

15: { <O2,I2> List<O2,I2,E> create(); }

16: class LinkedListFactory<O,I,E> implements

17: Factory<O,I,E> {

18: <O2,I2> List<O2,I2,E> create() {

19: return new LinkedList<O2,I2,E>();

20: } }

Figure 5. Factory method design pattern in OIGJ. OIGJ
guarantees that the backing list b (line 5) is never accessed
directly, e.g., it cannot be captured on line 19.

cess to the backing list is accomplished through the returned
list.” That means that there might be concurrency problems
if one accidentally uses the backing list b instead of l.

So, you want to own a list l, which is backed by another
list b. The challenge is that b should be owned by l (and not
by you), in order to guarantee that you do not accidentally
access b directly and comprise thread-safety.

Fig. 5 shows how owner-as-dominator can ensure that
the backing list b has no outside aliases. This solution
avoids refactoring of existing Java code by delegating calls
to the synchronized list l. Specifically, class SafeSyncList

(lines 1–8) owns both the list l (line 2) and the backing list
b (line 5). A factory method is used on lines 3–6.

The Factory interface is defined on lines 14–15. The
owner and immutability of the Factory is irrelevant because
it only has a readonly method. However, the newly created
list has a generic owner and immutability, which are stati-
cally unknown at the creation point (line 15). The generics
mechanism fills in the correct generic arguments from the us-
age point (line 6) to the actual creation point (line 19). Note
that the factory implementation cannot capture an alias to the
newly created list on line 19, because its owner parameter O2
is a generic method parameter that cannot be used in fields.

To conclude, one can use SafeSyncList instead of using
Sun’s unsafe synchronizedList, and be certain no one else
can access the backing list. All this was achieved using
generic factory methods on lines 15 and 18.

1: interface Visitor<O,I,NodeO,NodeI> {

2: <I extends Mutable>? void

3: visit(Node<NodeO,NodeI> n);

4: }

5: class Node<O,I> {

6: void accept(Visitor<?,Mutable,O,I> v)

7: { v.visit(this) }

8: }

9: // Visiting a readonly node hierarchy.
10: Node<This,ReadOnly> readonlyNode = ...;

11: readonlyNode.accept(new

12: Visitor<World,Mutable,This,ReadOnly>() {

13: <I extends Mutable>? void

14: visit(Node<This,ReadOnly> n)

15: { ... // Can mutate the visitor, but not the nodes. }

16: });

17: // Visiting a mutable node hierarchy.
18: Node<This,Mutable> mutableNode = ...;

19: mutableNode.accept(new

20: Visitor<World,Mutable,This,Mutable>() {

21: <I extends Mutable>? void

22: visit(Node<This,Mutable> n)

23: { ... // Can mutate the visitor and the nodes. }

24: });

Figure 6. Visitor pattern in OIGJ. The Node’s ownership and
immutability are underlined. We omit the extends clause
for generic parameters, e.g., we assume that NodeO extends

World. A single visitor interface can be used both for Mutable
and ReadOnly nodes.

2.5 Visitor pattern

The visitor design pattern [17] is a way of separating an algo-
rithm from a node hierarchy upon which it operates. Instead
of distributing the node processing code among all the node
implementations, the algorithm is written in a single visitor
class that has a visit method for every node in the hierarchy.
This is desirable when the algorithm changes frequently or
when new algorithms are frequently created. The standard
implementation (that does not use reflection) defines a tiny
accept method that is overridden in all the nodes, that calls
the appropriate visit method for that node.

Nägeli [25] discusses ownership in design patterns, and
shows that previous ownership work was not flexible enough
to express the visitor pattern. A visitor is always mutable
because it may accumulate information during the traversal
of the nodes hierarchy. However, some visitors only need
readonly access to the nodes, and some need to modify the
nodes. In the former case, the owner of the visitor and nodes
may be different, and in the latter case, it must be the same
owner. The challenge is to use the same visit and accept

methods, and to avoid duplicating the traversal code.
OIGJ can express the visitor pattern by relying on owner-

polymorphic methods: the owner of an object o, can pass it
to an owner-polymorphic method, which cannot capture o.

Fig. 6 shows the visitor pattern in OIGJ. As mentioned be-
fore, the owner of the visitor and nodes may be different, and
some visitors may or may not modify the nodes. Therefore,
the visitor is parameterized on line 1 by the owner (NodeO)
and immutability (NodeI) of the nodes. The visit method on
line 2 is mutable because it changes the visitor that accumu-
lates information during the traversal. Different visitor im-
plementations may have different immutability for the nodes,
e.g., readonly on line 14 or mutable on line 22.

Finally, note how the type arguments This,ReadOnly of
the node on line 10 match the last two arguments of the visi-
tor on line 12, and on line 18 the type arguments This,Mutable
match those on line 20. This shows that the same accept

method (without duplicating the nodes’ hierarchy traversal
code) can be used both for readonly and mutable hierarchies.

3. Formalization and Type Soundness
Proving soundness is essential in the face of complexities
such as wildcards and raw/cooked objects. This section gives
the typing rules and operational semantics of a simplified
version of OIGJ and sketches the proofs of our immutability
and ownership guarantees. For lack of space, the full proofs
are included in our technical report [38].

Our type system, called Featherweight OIGJ (FOIGJ), is
based on Featherweight Java (FJ) [20]. FOIGJ models the
essence of OIGJ: the fact that every object has an owner-
ship and immutability, and the cooking phase when creat-
ing immutable objects. FOIGJ adds imperative constructs to
FJ, such as null values, field assignment, locations/objects,
and a heap. FOIGJ also adds a constructor body (to model
the cooking phase), owner and immutability parameters to
classes, guards as in cJ [19], wildcard owners, and the run-
time notion of raw/cooked objects.

FOIGJ poses two main challenges: (i) modeling wild-
cards in the typing rules, and (ii) the representation for raw
objects. We use the following example (similar to Fig. 2) to
demonstrate these two challenges:

class Foo<O,I> {

Date<O,I> sameD;

Date<This,I> ownedD;

Date<This,Immut> immutD;

<I extends Raw>? void Foo(){

this.ownedD = new Date<This,I>();

this.immutD = new Date<This,Immut>();

... } }

Wildcards pose a difficulty due to a process in Java called
wildcard capture in which a wildcard is replaced with a fresh
type variable. For example, the two underlined wildcards
below might represent two distinct owners:

Foo<?,I> f = ...;

Date<?,I> d = ...;

f.sameD = d; // Illegal assignment! Different owners!

A Java compiler rejects the assignment due to incompat-
ible types, because the wildcards were captured by dif-

ferent type variables. Formalizing the full power of wild-
cards (with upper and lower bounds) was only recently
achieved [9]. FOIGJ does not model wildcard capture. In-
stead, it is enough to augment the field assignment rule with
the following check: assigning to o is illegal if O(o) = ?

(similarly for method invocation). This extra check is needed
only in FOIGJ, and not in OIGJ, because OIGJ is built on
top of Java, which supports wildcard capture.

The second challenge is modeling raw objects in the non-
erased operational semantics. Recall that generics are erased
in Java and are not present at run time. FOIGJ’s erased op-
erational semantics is identical to that of normal Java: own-
ership and immutability information is not kept. In contrast,
the non-erased version stores with each object its owner and
immutability, and it checks at run time the ownership and
immutability guarantees (i.e., that field assignment respects
owner-as-dominator and is done only on mutable or raw ob-
jects). The non-erased version is used only in the formalism.
Storing the owner and immutability of every object at run
time would be a huge overhead, and is not required for cor-
rectness if the program satisfies OIGJ’s type rules.

The non-erased semantics of Featherweight Generic
Java [20] (FGJ) performs variable substitution for method
calls, however FGJ’s way of doing substitution does not
work in FOIGJ. For example, consider the following reduc-
tion as done in imperative FGJ:

new Foo<World,Immut>()→
l.ownedD = new Date<l,Immut>();

l.immutD = new Date<l,Immut>(); . . .

The variable I in the constructor was substituted with Immut,
and the variables this and This were substituted with a new
location l that was created on the heap, i.e., the heap H
now contains a new object in location l whose fields are all
null: H = {l 	→ Foo<World,Immut>(null)}. (Locations are
pointers to objects; we treat locations and objects identically
because they have a one-to-one mapping, e.g., the owner of
a location is defined to be the owner of its object.) Note
how owner parameters (O(o)) at compile time are replaced
with owners (θ(o)) at run time, e.g., This was replaced with
location l.

There are two reasons why substituting I with Immut does
not work in FOIGJ: (i) the reduction does not type-check
because we mutate an immutable object (l.ownedD = ...),
and (ii) we lost information about the two new Date objects,
namely that ownedD can still be mutated after its constructor
finishes (because it is this-owned) whereas immutD cannot.

FOIGJ solves these two issues by introducing an auxiliary
type Immutl. An object o of immutability I(o) = Immutl
becomes cooked when the constructor of l finishes, therefore
we call l its cooker, denoted by κ(o)= l. Phrased differently,
an object is cooked when its cooker is constructed (i.e.,
the cooker’s constructor finishes). Note that the cooker l

can be o itself, its owner, or even some other incomparable
object.

The connection between the cooker and the owner will be
shown in the subtyping and typing rules below. Intuitively,
for a reference of type C<o,Immutl>, if the cooker l is not
inside the owner o, then that reference must point to an object
whose cooker is l. Otherwise (if l is inside o), then that
reference might point to any cooked immutable object (even
one with a cooker that is not l).

In our example, the location l that was created with new

Foo<World,Immut>() becomes cooked when it is constructed,
i.e., κ(l) = l, and H = {l 	→ Foo<World,Immutl>(null)}.
Now FGJ’s way of doing the substitution works for FOIGJ,
because I is replaced with Immutl, i.e.,
l.ownedD = new Date<l,Immutl>();

l.immutD = new Date<l,Immut>();

Note how the cooker of ownedD is l, whereas the cooker
of immutD is immutD itself. Therefore, ownedD has a longer
cooking phase than immutD.

FOIGJ also maintains the set of currently executing con-
structors K, where K ⊆ dom(H). We maintain the invariant
that a location l is raw iff κ(l) ∈ K, and require that only
mutable or raw objects can be mutated. Specifically, Immutl
is a subtype of Raw when l ∈ K, and it is a subtype of Immut
when l �∈ K.

Type Immutl also helps understand the Object creation
rule better. Recall that an Immut object can be created from
a Raw constructor, even though Immut is not a subtype of
Raw, which seems to contradict cJ’s method guard rule.
However, type Immutl is in fact a subtype of Raw when the
object is created, because in our typing rules we have that
Immutl ≤ Raw iff l ∈ K, and when an object is created, its
cooker must be in K. Phrased differently, the type of an
immutable object never changes (always Immutl), but during
the program execution the set K changes, and therefore the
subtyping relation changes: initially Immutl is a subtype of
Raw, but later the object becomes cooked, and then Immutl is
no longer a subtype of Raw, but instead it becomes a subtype
of Immut.

Faced with such major challenges, we removed from
FOIGJ anything that was not needed to prove our run-time
guarantees. Specifically, FOIGJ does not model: generics
(except for the owner and immutability parameters), owner
polymorphic methods, casting, inner classes, fresh own-
ers, or multiple immutability/owner parameters. On the one
hand, the interaction between generics and immutability
(which enables covariant subtyping) was previously proven
sound in Featherweight IGJ (FIGJ) [39]. On the other hand,
the interaction between generics and ownership (as found
in the ownership nesting rule) was previously proven sound
in Featherweight OGJ (FOGJ) [32]. Because covariant sub-
typing (as found in IGJ) and ownership nesting (as found in
OGJ) was not changed in OIGJ, we decided not to model
generics in FOIGJ. We note that FOIGJ does model Raw,
which was not modeled previously in FIGJ.

FT ::= C<FO,IP> Field (and method return) Type.
T ::= C<MO,IP> Type.
N ::= C<NO,NI> Non-variable type (for objects).
NO ::= World | l Non-variable Owner parameter (for objects).
FO ::= NO | This | O Field Owner parameter.
MO ::= FO | ? Method Owner parameter (including generic wildcard).
NI ::= Mutable | Immutl Non-variable Immutability parameter (for objects).
VI ::= NI | Immut | I Variable Immutability for new.
IP ::= ReadOnly | VI Immutability Parameter.
IG ::= ReadOnly | Immut | Mutable | Raw Immutability method Guard.
M ::= <I extends IG>? FT m(T x) { return e; } Method declaration.
L ::= class C<O,I> extends C’<O,I>{ FT f;M } cLass declaration.
v ::= null | l Values: either null or a location l.
e ::= v | x | e.f | e.f = e | e.m(e) | new C<FO,VI>(e) | e ;return l Expressions.

Figure 7. FOIGJ Syntax. The terminals are null, owner parameters (O, This, World), and immutability parameters (I, ReadOnly,
Mutable, Raw, Immut). Given a location l, Immutl represents an immutable object with cooker l. The program source code cannot
contain the grayed elements (locations are only created during execution/reduction in R-NEW of Fig. 10).

Consider the typing rules in Fig. 4. Classes in FOIGJ have
a single Raw constructor, therefore Object creation rule is
always satisfied and can be ignored. Furthermore, because
FOIGJ does not model generics, static, or inner classes, then
the following rules can also be ignored: Ownership nesting,
Inner classes, Inheritance, Invariant, Erased signature,
and Fresh owners. Covariant subtyping and erased signa-
tures were described in FIGJ, and ownership nesting and
(limited) owner-polymorphic methods in FOGJ. We stress
that FOIGJ does model wildcard for the owner parameter
(?), which is used in owner-polymorphic methods such as
sort or equals. In our view, extending the formalism with
fresh owners or inner classes increases the complexity of the
calculus without providing new insights.

The following rules are enforced by the syntax of FOIGJ
(Fig. 7): Generic Wildcards and Raw parameter. The re-
maining rules are: Field assignment, Field access, Method
invocation, cJ’s [19] method guard, and a Subtype rela-
tion (without generics). These rules are formalized in FOIGJ
in the subtyping rules of Fig. 8 (K,Γ� T≤ T’) and the typing
rules of Fig. 9 (K,Γ � e : T). Finally, the reduction rules are
described in Fig. 10 (K � H,e→ H ′,e′).

Sec. 3.1 describes the syntax of FOIGJ, Sec. 3.2 the sub-
typing rules, Sec. 3.3 the typing rules, Sec. 3.4 the reduc-
tion rules, and Sec. 3.5 proves preservation, progress, and
our run-time immutability and ownership guarantees.

3.1 Syntax of FOIGJ

FOIGJ adds imperative extensions to FJ such as assignment
to fields, object locations, null, and a heap [31]. A construc-
tor initializes all the fields to null, and then calls a build

method that constructs the object. Having null values is im-
portant because this-owned fields must be initialized with
null since they cannot be assigned from the outside, i.e.,

they must be created within this. For example, a list con-
structor cannot receive its entries as constructor arguments;
instead it must create the entries within the build method.

Fig. 7 presents the syntax of FOIGJ. Expressions in
FOIGJ include the four expressions in FJ (method param-
eter, field access, method invocation, and new instance
creation; without casting), as well as the imperative ex-
tensions (field update, e;return l, and values). Expres-
sion e;return l is created when reducing a constructor call,
e.g., K � new N(...) → l.build(...);return l, then we
proceed to reduce l.build(...) and finally return l. Note
that O and I are terminals, i.e., the owner and immutability
parameters are always named O and I.

An evaluation of an expression (e) is either infinite, or is
stuck on null-pointer exception, or terminates with a value
(v), which is either null or a location l.

Note how the syntax limits the usage of wildcards and
Raw: wildcards (?) can be used only as the owner of method
arguments (FOIGJ does not have local variables), and Raw

only as a method guard (IG).
We represent sequences using an over-line notation, simi-

larly to FJ, i.e., comma denotes concatenation of sequences,
and FT f; represents the sequence FT1 f1; . . .FTn fn;

A class in FOIGJ has a single constructor that can create
both mutable and immutable objects, i.e., it is a Raw construc-
tor. The constructor is not shown in the syntax because it can
be inferred from the class declaration: it always assigns null
to the fields of the newly created object, and then invokes
this special method (ignoring the return value):
<I extends Raw>? T’ build(T e) { return e; }

We require that each class has such a method, and that its
parameters are not this-owned nor have wildcards. The re-
duction rules call that method after the fields are set to null.

K,Γ � I≤ Γ(I)
(S1)

K,Γ � T≤ T
(S2)

K,Γ � S≤ T K,Γ � T≤ U

K,Γ � S≤ U
(S3)

class C<O,I> extends C′<O,I>
K,Γ � C<MO,IP>≤ C′<MO,IP> (S4)

K,Γ � Mutable≤ Raw
(S5)

K,Γ � Raw≤ ReadOnly
(S6)

K,Γ � Immut≤ ReadOnly
(S7)

K,Γ � IP≤ IP′
K,Γ � C<MO,IP>≤ C<MO,IP′> (S8)

K,Γ � C<MO,IP>≤ C<?,IP>
(S9)

l ∈ K
K,Γ � Immutl ≤ Raw

(S10)

l �∈ K
K,Γ � Immutl ≤ Immut

(S11)
l �∈ K

K,Γ � Immut≤ Immutl
(S12)

l≺θ NO

K,Γ � C<NO,Immut>≤ C<NO,Immutl>
(S13)

Figure 8. FOIGJ Subtyping Rules (K,Γ � T≤ T’). Rule S13 shows the connection between cooker l and owner NO.

3.2 Subtyping in FOIGJ

An environment Γ is a finite mapping from variables x and
locations l to types T, e.g., x : T ∈ Γ. The location types
define the ownership tree �θ (or without reflexivity ≺θ).
The set of currently executing constructors is denoted K. In
addition, Γ maps the immutability parameter I to its bound
according to the current method’s guard (IG in Fig. 7). For
example, I : Raw∈ Γ when typing the expression e in method
build above.

Fig. 8 shows FOIGJ subtyping rules. Rules S1–S4 are the
same as FGJ rules: S1 means that a generic variable is a
subtype of its bound, S2 is reflexivity, S3 is transitivity, and
S4 is that subclassing defines subtyping. Rules S5–S7 show
subtyping among non-variable immutability parameters as
shown in Fig. 1b. Rule S8 defines covariant subtyping for the
immutability parameter. Rule S9 formalizes subtyping with a
wildcard owner.

The last four rules S10–S13 are concerned with cookers
such as Immutl. Recall that an object is cooked when its
cooker l is constructed, i.e., the constructor of l is no longer
executing: l �∈ K. Rule S10 views the type as Raw, while
rules S11–S12 shows the equivalence to Immut. Note that sub-
typing is no longer antisymmetric, i.e., there are non-equal
types T1 and T2 for which T1 ≤ T2 ≤ T1. For example, T1 =
C<O,Immutl> and T2 = C<O,Immut>, when l �∈ K. In fact,
this is not surprising because these types both represent im-
mutable object, and after the cooker is cooked, the identity
of the cooker is irrelevant.

Cooker vs. owner Rule S13 assumes that the cooker is in-
side the owner (l≺θ NO), which means the object might came
from the outside. This rule addresses the difference between
the cooker of (i) a location l or (ii) that of an expression such
as field access l.f: (i) location l will be cooked exactly when
the constructor of κ(l) is finished, however, (ii) the cooker
of l.f is an over-approximation, i.e., the object stored in that
field might have been cooked earlier. Rule S13 allows an over-
approximation only when the cooker is inside the owner.

Consider this example:

class Foo<O,I> { Date<O,I> same;

<I extends Raw>? Foo(Date<O,I> d) { same=d; } }

Field same is assigned from the outside, but it might still be
this-owned. We will show the reduction of two expressions:
one where same is assigned a cooked (outside) date, and one
with a raw date. The expressions are inside the constructor
of some object b whose cooker is b itself.

The reduction of the first expression:

new Foo<This,Immut>(new Date<This,Immut>())

results in the heap: H = {d1 	→ Date<b,Immutd1>(),f1 	→
Foo<b,Immutf1>(d1)}. Note that the type of d1 must be a sub-
type of f1.same in a well-typed heap (formally defined later).
The type of d1 is a subtype of Date<b,Immut> (because d1 �∈
K in rule S12), which is a subtype of Date<b,Immutf1> (be-
cause f1≺θ b in rule S13). Phrased differently, the cooker of
f1.same is f1, but it may point to an object that was cooked
before, and indeed it points to an object whose cooker is d1

(so it is an over-approximation).
The reduction of the second expression:

new Foo<This,I>(new Date<This,I>())

results in the heap (because I = Immutb): H = {d2 	→
Date<b,Immutb>(),f2 	→ Foo<b,Immutb>(d2)}. Note that in
this case, both d2 and f2 have the same cooker b. The
type of f2.same is Date<b,Immutb>, and because b �≺θ
b (see rule S13), then we know that this is not an over-
approximation, i.e., that field points to an object whose
cooker must be b.

To summarize, consider a type Foo<o,Immutc>. If the
cooker c is inside the owner o (c ≺θ o), or the cooker is
cooked (c �∈ K), then the type is an over-approximation,
i.e., it can point to any Immut object (that is, to any object
with cooker c’ �∈ K). Otherwise, it points to an object whose
cooker is exactly c. Formally,

LEMMA 3.1. If K,Γ � C<MO,IP> ≤ C’<NO,Immutl>, l �≺θ NO,
and l ∈ K, then IP = Immutl.

We also prove in the technical report that:

LEMMA 3.2. If K,Γ� C<MO,IP>≤ C’<MO’,IP’>, then (i) MO’ �=
?⇒ MO= MO’, (ii) (IP’ �= Immutl or l �≺θ MO’)⇒K,Γ� IP≤
IP’, and (iii) C is a subclass of C’, (iv) K,Γ � D<l,IP> ≤
D<l,IP’> for any class D and location l where MO’�θ l.

K ∪{l},Γ � e : T
K,Γ � e;return l : Γ(l) (T-RETURN)

mtype(⊥,build,C<FO,VI>) = T→ U K,Γ � e : T’ K,Γ � T’≤ T

K,Γ � new C<FO,VI>(e) : C<FO,VI>
(T-NEW)

K,Γ � x : Γ(x)
(T-VAR)

K,Γ � null : T
(T-NULL)

K,Γ � e : C<MO,IP> ftype(e,f,C<MO,IP>) = T

K,Γ � e.f : T
(T-FIELD-ACCESS)

K,Γ � l : Γ(l)
(T-LOCATION)

K,Γ � e.f : T K,Γ � e’ : T’ K,Γ � T’≤ T K,Γ � e : C<MO,IP>
K,Γ � IP≤ Raw isTransitive(e,Γ,C<MO,IP>) MO �= ?

K,Γ � e.f = e’ : T’
(T-FIELD-ASSIGNMENT)

K,Γ � e0 : C<MO,IP> mtype(e0,m,C<MO,IP>) = T→ T" K,Γ � e : T’ K,Γ � T’≤ T mguard(m,C) = IG

K,Γ � IP≤ IG IG = Raw⇒ isTransitive(e0,Γ,C<MO,IP>) mtype(m,C) = U→ V O(Ti) = ?⇒ O(Ui) = ?

K,Γ � e0.m(e) : T"
(T-INVOKE)

Figure 9. FOIGJ Expression Typing Rules (K,Γ � e : T).

3.3 Typing rules of FOIGJ

Auxiliary functions We use the following auxiliary func-
tions: fields(C) returns all the field names (including inher-
ited fields) of class C, ftype(f,C) returns the type of field f in
class C, mtype(m,C) returns the type of method m in class C,
and mbody(m,C) returns its body. Their definitions are based
on their counterparts in FJ, and thus omitted from this paper.
In addition, function mguard(m,C) returns the method’s guard
(IG in Fig. 7).

We overload the auxiliary functions above to work also
for types (T = C<MO,IP>) and not just classes (C) by substi-
tuting [MO/O,IP/I]. However, we also need to carefully sub-
stitute This when the receiver is this or locations. Func-
tion ftype(e,f,T) returns the type of the field access e.f

where T is the type of e, or error if the access is illegal. For
example,

ftype(ownedD,Foo) = Date<This,I>

ftype(this,ownedD,Foo<O,Immut>) = Date<This,Immut>

ftype(this.f,ownedD,Foo<O,Immut>) = error

ftype(l,ownedD,Foo<o,Immutc>) = Date<l,Immutc>

Formally, ftype(e,f,C<MO,IP>)=[MO/O,IP/I,z/This]ftype(f,C),
where (i) z = l if e = l, (ii) z = This if e = this, (iii) oth-
erwise z = error (and if a type contains error then it
means the call to ftype failed). When we know the field
is not this-owned, then the expression e is not used, and
we write ftype(⊥,f,C). However, if the field is this-owned,
then e must be this or a location l.

Recall that Field access rule in Fig. 4 required that this-
owned fields can be accessed only via this. At run time,
this is substituted with a location l. Therefore, there is
a duality between this and a location l in the definition
of ftype. For example, the field access this.ownedD of type
Date<This,I> is legal because we accessed a this-owned
field via this. At run time, this is substituted with some
location l, and the access l.ownedD of type Date<l,...> is

now still legal because we accessed a this-owned field via
a location l. Note that if the access is not done via a location,
e.g., bar.l.ownedD, then we cannot type-check the resulting
expression (because we do not know what should be the
substitute for This).

There is a similar duality in Field assignment rule part
(ii), that checks that Raw is transitive for this or this-owned
objects. The dual of this is a location l, and the dual of a
this-owned object (C<This,I>) is an object whose cooker is
not inside its owner (C<o,Immutl> where l �≺θ o). The second
duality holds because, for type C<This,I>, the cooker (I) is
never inside the owner (This). At run time, the owner will be
the location of this, and the cooker is either this or some
other object that was created before this, i.e., the cooker is
never inside the owner (but they might be equal).

Function isTransitive checks whether Raw is transitive. The
underlined part shows the dual version of Field assignment
rule part (ii): (i) this vs. l′, and (ii) MO = This vs. l �≺θ MO.

isTransitive(e,Γ,C<MO,IP>) =(
IP = I and Γ(I) = Raw⇒ (e=this or MO = This)

)
or(

IP = Immutl ⇒ (e=l’ or l �≺θ MO)
)

Typing class declarations FOIGJ program consists of
class declarations followed by the program’s expression.
Next, we describe in words the rules for typing the class dec-
larations, and the rules for typing an expression are given
formally in Fig. 9. When typing an expression, we assumed
the class declarations are well-formed.

To check that class declarations are well-formed, FOIGJ
first performs all the checks done in FJ, e.g., that there
are no cycles in the inheritance relation, that field and
method names are unique in a class, that this is not a
legal method parameter name, that an overriding method
maintains the same signature, etc. FOIGJ performs addi-
tional checks related to method guards when typing method
declarations, i.e., we modify rule T-METHOD in FJ as follows:
(i) An overriding method can only make the guard weaker,
i.e., if a method with guard IG overrides one with guard

IG’ then IG’ ≤ IG. (ii) In class C, when typing a method:
<I extends IG>? FT m(T x) { return e;}
we use an environment Γ in which the bound of I is IG,
i.e., Γ = {I : IG,x : T,this : C<O,I>}, and we must prove
that /0,Γ � e : S and /0,Γ � S ≤ FT. Finally, we require that
if IG = ReadOnly then I(Ti) �= I. This last requirement is
not really a limitation, because a programmer can replace
I with ReadOnly for parameters in readonly methods, and
previously legal programs would remain legal. (This require-
ment is needed to prove preservation for the congruence rule
of method receiver, see our technical report for details.)

Typing expressions Fig. 9 shows the typing rules for ex-
pressions in FOIGJ. Most of these rules are a direct transla-
tion from Fig. 4. The main challenge was handling wildcards
correctly without resulting to wildcard-capture. Rule T-FIELD-

ASSIGNMENT requires that MO �= ?, i.e., one cannot assign to an
object with unknown owner. Typing method parameters is
similar to typing field-assignment, however, method param-
eters can have a wildcard owner whereas fields cannot (see
the difference between T and FT in Fig. 7). Therefore, rule T-

INVOKE requires that O(T)= ?⇒O(U)= ?, i.e., if Ti = C<?,IP>

then Ui = C<?,IP’>. Phrased differently, if the owner of e0 is
unknown, then the owner of the method parameters cannot
be O.

Rule T-NEW performs less checks compared to a method
call (e.g., no need to check the guard, isTransitive, nor wild-
cards) because build has several restrictions: its guard is
Raw and it does not contain wildcards nor this-owned pa-
rameters. Because This does not appear in the signature
of build, we know that mtype will not use ⊥ in the call:
mtype(⊥,build,C<FO,VI>).

An expression/type is called closed if it does not contain
any free variables (such as wildcards, this, I, O, or This),
but it may contain World, ReadOnly, Mutable, Immut, Immutl
or locations. Note that the type of a closed expression is also
closed.

LEMMA 3.3. If K,Γ � e′ : T′ and e′ is closed and e′ �= null,
then T′ is closed.

The delicate part of the proof is showing that T ′ does not
contain This. Note that ftype returns a type with This only
if e = this (which cannot happen since e is closed).

3.4 Reduction rules of FOIGJ

The initial expression to be reduced is closed, and we guar-
antee that a closed expression is always reduced to another
closed expression:

LEMMA 3.4. If e is closed and K � H,e→ H ′,e′, then e′ is
closed.

The heap (or store) H maps each location l to an ob-
ject C<NO,NI>(v), where θH(l)= NO is its owner, and IH(l)=
NI is its immutability, and v are the values of its fields.
If NI= Immutl′ then we say that its cooker is κH(l) = l′. (We
added the subscript H to the functions that return the owner,

immutability and cooker, in order to explicitly show the de-
pendence on the heap.) We define a heap-typing Γ H : l 	→ T

that gives a type to each location in the obvious way (simply
removing the list of fields (v)).

The set of currently executing constructors is K. A heap H
is well-typed for K if it satisfies two conditions: (i) Each
field location is a subtype (using K,ΓH) of the declared field
type, i.e., for every location l, where H[l] = C<NO,NI>(v)

and fields(C) = f, and for every field fi, we have that ei-
ther vi = null or K,ΓH � ΓH(vi) ≤ ftype(l,fi,C<NO,NI>).
(ii) There is a linear order �T over dom(H) such that for
every location l, θH(l) = World or θH(l) ≺T l, and IH(l) =
Mutable or κH(l) �T l. The linear order �T can order the
objects according to their creation time, because θH(l) is
always created before l, and κH(l) is either l or created
before l.

In our technical report we prove that if H is well-typed
for K then (a) owner-as-dominator holds (Lem. 3.5), and
(b) H is well-typed for any subset of K (Lem. 3.6). Part (b) is
not trivial, because the subtyping relation for a subset of K is
different because raw objects become immutable. Intuitively,
during execution objects become cooked (when their cooker
is removed from K), and therefore Lem. 3.6 guarantees that
the heap remains well-typed when K decreases.

LEMMA 3.5. If heap H is well-typed for K, then for every
location l ∈ dom(H), l 	→ C<NO,NI>(v), then either vi =
null or l�θ θH(vi).

LEMMA 3.6. Given a heap H that is well-typed for K, then
for any S ⊂ K, the heap H is well-typed for S.

Fig. 10 presents the reduction rules in a small-step nota-
tion, excluding all congruence rules except R-C1.

Rule R-RETURN ignores the return value of build and re-
turns l. Rule R-FIELD-ACCESS is trivial. Rule R-FIELD-ASSIGNMENT

enforces our immutability guarantee (only mutable or raw
objects can be mutated) and our ownership guarantee (owner-
as-dominator, i.e., l can point to v ′ iff l �θ θH(v′)). Rule R-

INVOKE finds the method body according to the receiver, and
substitutes all the free variables in the method body.

Rule R-C1 is the congruence rule for e;return l. Note that
this rule is the only place the set K is modified, i.e., when
reducing e, the set of ongoing constructors is K ∪ {l}. It
is easy to prove that if K � H,e → H ′,e′ then ΓH ⊆ ΓH′ .
The other congruence rules are not shown because they are
trivial, e.g., in order to reduce a method call e0.m(e), we
first reduce e0 to a location, then reduce the first argument to
a value, etc.

Rule R-NEW creates a new location l, sets the fields to null,
sets the cooker of l (VI’) and finally calls build. In order to
build the newly created object l, then it must be raw, i.e., its
cooker VI’ must be in K. (Note that l will be in K according
to R-C1.) Therefore, if VI = Immutc and c �∈ K, then we must
set the cooker to l. This can happen if there is a method

l �∈ dom(H) VI′ =

{
Immutl if VI = Immut or (VI = Immutc and c �∈ K)
VI otherwise

K � H,new C<NO,VI>(v)→ H[l 	→ C<NO,VI’>(null)],l.build(v);return l

(R-NEW)

K ∪{l} � H,e→ H ′,e’
K � H,e;return l→ H ′,e’;return l

(R-C1)
H[l] = C<NO,NI>(v) fields(C) = f

K � H,l.fi → H,vi
(R-FIELD-ACCESS)

H[l] = C<NO,NI>(v) fields(C) = f NI = Mutable or κH(l) ∈ K v′ = null or l�θ θH(v′)
K � H,l.fi = v′ → H[l 	→ C<NO,NI>([v′/vi]v)],v′

(R-FIELD-ASSIGNMENT)

K � H,v;return l→ H,l
(R-RETURN)

H[l] = C<NO,NI>(. . .) mbody(m,C) = x.e′
K � H,l.m(v)→ H, [v/x,l/this,l/This,NO/O,NI/I]e′ (R-INVOKE)

Figure 10. FOIGJ Reduction Rules (K � H,e→ H ′,e′), excluding all congruence rules except R-C1.

that returns new C<O,I>(...) and the receiver is a cooked
immutable object.

3.5 Guarantees of FOIGJ

We now turn to prove various properties of FOIGJ, includ-
ing preservation theorem, ownership and immutability guar-
antees, and an erasure property. In the remainder of this sec-
tion, we assume that reduction does not get stuck on null-
pointer exceptions, i.e., the receiver/target of field access, as-
signment and method calls is never null. Under this assump-
tion, then e can always be reduced to another expression e ′.

Before stating the preservation theorem, we need to es-
tablish a connection between K and the reduced expres-
sion e, which may contain return l. Given an expression e,
we define K(e) to be the set of all ongoing constructors
in e, i.e., all the locations in subexpressions e’;return

l. Formally, K(e;return l) = K(e) ∪ {l}, and for any
other expression we just recurse into all subexpressions,
e.g., K(e.f=e’) = K(e)∪K(e’).

We will maintain the invariant that H is well-typed
for K∪K(e). From Lem. 3.6, then H will also be well-typed
for K. Initially, we start with a closed expression e without
any locations (therefore K(e) = /0), an empty heap H, and an
empty set of constructors K.

THEOREM 3.7. (Progress and Preservation) For every closed
expression e �= v, K, and H, if K,ΓH � e : T and H is
well-typed for K ∪ K(e), then there exists H ′,e′,T′ such
that K � H,e → H ′,e′, H ′ is well-typed for K ∪ K(e′), T,
T’, and e′ are closed, K,ΓH′ � e′ : T′, and K,ΓH′ � T′ ≤ T.

Proved by showing there is always (exactly) one applicable
reduction rule, which preserves subtyping. From Lem. 3.4,
we know that e′ is closed, and from Lem. 3.3, we know that
T and T′ are closed. Next we mention some highlights from
the proof. In rule R-RETURN, we have that K(e ′) = K(e)\ {l},
but even though we shrink K, we still have a well-typed heap
from Lem. 3.6. In rule R-FIELD-ASSIGNMENT, Lem. 3.5 shows
that the assumption l �θ θH(v′) holds, and the resulting

heap is well-typed for K ∪ K(e′) because K(e′) = {} and
from T-FIELD-ASSIGNMENT. In rule R-NEW, we need to type the
call l.build(v), and for parameters with immutability I, we
use the subtyping rule S13.

Our ownership and immutability guarantees follow di-
rectly from the reduction rules, because rule R-FIELD-ASSIGNMENT

enforces them.
Thm. 3.8 shows that there is no need to maintain at run

time K nor to store the owner and immutability parameter
of each object. Formally, we define an erased heap struc-
ture E(H) that maps location to objects without these pa-
rameters, i.e., l 	→ C(v) ∈ E(H). We define the erasure of an
expression e, E(e), by deleting all generic parameters, and
define new reduction rules →E in the obvious way.

THEOREM 3.8. (Erasure) If K � H,e→ H ′,e′ then
K � E(H),E(e) →E E(H ′),E(e′).

4. OIGJ Case Studies
This section describes our implementation of OIGJ: the lan-
guage syntax (Sec. 4.1) and the type-checker implementa-
tion (Sec. 4.2). Sec. 4.3 presents our case study that involved
annotating Sun’s implementation of the java.util collec-
tions, and our conclusions about the design of the collection
classes w.r.t. ownership and immutability.

The prototype OIGJ type-checker is implemented and
distributed as part of the Checker Framework [30]2, which
supports pluggable type systems using type annotations.

4.1 Syntax: from generics to annotations

Whereas this paper uses generics to express ownership and
immutability (e.g., Date<O,I>), our OIGJ implementation
uses Java 7’s type annotations [15] (e.g., @O @I Date). Java
7’s receiver annotations play the role of cJ’s guards.

Using annotations has the advantage of compatibility
with existing compilers and other tools. Another advantage
is the ability to use a default value, such as @Mutable. Fur-

2 http://types.cs.washington.edu/checker-framework/

thermore, it is possible to customize these defaults per class.
Defaults are not possible in generics, because a programmer
must supply arguments for all generic parameters.

Using annotations has the disadvantage that some notions
are no longer explicit in the syntax, such as transitivity,
wildcards, and generic methods. For example, compare the
annotation and generic syntax:

class Foo { @O @I Bar bar; }

class Foo<O,I> { Bar<O,I> bar; }

Note that the type of new Foo<World,Immut>().bar is ex-
plicit in the generic syntax, whereas the annotation syntax
(new @World @Immut Foo().bar) requires additional rules
that mimic generics. Use of annotations also complicates
the implementation (see below). For practical use, the com-
patibility benefits of using annotations outweigh their disad-
vantages.

OIGJ’s annotations are the Cartesian product of owner
parameters and immutability parameters. Our implementa-
tion does not yet support wildcards (though in practice the
@I and @O annotations subsume most need for wildcards),
nor classes with multiple owner or immutability parame-
ters, such as Iterator<O,ItrI,CollectionI,E> in Fig. 3. (In
our case study, we implemented iterators using a single im-
mutability parameter by declaring next() as mutable.)

A class declaration can be annotated as @Immut to indicate
class immutability, i.e., all instances are immutable and no
mutable methods exist.

4.2 OIGJ implementation

Because a pluggable type checker augments, rather than
replaces, the type system of the underlying language, the
Checker Framework permits only language extensions that
are stricter than ordinary Java. A pluggable type system
cannot relax Java’s rules, as the OIGJ subtyping rule does.
For example,

@Immut List<@Immut Date> a;

@ReadOnly List<@ReadOnly Date> b=a; // OK
@Immut List<@Immut Object> c=a; // Illegal!

The assignment c=a is illegal in Java and therefore in
the Checker Framework, though it is legal in OIGJ itself.
Phrased differently, in our implementation, the covariance is
limited to annotations.

The OIGJ type-checker incorporates, extends, and in
some places overrides the IGJ checker, and adds OGJ fea-
tures. It consists of about 700 source lines of code (of which
100 lines is Java boilerplate to define the annotations). Most
of the code handles default and implicit types.

4.3 java.util collections case study

As a case study, we type-checked Sun’s implementations of
the java.util collections (77 classes, 33,246 lines of code).
This required us to write 85 ownership-related annotations
and 46 immutability-related annotations in 102 lines of code
(the lines with new usually contain 2 annotations).

Sun’s collections are not type-safe with respect to gener-
ics because Java does not support generic arrays. However,
the OIGJ implementation uses type annotations, which can
be placed on arrays as well, and therefore our annotated col-
lections type-check without any errors with respect to own-
ership and immutability.

Class LinkedList in Fig. 3 is similar in essence to Sun’s
implementation. We annotated the constructors with Raw,
thus allowing creation of immutable instances. Since all in-
stances of Entry are this-owned, using @This @I as the de-
fault annotation for Entry meant that only three ownership-
related3 annotations were needed in LinkedList:

@Default({This.class, I.class})

static class Entry<E> {

E element; @O Entry<E> next; @O Entry<E> prev;

... }

Similarly, in a HashMap, both the array and the entries are
this-owned: @This @I Entry[@This @I] table;

The case study supports these conclusions: (i) the collec-
tions classes are properly encapsulated (they own their rep-
resentation), (ii) it is possible to create immutable instances
(all constructors are Raw), and (iii) methods Map.get and
clone contain design mistakes (see below). We were not pre-
viously aware of these design mistakes. We believe that if the
collections were designed with ownership and immutability
in mind, such mistakes could be avoided.

Immutability of method get Let’s start with a quick rid-
dle: is there a Map implementation in java.util that might
throw an exception when running the following single-
threaded code?

for (Object key : map.keySet()) { map.get(key); }

The answer is that for a map created with

new LinkedHashMap(100, 1, /*accessOrder=*/ true)

that contains more than one element, the above code throws
ConcurrentModificationException after printing one ele-
ment.

Most programmers assume that Map.get is readonly, but
there is no such guarantee in Java’s specification. The doc-
umentation of LinkedHashMap states: “A special constructor
is provided to create a linked hash map whose order of it-
eration is the order in which its entries were last accessed,
from least-recently accessed to most-recently (access-order).
Invoking the put or get method results in an access to the
corresponding entry.”

Because calling get modified the list, the above code
threw ConcurrentModificationException. Phrased differ-
ently, method LinkedHashMap.get is mutable! Because an
overriding method can only strengthen the specification of
the overridden method, HashMap.get and Map.get must be
mutable as well.

3 The other annotations are immutability-related, e.g., receiver annotations.

OIGJ OGJ IGJ GUT UTT IOJ JOE3

[32] [39] [14] [24] [18] [29]
Owner-as-dominator + + + +
Owner-as-modifier + +
Readonly references + + + + +
Immutable objects + + + +
Uniqueness +
Ownership transfer +
Factory method pattern + + + + + +
Visitor pattern + +
Sun’s LinkedList +
Case studies available + +

Figure 11. Features supported by various language designs.

Ownership and method clone Method clone violates
owner-as-dominator because it leaks this-owned references
by creating a shallow copy, i.e., only immediate fields are
copied. Furthermore, Sun’s implementation of LinkedList

assigns to result.header, which is a this-owned field. This
violates Field assignment rule of Sec. 2.3, which only per-
mits assignment to this.header.

// The following code appears in LinkedList.clone().
// Calling super.clone() breaks owner-as-dominator because
// it leaked this.header to result.header.
LinkedList result = (LinkedList) super.clone();

result.header = new Entry(); // Illegal in OIGJ!

We sketch a solution that, instead of initializing the
cloned result from this, uses the idea of inversion of con-
trol. The solution has two parts. (1) The programmer writes
a method constructFrom that initializes this from a param-
eter. (This is similar to a copy-constructor in C++, and in-
deed this method should be given all the privileges of a
constructor, such as assignment to final fields.) (2) The
compiler automatically generates a clone method that first
nullifies all the reference fields and then calls the user gen-
erated constructFrom method. This approach enforces the
ownership and immutability guarantees.

5. Related Work
In this section we discuss related work on ownership and im-
mutability. We first highlight the relationship between OIGJ
and our previous work on ownership (OGJ) and immutabil-
ity (IGJ). We also survey some of the most relevant related
language designs and show how OIGJ compares to them.

5.1 Relationship with OGJ and IGJ

OIGJ can be thought of as the “cartesian product” of OGJ
and IGJ: OIGJ uses two type parameters to express owner-
ship and immutability. However, the delicate intricacies be-
tween ownership and immutability required changes to both
OGJ and IGJ, making OIGJ more expressive than a naive
combination.

Ownership Generic Java (OGJ) [32] demonstrated how
ownership and generic types can be unified as a language
feature. OGJ featured a single owner parameter for every
class that was treated in the same way as normal generic type
parameters, simplifying the language, the formalism, and the
implementation.

OGJ completely prohibits wildcards as owner parame-
ters, e.g., Point<?>, whereas OIGJ relaxes this rule and al-
lows wildcards on stack variables, which enables writing the
equals method (see Generic Wildcards rule in Sec. 2.3).

In OGJ, a method may have generic parameters that are
owner parameters, e.g.,

class Foo<O extends World> {

<O2 extends World> void bar(Object<O2> o) {...}

However, OGJ required that the parametric owners are out-
side the owner of the class, e.g., O�θ O2. This rule is very re-
strictive, however it guarantees that the ownership structure
is a tree. OIGJ removed this rule at the cost of complicating
the ownership structure: it is a directed acyclic graph (DAG)
instead of a tree.

Finally, OIGJ can express temporary ownership within a
method by using a fresh owner parameter (see Fresh owners
in Sec. 2.3).

Immutability Generic Java (IGJ) [39] showed how
generic types can be used to provide support for readonly
references and object immutability. OIGJ used ownership
information to improve the expressiveness of IGJ. Specif-
ically, certain restrictions in IGJ no longer apply in OIGJ
for this-owned objects. For example, Raw is not transitive in
IGJ, e.g., the assignment to next in Fig. 3 on lines 9 and 22
is illegal in IGJ, thus limiting creation of immutable objects.
In contrast, Raw is transitive in OIGJ for this-owned fields
(see Field assignment rule in Sec. 2.3), and therefore there
was no need to refactor the collections’ code.

IGJ includes an @Assignable annotation on fields that
permits field assignment even in immutable objects. The
@Assignable annotation indicates that a given field is not
part of the object’s abstract state. This is necessary to type-
check caches, lazily-initialized fields, and other program-
ming idioms. OIGJ removed this annotation to simplify the
formalism. This also guarantees representation immutability
as well as immutability of the abstraction: the fields of a
cooked immutable object never change. Our implementation
supports the @Assignable annotation.

IGJ only permits a single immutability parameter, which
simplifies the subtyping rule. In contrast, types in OIGJ
can have multiple immutability parameters, for example,
Iterator<O,ItrI,CollectionI,E>. Because IGJ uses a sin-
gle immutability parameter, the immutability of an itera-
tor and its underlying collection must be the same. Thus,
in IGJ, method next() must be readonly (or you couldn’t
iterate over a readonly list), and therefore we had to use
an @Assignable annotation on ListItr.current (line 37 in
Fig. 3). In contrast, in OIGJ, we guard next() with a mu-

table ItrI (line 51), and guard remove() with a mutable
CollectionI (line 52).

5.2 Relationship with other work

OIGJ uses method guards borrowed from cJ [19]. (The OIGJ
implementation uses annotations syntax instead.)

In what follows, we have room to survey only closely re-
lated papers. Fig. 11 compares OIGJ to some of the previous
work described below.

Mutability and encapsulation were first combined by
Flexible Alias Protection (FLAP) [27]. FLAP inspired a
number of proposals including ownership types [13] and
confined types [35]. Capabilities for Sharing [5] describes
the fundamentals underlying various encapsulation and mu-
tability approaches by separating “mechanism” (the seman-
tics of sharing and exclusion) from “policy” (the guaran-
tees provided by the resulting system). Capabilities gives a
lower-level semantics that can be enforced at compile or run
time. A reference can possess any combination of these 7
access rights: read, write, identity (permitting address com-
parisons), exclusive read, exclusive write, exclusive identity,
and ownership (giving the capability to assert rights). Im-
mutability, for example, is represented by the lack of the
write right and possession of the exclusive write right. Fi-
nally, Fractional Permissions [6] can give semantics to var-
ious annotations such as unique, readonly, method effects,
and an ownership variant called owner-as-effector in which
one cannot read or write owned state without declaring the
appropriate effect for the owner.

Ownership types [2, 3, 11] impose a structure on the
references between objects in a program’s memory. OIGJ
and other work [29, 32] enforce the owner-as-dominator
disciplines. Generic Universe Types (GUT) [14, 23] en-
force owner-as-modifier by using three type annotations:
rep, peer, and readonly. rep denotes representation objects
(similar to This), while peer denotes objects owned by the
same owner (similar to O). UTT [24] is an extension of Uni-
verse Types that supports ownership transfer by utilizing a
modular static analysis, which is useful for merging data-
structures or complex object initialization.

MOJO [10] can express multiple ownership, i.e., objects
can have more than one owner at run time. OIGJ supports
only a single owner at run time. (OIGJ supports multiple
owner parameters, but according to the Ownership nesting
rule, all owner parameters are inside the first owner parame-
ter.)

Jo∃ [8] supports variant subtyping over the owner param-
eter by using existential types. OIGJ supports wildcards used
as owners for stack variables, but those are less flexible than
Jo∃. For example, Jo∃ can distinguish a list of students that
may have different owners, from a list of student that share
the same unknown owner.

Immutability and ownership. Similarly to OIGJ, Im-
mutable Objects for a Java-like Language (IOJ) [18] asso-
ciates with each type its mutability and owner. In contrast to

OIGJ, IOJ does not have generics, nor readonly references
(only readonly and immutable objects). Moreover, in IOJ,
the constructor cannot leak a reference to this.

X10 [28] supports constrained types that can refer to
properties and final local variables. X10 supports cyclic im-
mutable structures by using proto annotations, which are
similar to our immutability I and the notion of cookers. How-
ever, both X10 and IGJ cannot type-check Sun’s LinkedList
because an object becomes cooked when its constructor
finishes. It is possible to refactor LinkedList to fit X10’s
typing-rules by using a recursive implementation, but then
you risk a stack-overflow when creating large lists. Delayed
types [16], which are similar to X10’s proto, are used to
verify non-null fields or other heap-monotonic properties.

JOE3 [29] combines ownership (as dominators, not mod-
ifiers), uniqueness, and immutability. It also supports owner-
polymorphic methods, but not existential owners.

Frozen Objects [22] show how ownership can help sup-
port immutability by allowing programmers to decide when
the object should become immutable. This system takes a
verification approach rather than a simple type checker such
as OIGJ. Frozen Objects show how flexible the initialization
stage can potentially be in the presence of ownership and
immutability, while OIGJ shows how much flexibility can
be achieved while staying at the type checking level.

Readonly references are found in C++ (using the const

keyword), JAC [21], modes [33], Javari [34], etc. Previous
work on readonly references lack ownership information.
Boyland [4] observes that readonly does not address obser-
vational exposure, i.e., modifications on one side of an ab-
straction boundary that are observable on the other side. Im-
mutable objects address such exposure because their state
cannot change.

List iterators pose a challenge to ownership because they
require a direct pointer to the list’s privately owned entries,
thus breaking the owner-as-dominator property. Both OIGJ
and SafeJava [3] allow an inner instance to access the outer
instance’s privately owned objects. Clarke [11] suggested to
use iterators only with stack variables, i.e., you cannot store
an iterator in a field. It is also possible to redesign the code
and implement iterators without violating ownership, e.g., by
using internal iterators or magic-cookies [26].

6. Conclusion
OIGJ is a Java language extension that supports both owner-
ship and immutability, while enhancing the expressiveness
of each individual concept. By using Java’s generic types,
OIGJ simplifies previous type mechanisms, such as existen-
tial owners, scoped regions, and owner-polymorphic meth-
ods. OIGJ is easy to understand and implement, using only
14 (flow-insensitive) typing rules beyond those of Java. We
have formalized a core calculus called FOIGJ and proved
it sound. Our implementation is backward-compatible with
Java, and it scales to realistic programs. OIGJ can type-check

Sun’s java.util collections (without the clone method), us-
ing a small number of annotations. Finally, various design
patterns, such as the factory and visitor patterns, can be
expressed in OIGJ, making it ready for practical use. An
implementation is publicly available at http://types.cs.
washington.edu/checker-framework/.

Future work includes inferring ownership and immutabil-
ity annotations, conducting a bigger case study including
client and library code, and extending OIGJ with concepts
such as owner-as-modifier [40], uniqueness, and external-
uniqueness [12].

Acknowledgments
This work was supported by the New Zealand Royal Society
Marsden Grant, ISAT Grant, and NSF grant CNS-0855252.
Werner Dietl, James Noble, the ELVIS group, and the anony-
mous referees provided valuable feedback.

References
[1] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe

Programming. PhD thesis, MIT Dept. of EECS, Feb. 2004.

[2] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: Preventing data races and deadlocks. In
OOPSLA, pages 211–230, Oct. 2002.

[3] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Owner-
ship types for object encapsulation. In POPL, pages 213–223, Jan.
2003.

[4] John Boyland. Why we should not add readonly to Java (yet). In
FTfJP, July 2005.

[5] John Boyland, James Noble, and William Retert. Capabilities for
sharing: A generalisation of uniqueness and read-only. In ECOOP,
pages 2–27, June 2001.

[6] John Boyland, William Retert, and Yang Zhao. Comprehending
annotations on object-oriented programs using fractional permissions.
In IWACO, pages 1–11, July 2009.

[7] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: Adding genericity to the Java
programming language. In OOPSLA, pages 183–200, Oct. 1998.

[8] Nicholas Cameron and Sophia Drossopoulou. Existential quantifica-
tion for variant ownership. In ESOP, pages 128–142, Mar. 2009.

[9] Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. A model
for Java with wildcards. In ECOOP, pages 2–26, July 2008.

[10] Nicholas R. Cameron, Sophia Drossopoulou, James Noble, and
Matthew J. Smith. Multiple ownership. In OOPSLA, pages 441–460,
Oct. 2007.

[11] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation
and the disjointness of type and effect. In OOPSLA, pages 292–310,
Oct. 2002.

[12] Dave Clarke and Tobias Wrigstad. External uniqueness is unique
enough. In ECOOP, pages 176–200, July 2003.

[13] David G. Clarke, John M. Potter, and James Noble. Ownership types
for flexible alias protection. In OOPSLA, pages 48–64, Oct. 1998.

[14] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic Uni-
verse Types. In ECOOP, pages 28–53, Aug. 2007.

[15] Michael D. Ernst. Type Annotations specification (JSR 308). http:
//types.cs.washington.edu/jsr308/, Sep. 12, 2008.

[16] Manuel Fähndrich and Songtao Xia. Establishing object invariants
with delayed types. In OOPSLA, pages 337–350, Oct. 2007.

[17] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides.
Design Patterns. Addison-Wesley, Reading, MA, 1995.

[18] Christian Haack, Erik Poll, Jan Schäfer, and Aleksy Schubert. Im-
mutable objects for a Java-like language. In ESOP, pages 347–362,
Mar. 2007.

[19] Shan Shan Huang, David Zook, and Yannis Smaragdakis. cJ: Enhanc-
ing Java with safe type conditions. In AOSD, pages 185–198, Mar.
2007.

[20] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: a minimal core calculus for Java and GJ. ACM TOPLAS,
23(3):396–450, May 2001. ISSN 0164-0925.

[21] Günter Kniesel and Dirk Theisen. JAC — access right based encap-
sulation for Java. Software: Practice and Experience, 31(6):555–576,
2001.

[22] K. Rustan M. Leino, Peter Müller, and Angela Wallenburg. Flexible
immutability with frozen objects. In VSTTE, pages 192–208, Oct.
2008.

[23] P. Müller and A. Poetzsch-Heffter. Universes: A type system for
controlling representation exposure. In Programming Languages and
Fundamentals of Programming, pages 131–140, 1999.

[24] Peter Müller and Arsenii Rudich. Ownership transfer in universe
types. In OOPSLA, pages 461–478, Oct. 2007.

[25] Stefan Nägeli. Ownership in design patterns. Master’s thesis, ETH
Zürich, Zürich, Switzerland, Mar. 2006.

[26] James Noble. Iterators and encapsulation. In TOOLS Pacific, pages
431–442, 2000.

[27] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In
ECOOP, pages 158–185, July 1998.

[28] Nathaniel Nystrom, Vijay Saraswat, Jens Palsberg, and Christian
Grothoff. Constrained types for object-oriented languages. In OOP-
SLA, pages 457–474, Oct. 2008.

[29] Johan Östlund, Tobias Wrigstad, and Dave Clarke. Ownership,
uniqueness and immutability. In Tools Europe, pages 178–197, 2008.

[30] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H.
Perkins, and Michael D. Ernst. Practical pluggable types for Java.
In ISSTA, pages 201–212, July 2008.

[31] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[32] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic
Ownership for Generic Java. In OOPSLA, pages 311–324, Oct. 2006.

[33] Mats Skoglund and Tobias Wrigstad. A mode system for read-only
references in Java. In FTfJP, June 2001.

[34] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference
immutability to Java. In OOPSLA, pages 211–230, Oct. 2005.

[35] Jan Vitek and Boris Bokowski. Confined types. In OOPSLA, pages
82–96, Nov. 1999.

[36] Tobias Wrigstad. Ownership-Based Alias Management. PhD thesis,
Royal Institute of Technology, Sweden, May 2006.

[37] Tobias Wrigstad and Dave Clarke. Existential owners for ownership
types. J. Object Tech., 6(4):141–159, May–June 2007.

[38] Yoav Zibin. Featherweight Ownership and Immutability Generic Java
(FOIGJ). Technical Report 10-16, ECS, VUW, June 2010. http:
//ecs.victoria.ac.nz/Main/TechnicalReportSeries.

[39] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun,
and Michael D. Ernst. Object and reference immutability using Java
generics. In ESEC/FSE, pages 75–84, Sep. 2007.

[40] Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D.
Ernst. OIGJ with owners as modifiers. Technical Report 10-15, ECS,
VUW, January 2010.

